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We study two-spin entanglement and order parameter fluctuations as a function of the system size in the XY
model in a transverse field and in the isotropic XXX model. Both models are characterized by the occurrence
of ground state degeneracy also when systems of finite size are considered. This is always true for the XXX
model, but only at the factorizing field for the XY model. We study the size dependence of symmetric states,
which, in the presence of degeneracy, can be expanded as a linear combination of broken symmetry states.
We show that, while the XY model looses its quantum superposition content exponentially with the size
N , a decrease of the order of 1/N is observed when the XXX model is considered. The emergence of two
qualitatively different regimes is directly related to the difference in the symmetry of the models.
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1 Introduction

The transition between the microscopic and macroscopic worlds is a fundamental issue in quantum theory
both from the point of view of foundations of physics and of the application to quantum computation [1,2].

Spontaneous symmetry breaking (SSB) indicates a situation where, given a symmetry of the Hamil-
tonian, there are eigenstates which are not invariant under the action of this symmetry, unless a term is
added which explicitly breaks the symmetry. Usually, when the control parameter reaches a critical value,
the lowest energy eigenstate keeping the Hamiltonian symmetry is no longer stable in the presence of in-
finitely small perturbations, and new stable solutions appear which are not symmetric. SSB leads naturally
to a degenerate manifold of ground states.

Symmetry breaking usually occurs in the thermodynamic limit, when superselection destroys quantum
coherence. Important exceptions are the XXX Heisenberg model and the XY model in a transverse mag-
netic field at the particular value of the field where ground state factorization occurs [3]. In these cases,
ground state degeneracy occurs for any size of the system, and it is therefore possible to explicitly study the
transition from quantum to classical behavior. How entanglement is affected, in the thermodynamic limit,
by the presence of a term which explicitly breaks the symmetry, ha been discussed by Syljuåsen [4] and by
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1112 F. de Pasquale et al.: Entanglement and symmetry effects

Osterloh et al. [5]. Here, we face the problem from another point of view, starting from small systems, and
then increasing the size until the thermodynamic limit is reached.

The XY model in a transverse field has been introduced in the early sixties and solved by Katsura [6],
by means of the Jordan-Wigner transformation, formerly introduced by Lieb, Schultz, and Mattis [7].
Subsequently, the correlation functions were investigated in great detail by Barouch and MacCoy [8],
who found the existence of a second critical value of the transverse field separating qualitatively different
behaviors of the correlation functions. Later on, Kurmann, Thomas and Muller [3] discovered ground state
factorization for a large class of spin models. In the particular case of the XY model, the field at which
factorization occurs is exactly the critical field of Barouch and MacCoy. Recent interest has been devoted to
the study of entanglement properties of many-body systems undergoing a quantum phase transition [9–12].
As shown in [13], the critical point turns out to separate two regions with qualitatively different bipartite
entanglement. It has been shown in [14] that, in the vicinity of the factorizing field, the range of concurrence
diverges, and that such divergence corresponds the appearance of a characteristic length scale in the system.
Recently, the conditions for the existence of the factorizing field for models with long-range interaction
have been determined [15], and the study of this effect has been extended to dimerized chains [16].

The two systems we wish to investigate belong to different classes of symmetry. While the XXX Heisen-
berg model has the SU(2) continuous symmetry, i.e. the Hamiltonian commutes with the total spin along
any possible direction, the XY model is invariant under parity transformations and possesses the discrete
Z2 symmetry.

It is commonly accepted that purely quantum effects are not observable on the macroscopic scale,
except for superconductivity, superfluidity. On the other hand, quantifying entanglement (perhaps the most
genuine manifestation of quantum properties) as a function of the system size represents a fundamental
issue [17]. Here, we wish to investigate in detail the two-spin entanglement dependence on the total number
of spins for these models. In particular, we shall derive the difference in the size effects due to the difference
in the system symmetry. To be more specific, in the case of a discrete symmetry there is an exponential
entanglement decrease, while with a continuous symmetry entanglement shrinks linearly with the growth
of the system size.

Since the XY model has been studied through the last four decades, and results are scattered over a vast
literature, for convenience we shall give here a brief survey of the main results, with the primary aim of
focusing on the existence of the factorizing field and its independence from the system size.

The paper is organized as follows. In Sect. 2 the XY model in a transverse field is discussed. We give
special emphasis to the finite size solution with the scope of enlightening the emergence of the factorizing
field as a size-independent degeneracy point. Furthermore, by means of the finite size picture, we are able
to explain in a simple way the appearance of spontaneous symmetry breaking in the thermodynamic limit.
In Sect. 3 we describe briefly the structure of the ground state for the isotropic Heisenberg (XXX) model.
Even if, for any finite number of spins the ground state manifold has finite dimension, an over-complete set
of states can be introduced that allows to study the microscopic-to-macroscopic transition. In Sect. 4 we
derive the value of the concurrence for pairs of spins and the order parameter fluctuation in a superposition
state as a function of the size systems both for the XY model and the XXX model. Finally, in Sect. 5, results
are discussed. In particular, we will focus on the influence of the symmetry in the different behaviors.

2 XY model

Let us consider a chain of N spins

H =
∑

l

[
J

(1 + γ)
2

σx
l σx

l+1 + J
(1 − γ)

2
σy

l σy
l+1 + hσz

l

]
, (1)

where σε are the three Pauli matrices (ε = x, y, z), and periodic boundary conditions (σε
N+1 = σε

1) are
assumed. In the following we will assume J = −1 (ferromagnetic coupling). The above Hamiltonian is
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invariant under the Z2 group of the rotations by π about the z axis, since it commutes with the parity
operator P =

∏
l σ

z
l . Due to this symmetry, eigenstates are classified depending on parity eigenvalue. This

system is known to undergo a quantum phase transition at the critical point hc = 1. Below this value, in
the thermodynamic limit, spontaneous magnetization along the x axis appears.

Since the work of [7], the Jordan-Wigner transformation, defined through σz
l = 1 − 2c†l cl, σ+

l =∏
j<l(1 − 2c†l cl)cl, σ−

l =
∏

j<l(1 − 2c†l cl)c
†
l is introduced to map spins in spinless fermions. The trans-

formed Hamiltonian is H = H0 − PH1 with

H0 = −
N−1∑

l=1

[(
c†l cl+1 − clc

†
l+1

)
+ γ

(
c†l c

†
l+1 − clcl+1

)
− h

(
1 − 2c†l cl

)]
, (2)

H1 = −
[(

c†Nc1 − cNc†1
)

+ γ
(
c†Nc†1 − cNc1

)]
. (3)

Since [H, P ] = 0, all eigenstates of H have definite parity, and we can proceed to a separate diagonalization
of H in the two subspaces labelled by to P = ±1. Then, the complete set of eigenvectors of H will be
given by the even eigenstates of H+ = H0 −H1 and the odd eigenstates of H− = H0 +H1. Both for H+

and H− the diagonalization is obtained by first carrying out the space Fourier transform

ck =
1√
N

∑

k

e−i 2π
N klcl, (4)

where k = 0, 1, . . . , N−1 in H−, and k = 1/2, 3/2, . . . , N−1/2 in H+, and then making the Bogoliubov
transformation

ck = cosϑkηk + i sinϑkη†
−k, (5)

with ϑk = −ϑ−k. Here, η−k stands for ηN−k. The diagonalization condition implies for ϑk

tan 2ϑk = − γ sin k

h− cos k
. (6)

Eventually, we end up with the quasi-particle Hamiltonians

H+ =
N−1/2∑

k=1/2

Λk

(
η†

kηk − 1
2

)
, (7)

H− =
N−1∑

k=0

Λk

(
η†

kηk − 1
2

)
, (8)

where the eigenvalues are given by

Λk = 2

√(
h − cos

2π

N
k

)2

+ γ2 sin2 2π

N
k. (9)

The ground states of H+ and H− are the corresponding vacuum states with eigenvalues
E+

0 = −∑N−1/2
k=1/2 Λk and E−

0 = −∑N−1
k=0 Λk.

The vacuum in the generic k mode is determined by ηk|0±〉 = 0. While for every k �= 0 the Bogoliubov
vacuum corresponds to an even state (the absence of quasi-particles implies zero or two particles), the
mode k = 0 plays a special role. In fact, the correspondent Bogoliubov transformation reads

η0 =
1
2

(
1 +

h − 1
|h − 1|

)
c0 +

i

2

(
1 − h − 1

|h − 1|
)

c†0, (10)
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with the important consequence that the quasi-particle vacuum corresponds to a zero-particle state for
h < 1 and to one-particle state for h > 1. The presence or the absence of the particle in the k = 0 mode
changes the parity of the state. Thus, for h > 1, the vacuum of H−, because of its symmetry, does not
belong to the set of eigenstates of H , while for h < 1 it becomes an eigenstate of physical interest. Above
the h = 1, the odd state of lowest energy is obtained by adding one quasi-particle corresponding to the
bottom of the energy band with energy Λmin = 2(h− 1). This energy gap prevents the degeneracy even in
the thermodynamic limit.

2.1 Quantum phase transition and ground state factorization

The change of symmetry of the vacuum of H− is the very cause of the phase transition in the thermody-
namic limit. Indeed, on the macroscopic scale the sum over k becomes an integral yielding E+

0 = E−
0 .

Then, below the critical point hC = 1 the odd and the even lowest eigenstates are degenerate, and the
Hamiltonian symmetry is spontaneously broken, while, for h > hC , due to the existence of the energy gap
Λmin, the ground state keeps its parity (even). For h < hC , because of superselection rules, the system is
necessarily found in symmetry-broken states.

As pointed out in [8], below the critical point there are two different regions where two-body correlation
functions can decrease monotonically or oscillate as a function of the spin distance, depending on the
Hamiltonian parameters. These regions are separate, in the {h, γ} diagram, by the set of points satisfying
h2

F + γ2 = 1. More recently, it has been shown that on this border line the ground state factorizes [23],
i.e. it can be written as |Ψ±

F 〉 = ⊗l|Ψ±
F,l〉, with |Ψ±

F,l〉 = (cos α| ↑l〉 ± sin α| ↓l〉), where cos 2α =
[(1 − γ)/(1 + γ)]1/2.

The existence of the factorizing field, originally derived by requiring only size-independent degeneracy
between the lowest odd and even eigenvalues [3], can be studied within the general solution of the model.
By analyzing lowest odd and even eigenvalues of H in the symmetry broken region for finite N as a
function of the transverse field, we observe a series of N/2 level crossings for h = hi (see Fig. 1). In
correspondence of each hi the ground state changes its symmetry. The existence of such points has been
discussed in [18] and more recently in [19], and is responsible for the magnetization jumps reported in [20].
In the thermodynamic limit, this kind of structure implies two different symmetry breaking mechanisms.
For 0 < h < hF , as N → ∞, the set {hi} of the degeneracy points becomes a denumerable infinity, while
for hF < h < 1 there is a the usual symmetry breaking due to the vanishing of the gap. An interesting
problem would be to check whether this is the microscopic mechanism responsible for the qualitative
change in the behavior of the correlation functions above and below hF .
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Fig. 1 (online colour at: www.fp-journal.org) Differ-
ence of energy between the lowest odd and even eigen-
values of H as a function of the transverse field for a
8-spin chain. Given the anisotropy amplitude γ = 0.6,
the factorizing field is hF = 0.8. As predicted, we ob-
serve N/2 level crossing point, the last of them being
hF .

While spontaneous symmetry breaking arises only for N → ∞, it can be seen from the previous
analysis (see also [19]) that at the factorizing point hF degeneracy appears for any N . It is simple to
show that E+

0 (hF ) = E−
0 (hF ) holds for any N , while the positions of all the other level crossing points

hi change with N . Then, at the special field hF , the Hamiltonian symmetry is broken independently of
the system size, and any linear superposition of the two symmetric eigenstates |α±〉 (|α+〉 for the even
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eigenstate and |α−〉 for the odd eigenstate), is a possible eigenstate. Obviously, each one of the factorized
states can be expressed as a linear combination of the two symmetric eigenstates

∣∣Ψ±
F

〉
= u+

∣∣α+
〉 ± u−

∣∣α−〉
, (11)

with u± = [(1 + cosN 2α)/2]1/2. Notice that, for finite size systems, |Ψ+
F 〉 and |Ψ−

F 〉 are not orthogonal,
while 〈Ψ+

F |Ψ−
F 〉 = 0 in the thermodynamic limit.

3 XXX model

The homogeneous (ferromagnetic) Heisenberg model is defined by the Hamiltonian

HXXX = −J

N−1∑

l=0

(
σx

l σx
l+1 + σy

l σy
l+1 + σz

l σz
l+1

)
, (12)

with the boundary condition σε
N = σε

0. The model has been solved using the Bethe ansatz [21]. As far
as the ground state properties are concerned, a simple argument can be introduced to show that, for any
number of spins, any factorized state |Φ(θ, φ)〉 = ⊗l[cos θ| ↑〉 + exp(iφ) sin θ| ↓〉] minimizes the energy.
Given the invariance of HXXX with respect to rotations of arbitrary amplitude β around any direction n̂
R(β, n̂) =

∏
l exp[iβ�σl · n̂], due to [HXXX,R(β, n̂)] = 0, we shall restrict the attention on the particular

state |Φ(0, 0)〉 = | ↑, ↑, . . . , ↑〉. It can be immediately seen that |Φ(0, 0)〉 belongs to the ground state
subspace of any of two-body terms of HXXX, and then its energy represents the minimum achievable
value. To make a link with the XY model, we could say that factorization point for the Heisenberg model
corresponds to h = 0.

In the absence of spontaneous symmetry breaking, i.e. for finite systems, and in the absence of external
fields, the ground state belongs to an (N + 1)-dimensional manifold, and can be expanded in the over-
complete set of factorized states

|Φ〉 =
1
N ′

∫
dθ

∫
dφf (θ, φ) |Φ (θ, φ)〉 , (13)

where f(θ, φ) is a weight function. The inner product between states pointing in different directions reads

〈
Φ

(
θ′, φ′) |Φ (θ, φ)

〉
=

[
cos θ cos θ′ + ei(φ−φ′) sin θ sin θ′

]N

. (14)

Then, only in the thermodynamic limit we have a set of orthogonal states. Given the continuous SU(2)
symmetry of the model, spontaneous symmetry breaking implies that the system will select one direction
out of all the possible choices in the (θ, φ) space.

As we are interested in studying the problem of vanishing of peculiar quantum properties, we shall
choose initial states with given symmetry properties, which, in the finite size limit, do exhibit those prop-
erties.

4 Transition to the Schrödinger cat regime

According to the superposition principle, every linear combination of quantum states is allowed. On the
other hand, it is well known that superposition cannot be observed on the macroscopic scale because of
superselection, the most convincing argument being the Schrödinger cat paradox. Then, on this scale, all
but a small set of states belonging the total Hilbert space are actually forbidden. This process, which leads
to a diagonal form of the density operator in a preferred basis, implies the vanishing of the most peculiar
of quantum properties: state interference.
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In order to study the vanishing of state interference we analyze two different quantities: two-spin entan-
glement and the fluctuation properties of the order parameter Mx = (

∑
l σx

l )/N . Given a density matrix
ρ, fluctuations statistics is associated to the generating function

Gρ (λ) = Tr
{
ρe

iλ
N

∑
l σx

l

}
, (15)

which is the Fourier transform of the probability distribution function of Mx. When the system can be
observed in m states Ψ1, Ψ2, . . . Ψm, whit related generating functions GΨn(λ), quantum superposition
effects appear if

ΔG = Gρ (λ) − 1
m

m∑

n=1

GΨn (λ) �= 0. (16)

We expect that in the symmetry broken regime limN→∞ ΔG = 0.
Similar considerations, carried out about entanglement properties, lead to establish that, when N → ∞,

only factorized states can be observed.
Even if superselection can be assumed as a principle, the size dependence of quantum interference

effects will be related to the particular system observed. In the following, we find different decaying be-
haviors for the XY and the XXX models, which are caused by the difference in the symmetry of the two
systems. We will start in both models by considering symmetric states (which are expected not to survive
in the thermodynamic limit) and we shall study two-spin entanglement as a function of N . In fact, the
existence of degenerate ground state manifolds for any N allows to calculate coherence properties as a
function of the size of the system.

For qubit systems, like spins, two-body entanglement can be measured through concurrence [22]. As
shown in [23], for states which are invariant under the action of the parity operator, the concurrence Cij of
two spins at sites i and j is related to the quantum correlation functions by simple relations which will be
used here. As pointed out in [19], for the XY model at the factorizing field the two-spin concurrence does
not depend on the spin distance |i − j|. Similar arguments can be used also for the XXX chain. Since we
are dealing with superpositions of ferromagnetic states, the entanglement will be of ferromagnetic kind as
well. In this case,

Cij =
1
2
|p1 − p2| − pIII, (17)

where |p1 − p2| is the average value of | ↑↑〉〈↓↓ | + | ↓↓〉〈↑↑ |, and pIII is the average value of | ↑↓〉〈↑↓ |.

4.1 XY model

Let us first consider the order parameter fluctuations for the symmetric states |α±〉. These states could
be obtained by starting with h �= hF . In this case the exact ground state would have definite parity. For
instance, for h > hF , the ground state is even. By lowering the field until the value hF is reached, the
system is driven in |α+〉.The generating function is

G
(
λ, α±)

=
1

4u2±

[
G

(
λ, Ψ+

F

)
+ G

(
λ, Ψ−

F

)
+ G̃

(
λ, Ψ+

F , Ψ−
F

)
+ G̃

(
λ, Ψ−

F , Ψ+
F

)]
, (18)

where

G̃
(
λ, Ψ±

F , Ψ∓
F

)
=

〈
Ψ±

F

∣∣ e
iλ
N

∑
l σx

l

∣∣Ψ∓
F

〉
. (19)

It is easy to show that

G
(
λ, Ψ±

F

)
=

(
cos

λ

N
± i sin

λ

N
sin 2θ

)N

, (20)
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G̃
(
λ, Ψ±

F , Ψ∓
F

)
=

(
cos

λ

N
cos 2θ

)N

. (21)

Then, interference effects (manifested by the off diagonal elements) disappear exponentially with N .
As a second characterization, we study the concurrence for the symmetric states |α±〉. This can be easily

derived using the expression of |α±〉 in terms of |Ψ±
F 〉. The result (see also [19]) is given by

Cij

(
α±)

= (cos 2α)N−2 sin2 2α

1 ± (cos 2α)N
, (22)

where the factor (cos 2θ)N−2 derives from the non-orthogonality of |Ψ+
F 〉 and |Ψ−

F 〉 and determines the
speed of classicalization. In the macroscopic limit, Cij(α±) vanishes as [(1 − γ)/(1 + γ)]N/2. Then,
for every finite value of the anisotropy γ, entanglement decays exponentially with N . A small but finite
anisotropy will enhance entanglement. Actually, the γ = 0 limit implies a non-analytic change

4.2 XXX model

In analogy with the previous case, we introduce a state which is invariant under a given spin rotation. In
particular, if we choose the state |Φe〉 invariant under rotations about the y axis exp[−iθ

∑
l σ

y
l ]|Φe〉 =

|Φe〉, we have

|Φe〉 =
1
N

∫ 2π

0

dθ |Φθ〉 , (23)

where |Φθ〉 = ⊗l|Φl(θ, 0)〉, and where |Φl(θ, 0)〉 = cos θ| ↑l〉+ sin θ| ↓l〉. Requiring the normalization of
|Φe〉 implies

∫
dθ′dθ[cos(θ − θ′)]N = N 2. It is easy to verify that |Φe〉 is also an eigenstate of the parity

operator. In fact, the integration over θ cancels, in the superposition, all terms with an odd number of down
spins. Each |Φθ〉 would be the actual ground state in the presence of an external field directed along the
direction θ.

Let us analyze the order parameter. First, we calculate fluctuations for a given element of the ground
state degeneracy manifold, obtaining

GΦθ
(λ) =

1
N 2

(
cos

λ

N
+ i sin

λ

N
sin 2θ

)N

. (24)

For large N we see that GΦθ
(λ) � exp(iλ sin 2θ). This is the typical expression of the generating function

of a non fluctuating quantity. Its Fourier transform, which is the probability distribution function of the
order parameter is indeed, for any θ, a Dirac’s delta distribution around sin 2θ.

Furthermore, in the superposition state we have

GΦe (λ) =
1
N 2

∫
dθ′dθ

[
g

(
λ, θ, θ′

)]N
, (25)

where

g
(
λ, θ, θ′

)
= cos

λ

N
cos

(
θ − θ′

)
+ i sin

λ

N
sin

(
θ + θ′

)
. (26)

As N gets large, the vanishing of interference is observed. In the large N limit, the steepest descent method
gives

ΔGΦe (λ) =
∫

dθGΦθ
(λ)

[
exp

(
λ2 cos 2θ

2N

)
− 1

]
, (27)
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implying

ΔGΦe (λ) ∼ 1/N (28)

in the asymptotic regime.
As far as the two-spin concurrence is concerned, it is straightforward to find

|p1 − p2| =
1
N 2

∫
dθdθ′

[
cos2 θ sin2 θ′ + cos2 θ′ sin2 θ

] [
cos

(
θ − θ′

)]N−2
, (29)

and

pIII =
∫

dθdθ′ cos θ cos θ′ sin θ sin θ′
[
cos

(
θ − θ′

)]N−2
, (30)

yielding

Cij (Φe) =
1
2

∫
dθdθ′ [tan (θ − θ′)]2 [cos (θ − θ′)]N

∫
dθdθ′ [cos (θ − θ′)]N

. (31)

This result is very simple for N even. In that case one gets

CN even
ij (Φe) =

1
2 (N − 1)

. (32)

This result can be understood taking into account that, given Eq. (14), the inner product between |Φ(θ, 0)〉
and |Φ(θ′, 0)〉 vanishes exponentially with N . This allows to evaluate integrals, in the large N regime, by
means of the steepest descent method. It is clear that, when N gets large, [cos(θ − θ′)]N is different from
zero only for (θ − θ′) � 0. Expanding all terms around this value, the concurrence is well approximated
by the ratio between two gaussian integrals

Cij (Φe) � 1
2

∫ ∞
−∞ x2 exp

(
−Nx2

2

)
dx

∫ ∞
−∞ exp

(
−Nx2

2

)
dx

, (33)

which eventually gives Cij(Φe) � 1/2N in the asymptotic regime.

5 Discussion

We tackled to problem of describing how quantum coherence effects vanish as the system size becomes
macroscopic. Even if this phenomenon is expected to appear in generic systems, two different symmetry-
broken model have been considered when exact and analytic treatment are possible. In the first one (the XY
model in a transverse field), because of the discrete symmetry, the ground state spans a two-dimensional
manifold. As for the Heisenberg model, the dimension of the manifold grows with N , eventually reaching
a dense structure. In Fig. 2 we plot the behavior of the concurrence Cij for the two models. In the case of the
XY chain, we used also different values of the anisotropy. A necessary step to determine local quantities,
like two-spin entanglement or magnetization, is the introduction of the reduced density matrix. Given
the peculiar structure of the factorized states we have considered here, calculating the reduced density
matrix requires the computation of inner products between states defined on (N − m) (where m is a
finite number) spin subspaces) aligned along different directions . Both for the XY and for the isotropic
model these quantities vanish exponentially in the large N limit, destroying in such a way the quantum
interference between different components. However, since the XXX model has a continuous symmetry,
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Fig. 2 (online colour at: www.fp-journal.org) Two-
spin concurrence as a function of the system size N

for the XXX model (dots) and for the XY model (con-
tinuous lines). In this latter case, we considered two
different anisotropy parameters: the red line represents
γ = 0.5, and the blue line corresponds to γ = 0.8.

the ground state manifold is continuous as well, and all matrix elements are integrated. The integration
implies a reduction in the decoherence rate, which turns out to be linear in 1/N .

In this paper we considered two exactly solvable models, and studied how superselection tends to de-
stroy their quantum properties. A typical tool used to study problems whose solution is not known is the
mean-field approximation, that, in fact, consists in the introduction of “product states” with the same aspect
of those described in this paper. For example, in the BCS theory of superconductivity the solution intro-
duced is factorized in the space of the modes k. Since in the finite-size case the symmetry is expected to
be conserved, while the mean-field states are widely unsymmetrical, the linear superposition of degenerate
states is a way to restore it. Once the thermodynamic limit is performed, all the considerations made in
this paper apply. Then, we can conclude that our results apply not only to model explicitly studied, but
they could used, in the limit of validity of the mean-field theory, in all systems belonging to the classes of
symmetry discussed.
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