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Abstract. We study the voter model, under node and link update, and the
related invasion process on a single strongly connected component of a directed
network. We implement an analytical treatment in the thermodynamic limit
using the heterogeneous mean-field assumption. From the dynamical rules at the
microscopic level, we find the equations for the evolution of the relative densities
of nodes in a given state on heterogeneous networks with arbitrary degree
distribution and degree–degree correlations. We prove that conserved quantities
as weighted linear superpositions of spin states exist for all three processes and,
for uncorrelated directed networks, we derive their specific expressions. We also
discuss the time evolution of the relative densities that decay exponentially to a
homogeneous stationary value given by the conserved quantity. The conservation
laws obtained in the thermodynamic limit for a system that does not order
in that limit determine the probabilities of reaching the absorbing state for a
finite system. The contribution of each degree class to the conserved quantity
is determined by a local property. Depending on the dynamics, the highest
contribution is associated with influential nodes reaching a large number of
outgoing neighbors, not too influenceable ones with a low number of incoming
connections, or both at the same time.

Keywords: disordered systems (theory), network dynamics, stochastic processes

c©2009 IOP Publishing Ltd and SISSA 1742-5468/09/P10024+18$30.00

mailto:marian.serrano@ub.edu
mailto:klemm@bioinf.uni-leipzig.de
mailto:fede@ifisc.uib-csic.es
mailto:victor@ifisc.uib-csic.es
mailto:maxi@ifisc.uib-csic.es
http://stacks.iop.org/JSTAT/2009/P10024
http://dx.doi.org/10.1088/1742-5468/2009/10/P10024


J.S
tat.M

ech.
(2009)

P
10024

Conservation laws for voter-like models on random directed networks

Contents

1. Introduction 2

2. The voter model on strongly connected components 4
2.1. Directed networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. From microscopic dynamics to the drift equation under the heterogeneous

mean-field assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3. Conserved quantity on directed networks with degree–degree correlations . 8

3. Voter model on uncorrelated SCCs 9

4. Voter model with link update 11

5. Invasion process 13

6. Conclusions 15

Acknowledgments 16

References 16

1. Introduction

Conservation laws are intimately related to symmetries in the systems they hold for. They
play an important role in the characterization and classification of different nonequilibrium
processes of ordering dynamics. For example, in kinetic Ising models one distinguishes
between Glauber (spin flip) and Kawasaki (spin exchange) dynamics. Kawasaki dynamics
fulfills a microscopic conservation law, such that the total magnetization is conserved in
each individual dynamical step of a stochastic realization. This conservation law does
not hold for Glauber; as a consequence, the Glauber and Kawasaki dynamics give rise
to different scaling laws for domain growth in coarsening processes [1] and they define
different nonequilibrium universality classes.

In other types of nonequilibrium lattice models non-microscopic conservation laws are
known to hold. They are statistical conservation laws in which the conserved quantity is an
ensemble average defined over different realizations of the stochastic dynamics for the same
distribution of initial conditions. Examples of such conservation laws occur for the voter
model [2, 3] or the invasion process [4]. In particular, the role of the conservation law of
the magnetization and of the Z2 symmetry (±1 states) in the voter dynamics universality
class has been studied in detail in the critical dimension d = 2 of regular lattices [5]. The
voter model is a paradigmatic model of consensus dynamics in the social context [6, 7]
or, in the biological context, of competition of plant species in ecological communities [8].
In general, any Markov chain with at least two absorbing states reachable from all other
configurations has a conserved quantity when averaged over the ensemble. Such a quantity
determines the probability to eventually reach a particular absorbing configuration in a
finite system. In some cases, this conservation law is of rather trivial nature as in the
zero-temperature Ising Glauber dynamics where the magnetization sign is conserved. The
voter model, the zero-temperature Ising Glauber dynamics, and other related models of
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language evolution [9] or population dynamics [10], belong to the class of models with two
absorbing states while epidemic spreading dynamics, like the contact process [11] or the
Susceptible–Infected–Susceptible model [12], usually have a single absorbing state with
no conservation law.

While some of these questions have been studied for spin lattice models for a long
time, conservation laws for dynamical processes on complex networks [13]–[16] still remain
a challenge. This issue has been considered for the voter model [2, 3] or the invasion
process [4] on undirected uncorrelated networks [17]–[21]. The link update dynamics
for the voter model has been found to conserve the global magnetization [22], while
the node update dynamics [22] and the invasion process [20] preserve a weighted global
magnetization where the contribution of each spin is calibrated by some function of the
degree of the corresponding node in the undirected network. Such ensemble average
conservation laws characterize processes with two absorbing states accessible to the
dynamics, which compete to maintain an active state in the thermodynamic limit. In
finite networks, the conserved quantities give the probabilities of reaching the uniform
states and so act as a bridge that enables some probabilistic predictive power of the final
dynamical state based on information about the initial conditions. In addition, different
finite size dynamical scaling properties can be related to different conservation laws [22].

Much less has been done exploring dynamical processes on directed networks, with
the exception of the Ising model [23] and Boolean dynamics mainly applied to biological
problems [24]. However, interactions between pairs of elements are asymmetric in different
systems including some social networks [25], where social ties are perceived or implemented
differently by the two individuals forming the connected pairs. Directed network
representations rather than undirected ones become more informative and adjusted to
reality. In general, directed networks present characteristic large-scale connectivity
structures, the so-called bow-tie architecture formed by a strongly connected component as
a core structure and peripheral in- and out-components [26]. This organization, coupled
to the initial condition of the dynamics running on top, have an impact both on the
evolution of the processes and the final possible states of the systems [27]–[29]. In the
voter model, leaf nodes in the in-component never change their state, thus sending an
invariable signal that can potentially propagate to the rest of the components of the
system. This is closely related to phenomena such as the presence of zealots [30, 31]
in undirected networks. Both input or output directional large-scale components and
zealotry imply at the end an external forcing on the dynamical processes that prevents
reaching one of the absorbing states even for a finite network. This is clearly illustrated
by the evolution of dynamical processes running on networks at the transition from a
pure strongly connected component to a complete bow-tie structure. In an isolated and
strongly connected component, the voter dynamics keeps an active dynamical state in the
thermodynamic limit, but it leads to a consensus (absorbing state) in a finite network as
it happens on undirected networks. Thus, the appearance of an input component in the
large-scale structure of the network prevents the system from reaching an absorbing state
for random initial conditions [28].

In this paper, we focus on dynamics of coupled two-state spin variables and consider
conserved quantities that are weighted sums of the spin values. Specifically, we investigate
the form of the conservation law for the voter model—under node and link update—
and the invasion process in directed networks with arbitrary degree distribution and
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degree–degree correlations, and otherwise maximally random. The directionality of the
interactions is therefore encoded in the topology. We restrict to a single strongly connected
component so that the absorbing state can be reached in a finite system, which seems
realistic for a number of densely connected real networks like the world trade web [32].
In section 2, we present a detailed study of the node update version of the voter model
and implement an analytical treatment using the heterogeneous mean-field assumption
in the thermodynamic limit. From the dynamical rules at the microscopic level, we
find the equations for the evolution of the relative densities of nodes in one of the two
possible states on heterogeneous networks with arbitrary degree distribution and degree–
degree correlations. In this case, we prove that a conserved quantity as a weighted linear
superposition of spin states exists. In section 3, we discuss the node update voter model in
uncorrelated directed networks to derive an analytical expression for the conservation law
and we also discuss the exponential decay of the relative densities to their homogeneous
stationary value, which is basically a function of the conserved quantity. We show how the
conserved quantity determines the probability of reaching one of the two states in a finite
network. In sections 4 and 5, we present the results of applying the same methodology to
the voter model with link update and the invasion process, respectively. We conclude in
section 6 with a summary of results and open questions for future research.

2. The voter model on strongly connected components

In the voter model under node update (VM), each node of a network can exist in one of
two possible states, 1 or 04. In a single dynamical event, a randomly selected node copies
the state of one of its neighbors, also selected at random. The link update dynamics
of the voter model selects instead a link [22]. Time is increased by 1/N , so that the
physical time is incremented by 1 after N of such events. On undirected networks, the
node update voter model conserves the ensemble average of a weighted magnetization,
where the contribution of each spin is multiplied by the degree of the corresponding node.

As defined above, the interactions in the voter dynamics are instantaneously
asymmetric since the updates always go in the same direction once the original node
is chosen independently of the undirectionality of the substrate. Hence, the discussion of
the voter model on directed networks comes out as a natural one, where the directionality
of the interaction is decoupled from the dynamics and encoded in the structure of the
substrate. The straightforward generalization of the voter model on directed networks
under node update consists of selecting a node at random, and then assigning to it the state
of one of its incoming neighbors, also chosen at random. We will discuss this dynamics
next in this section and section 3, and the voter model with link update will be discussed
later in section 4.

2.1. Directed networks

The topological structure of directed networks is more complex than the one of
undirected graphs. In purely directed networks, without bidirectional links, the edges

4 We use these values s = 1, 0 in order to simplify computations instead of the usual spin notation σ = ±1. There
is a direct mapping between both schemes σ = 2s− 1, and therefore for all the properties defined as a function of
the states. For instance, the total magnetization m in the {±1} scheme is related to the total magnetization m′

in the {0, 1} scheme through m = 2m′ − 1.
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are differentiated into incoming and outgoing, so that each vertex has two coexisting
degrees kin and kout, with total degree k = kin + kout. Hence, the degree distribution
for a directed network is a joint degree distribution P (kin, kout) ≡ P (k) of in- and out-
degrees that, in general, may be correlated. We consider degree correlations Pin(k

′|k)
and Pout(k

′|k), which respectively measure the probability to reach a vertex of degree k′

leaving from a vertex of degree k using an incoming or outgoing edge of the source vertex,
and are related through the following degree detailed balance condition [33]:

koutP (k)Pout(k
′|k) = k′

inP (k′)Pin(k|k′). (1)

This ensures that the network is closed and 〈kin〉 = 〈kout〉. Apart from the prescribed
degrees and two-point correlations, networks are maximally random. At the macroscopic
scale, the giant weakly connected component, i.e. the set of nodes that can communicate
to each other when considering the links as undirected [34]–[38], becomes internally
structured in three giant connected components, as well as other secondary structures
such as tubes or tendrils, forming a bow-tie architecture [26]. The main component is
the strongly connected component (SCC), a central core formed by the set of vertices
that can be reached from each other following a directed path. The other two main
components are peripheral components, the in-component (IN) formed by all vertices
from which the SCC is reachable by a directed path but that cannot be reached from
there, and the out-component (OUT) formed by all vertices that are reachable from
the SCC by a directed path but cannot reach the SCC themselves. Percolation theory
for purely directed networks was first developed for uncorrelated networks [37]–[41] and
directed random networks with arbitrary two-point degree correlations and bidirectional
edges [33].

We restrict to networks forming a strongly connected component without peripheral
components that would act on the SCC as sources of external forcing. We will see
that, within the strongly connected component, conservation laws preserve weighted
magnetizations, where the weights are dictated by the directed degrees.

2.2. From microscopic dynamics to the drift equation under the heterogeneous mean-field
assumption

In this section, we first describe the voter model as a stochastic process on the microscopic
level of single nodes. Then we derive a macroscopic description by coupled Langevin
equations capturing the stochasticity in the drift terms. Each equation is for the expected
state averaged over the subset of nodes having the same in- and out-degrees. This so-
called heterogeneous mean-field approach allows us to deal with dynamical processes on
complex networks. It is based on two assumptions: (i) all nodes in the same degree class
are statistically equivalent, that is, nodes with different degrees have to be treated as
intrinsically different (the ‘heterogeneous’ part of the assumption) and (ii) any stochastic
variable associated with the dynamics of a node belonging to a certain degree class
is described by the average over the class (the ‘mean-field’ part of the assumption).
Notice that the ‘heterogeneous’ approximation may not be completely true for single
network realizations as two nodes with the same degree can have different environments.
However, when random network ensembles are considered instead of single realizations,
the averaging over network realizations ensures that all nodes within the same degree
class are statistically equivalent. To our knowledge, the heterogeneous mean field was
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first presented in [42, 43] and recently used to study the contact process [11]. In [21, 44],
a homogeneous mean-field pair approximation was developed instead.

We focus on the microscopic state of nodes at some time t. Let su(t), u = 1, . . . , N ,
be a stochastic binary variable defined for each of the N nodes in the network which
describes its state, 0 or 1. The vector s(t) ≡ {su(t)}, u = 1, . . . , N , completely defines
the dynamical state of the system at time t. Two more independent binary stochastic
variables μu(dt) and ξu are defined in order to model the transitions between states of
single nodes in an iteration. After a time interval dt, the variable μu(dt) for a given node
u takes the value 1 or 0 if u was chosen or not, respectively. In case node u was selected,
then ξu assumes the value 1 [0] if u copies a neighbor with state 1 [0]. We assume that
the occurrence of events in the voter dynamics follows an independent Poisson process for
each node, with constant rate λ for all of them, which corresponds to a Monte Carlo step.
In the remainder we will be set to λ = 1 without loss of generality. Thus, μu(dt) and ξu

have probability distributions:

P (μu(dt)) = dt δμu(dt),1 + (1 − dt)δμu(dt),0, (2)

P (ξu) = Φu/ku,inδξu,1 + (1 − Φu/ku,in)δξu,0, (3)

where ku,in is the incoming degree of node u, and we have defined Φu(t) =
∑

v avusv(t).
The adjacency matrix {avu} encodes the topological properties of the directed network.
Element avu has value one if there is a directed link from v to u and zero otherwise, so
that Φu(t) stands for the number of state-one incoming neighbors of node u at time t. The
matrix {avu} is symmetric for undirected networks but for directed ones it is, in general,
asymmetric.

In terms of the above variables, the dynamical state su(t) of node u after an increment
of time dt is

su(t + dt) = μu(dt)ξu + (1 − μu(dt))su(t). (4)

This equation, together with equations (2) and (3), gives the complete description of the
evolution of the system, making the formalism general and applicable to any network
structure.

Although exact, this microscopic description is unmanageable. In order to reduce
the degrees of freedom, we apply a heterogeneous mean-field approach [12] so that nodes
with the same degree k are assumed to be statistically independent and equivalent and
can be aggregated in the same degree class Υ(k) ≡ Υ(kin, kout). At this point, we have
restricted to directed networks organized at the large scale into an SCC without IN and
OUT. Properties are then defined for each degree class, which will be characterized by
the relative density mk(t), the ratio between the number of state-one nodes within class
Υ(k) and its number of nodes Nk:

mk(t) =

∑
uεΥ(k) su(t)

Nk

. (5)

In the thermodynamic limit, the relative densities mk(t) can be considered as continuous
variables. Their time evolution can be described by a Langevin equation [45] with drift
and diffusion coefficients that are respectively given by the first and second infinitesimal
moments of the stochastic variables mk(t). Those moments can be derived from the
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microscopic equation (4) along with the definition in equation (5). In the thermodynamic
limit, it is possible to prove that the diffusion term has a dependence 1/

√
Nk on the system

size as for undirected networks [21], so that the drift term Ak will dominate. It is given
by the average value over all possible configurations of mk(t+dt) conditioned to the state
of the system at time t:

〈mk(t + dt)〉mk(t) = mk(t) + Ak(t) dt. (6)

From the microscopic dynamics

〈su(t + dt)〉s(t) = su(t) − dt[su(t) − Φu(t)/ku,in], (7)

and summing this equation for all nodes in the degree class k and dividing by the number
of nodes Nk, we arrive at

〈mk(t + dt)〉mk(t) = mk(t) − dt

⎡

⎣mk(t) − 1

Nk

1

kin

∑

uεΥ(k)

Φu(t)

⎤

⎦ , (8)

and from here to

Ak(t) = −mk(t) +
1

Nk

1

kin

∑

uεΥ(k)

Φu(t). (9)

The adjacency matrix contained in Φu(t) can be coarse-grained as well, so that a
differential equation for the relative densities can eventually be written. This coarse-
graining restricts the validity of the equations to random complex networks (and not
lattices), since we assume all nodes in the same degree class to be statistically independent
and equivalent. With these assumptions

∑

uεΥ(k)

Φu(t) =
∑

k′

∑

vεΥ(k′)

∑

uεΥ(k)

avusv(t)

=
∑

k′

Ek′kmk′(t), (10)

where Ek′k is the number of connections from the class of vertices of degree k′ to the
class of vertices of degree k. The generally asymmetric matrix E is the coarse-grained
adjacency matrix, giving weighted connections between degree classes rather than between
single nodes. With the detailed balance condition of equation (1), we obtain

Ek′k = k′
outPout(k|k′)Nk′ = kinPin(k

′|k)Nk. (11)

Inserting these results into equation (9), we arrive at the equation for the evolution
of the relative density in the degree class k of a purely directed correlated network
(disregarding diffusion terms):

dmk(t)

dt
= −mk(t) +

∑

k′

Pin(k
′|k)mk′(t). (12)

Let us recall that this result is valid for the ensemble of networks defined by the degree
distribution P (k) and the degree correlations Pin(k

′|k) and Pout(k
′|k), but otherwise

maximally random. Notice that large enough networks present good statistical quality
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at the level of degree classes and are also well described by this equation. Finally, in
the thermodynamic limit, the Langevin equation loses its noise term because of the
dependence on the system size and reduces to equation (12), so that mk(t) becomes a
deterministic variable. Nevertheless, since the process is linear, equation (12) is always
valid even for finite systems understanding that, in this case, the variables are averages
over realizations of the process with the same distribution of initial conditions.

2.3. Conserved quantity on directed networks with degree–degree correlations

For correlated networks, mk(t) =
∑

k′ Pin(k
′|k)mk′(t) in the stationary state. This

equation corresponds indeed to an eigenvector problem, since {mk(t)} can be thought
of as the eigenvector of the matrix {Pin(k

′|k)} with eigenvalue one. By normalization of
the conditional probability, a solution is the uniform vector mk(t) = m ∀k.

We prove next that, within the heterogeneous mean-field approach and for the
correlated directed networks we are considering, there is a conserved quantity given as a
linear superposition of the form ω =

∑
k ϕkmk(t). From equation (12), its evolution is

given by

dω

dt
= −ω +

∑

k

∑

k′

ϕkPin(k
′|k)mk′(t), (13)

and imposing that dω/dt = 0, we obtain
∑

k

ϕkmk(t) =
∑

k

∑

k′

Pin(k|k′)ϕk′mk(t). (14)

For each density

ϕk =
∑

k′

Pin(k|k′)ϕk′. (15)

This is an eigenvector equation that has a solution if the matrix {Pin(k|k′)} has an
eigenvalue equal to one with {ϕk} the corresponding eigenvector. One can prove that this
eigenvector with eigenvalue one exists by summing both sides of the previous equation
over k. Using the normalization of the conditional probability

∑
k Pin(k|k′) = 1, one

eventually arrives at a trivial identity. The fact that the coefficients ϕk that modulate the
contributions of the different mk to the conserved weighted magnetization correspond to
the entries of the eigenvector of a certain characteristic matrix with eigenvalue one also
applies to other similar dynamical processes, such as the link dynamics and the invasion
process, as we will show.

This proves that a conserved quantity of the form of a linear functional exists but,
in general, it is not possible to derive its value without further specifying the form of the
degree–degree correlations in the network.

In fact, a conserved quantity as a linear functional ω =
∑

u cusu exists for any directed
network. To see this, we note that the stationarity of ω is equivalent to

0 =
∑

u

cuṡu =
∑

u

cu

∑

v

avu(sv − su), (16)
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where the expression for the time derivative of the states ṡu is obtained from equation (4).
For the quantity ω to be stationary under all choices of state vectors, the vector (cu) must
be a left eigenvector for eigenvalue zero of the Laplacian matrix L defined by

Luv = δvuku,in − avu. (17)

Since each row of L sums to zero, the columns of L are linearly dependent and zero is
an eigenvalue of L. Thus a non-trivial coefficient vector (cu) for the conserved quantity ω
can be found for any network by solving the eigenvector problem for L.

In general, each entry of an eigenvector depends on the whole matrix, i.e. on all
details of the network structure. Thus the coefficients (cu) cannot be computed from
local information only. The restriction to uncorrelated networks in the following sections
enables us to identify the major contribution resulting from local structure and express
the coefficients in terms of node degrees.

3. Voter model on uncorrelated SCCs

When two-point correlations are absent, the transition probabilities become independent
of the degree of the source vertex. In this situation

Pout(k
′|k) =

k′
inP (k′)

〈kin〉
, Pin(k

′|k) =
k′

outP (k′)

〈kin〉
, (18)

and using these expressions, equation (12) becomes

dmk(t)

dt
= −mk(t) + ωout, (19)

where we have defined

ωout =
1

〈kin〉
∑

k

koutP (k)mk(t). (20)

Therefore, in the stationary state mk = ωout ∀k. Indeed, as mentioned above, in the
stationary state of correlated networks mk = m ∀k and then mk = ωout = m ∀k also holds
in the presence of correlations.

Also from equation (19), it is easy to see that ωout is a conserved quantity in
uncorrelated networks. However, in general it is not preserved when degree–degree
correlations are present. This is in contrast to undirected networks, where the conserved
quantity ω = (

∑
k kP (k)mk(t))/〈k〉 is preserved even in the correlated case and indeed

for any structure [22]. Going back to the uncorrelated case, notice that the out-degree is
the quantity that weights the contribution of the nodes to the conserved quantity. From
a local perspective, what seems therefore important in the VM is to be able to influence
a large number of partners.

In uncorrelated networks, the convergence of the state-one relative densities to their
stationary value can be easily computed. From equation (19), taking into account that
ωout is a conserved quantity and for a given initial condition mk(0), it is straightforward
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to arrive at the solution

mk(t) = ωout + (mk(0) − ωout) e−t, (21)

where we have substituted 〈kin〉 by 〈kout〉. Thus, all the densities decay exponentially fast
to the stationary value mst

k = ωout and the relaxation time is, for all of them, equal and
independent of the degrees.

In the thermodynamic limit, the partially ordered stationary state is stable, while
finite size fluctuations eventually bring the system to one of the two possible unanimity
states. The probability P1 that the system ends up with all nodes in state one (mk = 1, ∀k)
is given by the initial condition, which fixes the value of the conserved quantity at the
beginning of the process. To see this, one takes into account that ωout is an ensemble
average conserved quantity of the form in equation (20), from which

P1 = ωout. (22)

This is in agreement with the fact that, in general, the Markov property of a stochastic
process, if present, trivially ensures that the exit probability is a conserved quantity
corresponding to a time-translation invariance. If the process has one absorbing state, the
exit probability has a constant value one but, if the process has two or more absorbing
barriers, the probability of reaching one of those is not trivial any more.

It is also interesting to investigate what happens to the quantity υi(t) =
(
∑

k kinP (k)mk(t))/〈kin〉, which involves in-degree instead of out-degree. In the
uncorrelated case, and disregarding fluctuations, υi(t) = (υi(0) − ωout)e

−t + ωout, that
is, in general, υi decays exponentially fast to ωout. The quantity υi(0) depends on the
initial condition. If this is homogeneous over degree classes, then υi(0) = ωout and υi(t)
remains constant.

In order to check the convergence of the state-one relative densities to the conserved
quantity, we have run numerical simulations of the voter model dynamics on a random
uncorrelated network of size N = 105, scale-free in-degree distribution with exponent 2.5
and exponential out-degree distribution. To obtain an initial state that is inhomogeneous
in the densities mk, we have chosen an initial configuration in which half of the nodes
with the lowest out-degree have state zero, and the other half have state one. In this way,
initial densities mk(0) in classes with kout lower than 4 were small or zero, while densities
in classes with kout larger than 4 were one.

In figure 1, we plot the average of the conserved quantity ωout and the densities
for classes k = (kin, kout) = (2, 1), (4, 3) and (3, 9) versus time, over 100 independent
realizations starting from the same initial condition as mentioned above. As predicted by
the theory, we observe that 〈ωout〉 stays constant over time, whereas the three densities
converge to the average of the stationary value mst

k , in a time of order 10. We note that,
apart from finite size fluctuations, the convergence of the densities to mst

k happens for
every realization. This can be seen in figure 2, where we show the evolution of m(2,1) and
m(3,9) versus ωout in a single run. After a short transient, the densities and the conserved
quantity start to evolve in a coupled manner (except from small deviations around the
mk = ωout line) and they fluctuate from 0 to 1 until they reach the homogeneous zero
state. We also observe that fluctuations in m(3,9) are larger than in m(2,1), given that
degree distribution make the number of nodes in class (2, 1) larger than in class (3, 9).

doi:10.1088/1742-5468/2009/10/P10024 10

http://dx.doi.org/10.1088/1742-5468/2009/10/P10024


J.S
tat.M

ech.
(2009)

P
10024

Conservation laws for voter-like models on random directed networks

Figure 1. Time evolution of the conserved quantity ωout (circles) and the
densities of state-one nodes mk in degree classes k = (kin, kout) = (2, 1) (squares),
(4, 3) (diamonds) and (3, 9) (triangles), for the voter model dynamics. Curves
correspond to averages over 100 realizations on a single random uncorrelated
network with N = 105 nodes, scale-free in-degree distribution with exponent 2.5
and exponential out-degree distribution. While 〈ωout〉 remains roughly constant
over time, the densities quickly decay to the stationary value 〈ωout〉. The inset
shows that the ratio between the densities of state-one nodes (same degree classes
as in the main graph) and the conserved quantity is close to one during the entire
evolution.

4. Voter model with link update

The same assumptions and procedures apply to the link update voter model and the
invasion process. The link update (LU) dynamics selects first a directed connection, so
that the node at the tail will always transmit its state to the neighbor at the head.

The microscopic dynamics of the link update voter model is described by

su(t + dt) = μu(dt)ξu + (1 − μu(dt))su(t), (23)

whereas for the voter dynamics ξu is given by equation (3) and the binary variable μu(dt)
for the selection of a link has a probability distribution

P (μu(dt)) = ku,in dt δμu(dt),1 + (1 − ku,in dt)δμu(dt),0. (24)

A factor λ/(N〈kin〉) has been reabsorbed in the definition of dt. Proceeding as for the
voter model (we skip the details), we arrive at the equation for the evolution of the relative
densities mk for the different degree classes:

dmk(t)

dt
= −kinmk(t) + kin

∑

k′

Pin(k
′|k)mk′(t). (25)

Regarding the stationary state, the same result as for the voter model is found. The state-
one relative densities behave again as mk(t) =

∑
k′ Pin(k

′|k)mk′(t), and by normalization
of the conditional probability a solution is the uniform vector mk(t) = m ∀k. We can once
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Figure 2. Densities of state-one nodes m(2,1) and m(3,9) versus ωout in a single
realization of the voter model dynamics on the same network of figure 1. The
trajectories of classes (2, 1) and (3, 9) start at the positions (0.8, 0) and (0.8, 1.0),
respectively. Then they quickly hit and move along the diagonal mk = ωout, until
they reach the zero-state consensus point m(2,1) = m(3,9) = 0.

again prove, within the heterogeneous mean-field approach and for correlated strongly
connected components, that a conserved quantity of the form ω =

∑
k ϕkmk(t) exists and

is defined by the eigenvector problem

ϕ̃k =
∑

k′

Pin(k|k′)ϕ̃k′, (26)

where now ϕ̃k = kinϕk. In general, it is not possible to derive these coefficients without
further specifying the form of degree–degree correlations in the network.

When two-point correlations are absent

dmk(t)

dt
= −kinmk(t) + kinωout(t). (27)

In the stationary state, mk = ωout(t) ∀k, but ωout(t) is not a conserved quantity for the
link update process as it was for the voter model. Instead, the conserved quantity is

ωoi =

〈
kout

kin
mk(t)

〉/ 〈
kout

kin

〉

=
∑

k

kout

kin
P (k)mk(t)

/ 〈
kout

kin

〉

, (28)

which follows from equation (27). Compare this expression with that for the total
magnetization in uncorrelated undirected networks w = ω = (

∑
k P (k)mk(t))/〈k〉 which

corresponds to the conserved quantity for those structures [22]. The dependence of the
conserved weighted magnetization on the ratio between out- and in-degree for directed
networks highlights the fact that in LU it is important to have both a high out-degree
to be influential and at the same time to have a low in-degree in order not to be too
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influenceable. Notice that the ratio of the directed degrees is well defined since we are
assuming that the network is organized at the macroscopic scale into an SCC without
peripheral components all nodes having at least one incoming and one outgoing link.
Finally, in finite systems the probability of the state-one absorbing state is given by the
conserved quantity, P1 = ωoi, and so fixed by the initial condition.

The derivation of how the state-one relative densities converge to their stationary
values in uncorrelated networks is more intricate than for the voter model, but we can make
use of a quasi-stationary approximation [45] in order to solve equation (27), exploiting
the fact that ωoi is the conserved quantity. In the stationary state ωout = ωoi, and we
approximate the equation by

dmk(t)

dt
= −kinmk(t) + kinωoi. (29)

For a given initial condition mk(0), the solution is

mk(t) = ωoi(mk(0) − ωoi)e
−kint. (30)

As in the voter model, all the densities decay exponentially fast to the stationary value
ωoi, but in contrast not all the densities decay with the same velocity, which depends
on the in-degree. Higher in-degree classes have smaller relaxation times and decay faster
than lower ones, but the transient is always faster as compared to the VM.

5. Invasion process

The invasion process (IP) picks nodes at random that export their state to a randomly
chosen outgoing neighbor. A certain node u will update its state in a passive form only
when one of its incoming neighbors v is selected as the first node in one iteration of the
dynamics and then v chooses u among all its outgoing neighbors to transmit its state. In
this situation, it is more convenient to work with the probability of node u undergoing

a state update with final state 1, ξ
(1)
u , and the probability of node u undergoing a state

update with final state 0, ξ
(0)
u . The probability distributions of these dichotomic stochastic

variables are

P (ξ(1)
u ) = Φ1

u dt δ
ξ
(1)
u ,1

+ (1 − Φ1
u dt)δ

ξ
(1)
u ,0

, (31)

P (ξ(0)
u ) = Φ0

u dt δ
ξ
(0)
u ,1

+ (1 − Φ0
u dt)δ

ξ
(0)
u ,0

, (32)

with

Φ1
u(t) =

∑

v

avusv(t)/kv,out, (33)

Φ0
u(t) =

∑

v

avu(1 − sv(t))/kv,out (34)

and the parameter λ of the Poisson process for the happening of events reabsorbed in dt.
Using these expressions, the dynamics is described at the microscopic scale by

su(t + dt) = ξ(1)
u (dt)(1 − ξ(0)

u (dt)) + (1 − ξ(1)
u (dt))(1 − ξ(0)

u (dt))su(t). (35)
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Following the same methodology as for the voter model, the drift equations for the
relative densities in the different degree classes are

dmk(t)

dt
= kin

∑

k′

1

k′
out

Pin(k
′|k)(mk′(t) − mk(t)). (36)

The existence of a conserved quantity ω =
∑

k ϕkmk(t) in the correlated case is governed
by the eigenvalue problem

ϕ̃k =
∑

k′

Pin(k|k′)/kout∑
k′′ Pin(k′′|k′)/k′′

out

ϕ̃k′ , (37)

where ϕ̃k = ϕkkin

∑
k′′ Pin(k

′′|k)/k′′
out. Summing both sides of this equation over k, one

arrives once more at a trivial identity and so a conserved quantity exists in general on
networks with degree–degree correlations. As we see next, we can be more specific on
uncorrelated networks, for which equation (36) reduces to

dmk(t)

dt
=

kin

〈kin〉
(m(t) − mk(t)), (38)

where m(t) =
∑

k P (k)mk(t) is the total density of state-one nodes in the network.
In the stationary state, mk(t) = m(t) ∀k, but here m(t) is not a conserved quantity

for the IP in uncorrelated directed networks. Instead, the conserved quantity is

ωin(t) =

〈
mk(t)

kin

〉 /〈
1

kin

〉

=
∑

k

1

kin
P (k)mk(t)

/ 〈
1

kin

〉

. (39)

In finite systems, the probability of the state-one absorbing state is given by this conserved
quantity, P1 = ωin, and is therefore fixed by the initial condition. The dependence of the
weights on the inverse of the in-degree implies that those nodes with low in-degree, so less
influenceable, have the highest contribution and control the process. This dependence
on the in-degree is analogous to the dependence on the degree of the conserved quantity
w = ω = (

∑
k 1/kP (k)mk(t))/〈k〉 in uncorrelated undirected networks [20].

After a transient, m(t) reaches the value ωin, so that the stationary values of the
relative densities are mk(t) = ωin ∀k. This result tells us that all the densities become
independent of k and reach the same stationary value, as in the previous processes.

The derivation of how the state-one relative densities converge to their stationary
value in uncorrelated networks is more intricate than for the voter model, but like for the
link update we can make use of a quasi-stationary approximation [45] in order to solve
equation (38). Substituting into equation (38) that in the stationary state m(t) = ωin:

dmk(t)

dt
=

kin

〈kin〉
(ωin − mk(t)). (40)

For a given initial condition mk(0), the solution is

mk(t) = ωin + (mk(0) − ωin) e−(kin/〈kin〉)t. (41)

All the densities decay exponentially to the stationary value ωin. Higher in-degree classes
decay faster than lower ones with a relaxation time that is proportional to the inverse
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Table 1. Conserved quantities for voter-like models in strongly connected
components of directed networks. First column, existence of conserved quantity
for correlated networks; second column, conserved quantity for uncorrelated
networks; third column, stationary values for the relative densities; fourth
column, density decay.

ωcorr ωunc mst
k mk

VM ∃ ωout = 1
〈kout〉

∑
k koutP (k)mk(t) ωout mst

k + (mk(0) − mst
k )e−t

LU ∃ ωoi = 1
〈kout/kin〉

∑
k

kout
kin

P (k)mk(t) ωoi mst
k + (mk(0) − mst

k )e−kint

IP ∃ ωin = 1
〈1/kin〉

∑
k

1
kin

P (k)mk(t) ωin mst
k + (mk(0) − mst

k )e−(kin/〈kin〉)t

of the in-degree, as is the case for LU. Due to the average degree in the relaxation time,
however, transients are generally slower in the IP than in the LU. When compared with the
VM, the IP dynamics exhibits a slower transient for degree classes with in-degree below
average while those with in-degree above the average converge faster to the stationary
state.

6. Conclusions

We have introduced an analytical formalism from microscopic dynamics to show that three
different nonequilibrium dynamical models with two absorbing states running on strongly
connected components of directed networks with heterogeneous degrees and degree–degree
correlations have associated ensemble average conservation laws. These conservation laws,
summarized in table 1, have been fully determined when degree–degree correlations are
absent. The existence of ensemble average conservation laws is a general characteristic of
Markov processes with two or more absorbing states.

Let us briefly discuss the validity and underlying assumptions of the conservation
laws. For a stochastic process, existence of a quantity that is conserved in every single
realization would require the state transition graph to be disconnected into components
that are not mutually accessible. Then a non-trivial conserved quantity would be constant
on a given component and vary across components. The voter-like models studied here,
however, have weakly connected state transition graphs. For any pair of configurations
(a, b), there is a trajectory of positive probability either from a to b or from b to a. Thus
any quantity can be conserved only in an ensemble, i.e. as an average over the statistical
distribution of trajectories starting from the same initial condition.

The constraints imposed on the dynamics by the conservation laws lead to interesting
and non-trivial behavior. From a practical point of view, they are related to the stationary
values and the characteristic relaxation times of the relative densities of nodes in state
one in each degree class and, in finite systems, gives the probabilities of reaching the
two possible absorbing states. In this sense, the conservation laws obtained in the
thermodynamic limit for a system that does not order in that limit (i.e. does not reach the
absorbing state) determine the probabilities of reaching each absorbing state for a finite
system. The contribution of each node to the conserved global weighted magnetization is
always a specific function of the directed degrees. In the case of the VM, the out-degree
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is the weight that controls the importance of the node as a measure of its influence, while
in the IP it is the inverse of the in-degree, and in the LU it is the ratio between out and
in-degree. In all cases, the conserved quantities are determined by local properties that
encode the importance of each node in the network. Depending on the dynamics, what
seems important from a local perspective is to be influential reaching a large number of
neighbors, or not to be too influenceable, with a low number of incoming connections, or
both at the same time.

From a broad perspective, these studies help in the understanding of how the rich
structure of real systems affects the dynamical processes that run on top. However, many
questions still remain unsolved. In which specific way do degree correlations alter the
results for uncorrelated networks? How is the diffusive fluctuations regime in SCCs of
finite directed networks? Is the finite size scaling of consensus times the same as in
undirected networks? On the other hand, it seems realistic to restrict to SCCs for a
number of densely connected systems, like for instance the world trade web [32], but in
sparse directed networks the whole structure of core and peripheral components should
be taken into account. Numerical simulations in some specific model networks [28] show
that the appearance of an input component seems to prevent the system, even if finite,
from reaching an absorbing state for specific initial conditions. How does the complete
structure of a directed network couple to the initial conditions of the dynamics to induce
the presence of zealots and how do they affect in quantitative terms the behavior of the
whole system still needs further research.

During the final completion of this work, we became aware of recent work [46]
discussing the fixation probabilities of mutants for voter-like dynamics on directed
networks. Since there exists a direct relation between fixation probabilities of mutants and
exit probabilities, and so conserved quantities, some of the results derived in that paper—
without reference to conservation laws—concerning the dependence on the directed
degrees are in correspondence to some of our results on uncorrelated strongly connected
components.
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