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Optimized electron propagation on a quantum chain
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We study the quantum diffusion of an electron in a quantum chain starting from an initial state localized
around a given site. As the wavepacket diffuses, the probability of reconstructing the initial state on another
site diminishes drastically with the distance. In order to optimize the state transmission we find that a topo-
logical quantum phase can be introduced. The effect of this phase is the reduction of wavepacket spreading
together with almost coherent group propagation. In this regime, the electron has a quasi-linear dispersion
and high fidelity can be achieved also over large distances in terms of lattice spacing.
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1 Introduction

The spatial transmission of a quantum state is an important and nontrivial task in quantum communication.
State encoding usually occurs on a local device and an efficient channel is required to transmit it else-
where. Quantum communication can be achieved by transmitting the particle on which the state has been
encoded (flying qubit) [1], by teleportation [2] or by a quantum state transfer in which only information is
transmitted without transfer of matter or light. The first case can be, for example, a laser beam that coher-
ently propagates carrying the information codified on the polarization. Photons can travel with low loss,
in optical fibres or even in free space, and can be readily measured by a receiving party. This is because
of the small interaction with the environment and the linear dispersion, allowing for a propagation without
spreading of the wavepacket. This is why optical flying qubits represent a very efficient channel over long
distances.

Nevertheless, different solutions can be more suitable over smaller (micro and nanometre) distances
typical of solid state devices. To this aim, an ion trap based device has been proposed [3,4]. Other schemes
have been also described for short distance communication by a spin chain used as channel (see [5–10] and
references therein). Here, the transfer is based on the diffusion through the chain of an initially localized
spin state by means of typical collective modes induced by the particular phase in which we prepare it. The
use of local excitations requires an optimization of the interference for the state reconstruction [11–16],
because there is, together with the usual problem of decoherence, also a diffusion phenomenon due to
typically non-linear dispersion laws. By engineering the couplings of the spin-chain and local end-chain
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operations, a perfect state transfer can be achieved [17]. Other different physical realizations of quantum
channels have been also suggested with different strategies to optimize the state transfer: Josephson arrays
[18], nanoelectromechanical oscillators [19], quantum chains as quantum bus [20–23], spin-1 chains [24,
25], dot chain [26–30].

In this paper, we propose a scheme of quantum state transfer over a quantum chain in which an electron,
and the spin state encoded on it, plays the role of flying qubit. We study the diffusion of an electron in a
tight-binding chain, starting from an initial localized state, under the action of a topological phase, induced,
for example, by a magnetic Aharonov-Bohm flux [31, 32]. The electron wavepacket propagation in chain
of quantum dots was studied in [33], while a general treatment of the Aharonov-Bohm scattering for a free
particle was given by Stelitano [34]. In [35], it has been shown that the Aharonov-Bohm effect enables the
generation of entanglement in mesoscopic rings.

We derive the dynamics of the electron in a discrete one-dimensional lattice, showing how a suitable
topological phase can induce an almost linear dispersion. As a result, in the limit of a large number of sites,
the electron moves coherently with a reduced wavepacket spreading. Such a scheme allows for communi-
cation over an intermediate range, contrary to what happens with other dispersive channels. A different use
of the topological phase was used in [36] for communication on spin rings.

We show that an initial amount of delocalization is necessary for the scheme to work properly, otherwise
an initial completely localized state does not feel the effect of the topological phase, spreading rapidly.
The transmission efficiency can be characterized by the fidelity [37, 38]. Even if the definition of this
quantity is more general, for a pure state it reduces to the squared modulus of the projection of the evolved
state on the transmitted one. It quantifies how much the initial state, centered around the 0−site, can be
reproduced around another given site of the chain after a suitable time. The other quantity we are going to
study is the evolution of the probability distribution, to better emphasize the two aspects of the evolution:
the propagation, due to the presence of a group velocity over different chain modes, and the wavepacket
spreading due to different phase velocities.

In the next section we describe the system and calculate exactly both the fidelity and the probability
distribution in the general case. In the Sect. 3, we show how the localized preparation is not useful for
communication. In Sect. 4 we study the evolution of an initial square packet, comparing the result with
a simple analytical approximation, and show how a good communication can be achieved over a large
number of sites. Finally we give our conclusions.

2 Model

Let us consider a single electron moving in a one-dimensional ring-shaped lattice, with N sites and lattice
constant a. In the reciprocal lattice space, and in the tight-binding approximation, the diagonal Hamiltonian
is

HR =
∑

q,σ

εqc
†
q,σcq,σ, (1)

where εq = −2w cos(aq) are the energies forming the lattice band, w is the half band width, q = 2π
N n are

the vectors of the reciprocal lattice and cq,σ the electron fermionic operators. It is simple to see that the
operators time dependence is given by c†q,σ(t) = e−iεqtc†q,σ . Hereafter, we shall impose � = 1.

In a perspective of quantum communication, we can encode the qubit on the spin state since this latter
does not change during the evolution. From now on, we shall omit the σ index, denoting with c† = α1c

†
↑ +

α2c
†
↓ the electron operator with generic spin state.

We start preparing the electron in a state localized around the site j = 0

|ψ0(0)〉 =
∑

j

gjc
†
j |0〉 =

1√
N

∑

q

g̃qc
†
q|0〉, (2)
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where gl is an amplitude distribution centered around the site j = 0 and

g̃q =
∑

j

gjeiqaj , (3)

is its Fourier transform. The probability distribution of the site occupancy is

Pj(0) =
∣∣〈0|cj|ψ0(0)〉∣∣2 =

∣∣gj

∣∣2 . (4)

As soon as the electron evolves, a diffusion process starts. The state evolution is easily calculated

|ψ0(t)〉 =
1√
N

∑

q

g̃qe−iεqtc†q|0〉, (5)

so as the time-dependent probability distribution

Pj(t) =
∣∣〈0|cj |ψ0(t)〉

∣∣2 =
1
N2

∑

qq′
g̃qg̃

∗
q′e−i[(εq−εq′ )t−(q−q′)aj]. (6)

As expected, since εq = ε−q, one can see from Eq. (6) that Pj(t) remains centered around j = 0, and
a pure diffusion occurs. In order to obtain a real transport of the wave packet, it is necessary to introduce
something breaking the translational invariance of the Hamiltonian. This result can be achieved introducing
a topological phase which changes the hopping terms as follows: c†jcj+1 → eiθc†jcj+1. As a consequence,
the energies become

εq(θ) = −2w cos (aq − θ) . (7)

As we shall show, tuning the θ phase makes it possible to reduce the wave packet spread and optimize the
particle transmission. Such a phase can be obtained, for instance, introducing an suitable magnetic orthog-
onal field B trough the ring. By means of the Aharonov-Bohm effect the phase shift is θ = (2πΦ)/(NΦ0)
where Φ is the magnetic flux through the ring and Φ0 = hc/e is the quantum unit of magnetic flux.
Topological phases can be also created in different ways, for example by means of the electric Aharonov-
Bohm effect [39–41]. We will not insist on this point, referring to a generic phase independently on how
to generate it.

In a quantum information context, where the conducting ring can be used as a communication channel
(quantum bus), it is useful to consider another quantity, the so-called fidelity. It represents how the initial
state, centered on the j = 0 site, can be efficiently reproduced around another site j = d (the receiver site).
Starting from the transfer amplitude

fd(t) = 〈ψd|ψ0(t)〉 =
1
N

∑

q

|g̃q|2ei(qad−εqt), (8)

the fidelity is defined as

Fd(t) = |fd(t)|2 . (9)

In the following sections we shall examine two cases: in the first one, the electron is initially localized on
the site j = 0; in the other case, the electron is prepared with a squared distribution around the same site.
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3 Atomic preparation

To start with, we study the case in which the electron is prepared on one site, say j = 0, putting gj = δj,0
and g̃q = 1. We shall refer to this preparation as the atomic one. The transfer amplitude is simply

fd(t) =
1
N

∑

q

ei(qad−εqt). (10)

In this case, the probability distribution is equal to the fidelity Pj(t) = Fj(t). In the limit of large number
of sites, fd is proportional to a Bessel Function [42] Jd

fd(t) = ei π
2 dJd(2wt). (11)

For fixed d, the fidelity has a maximum for t � d/2w, which is also an absolute maximum in the
N → ∞ limit. This can be seen in Fig. 1 where the time dependence of the fidelity is plotted for different
final sites. For finite value of N , other maxima appear, higher than the first, because of the interference
between the two different propagating wave packet in which the initial wave function is split. This effect
occurs also in the context of quantum communication on spin chains [6]. Here, the interference is due to
the counterpropagating spin waves and the constructive peaks are used to optimize the short range transport
(few sites). This mechanism is not very interesting on larger distances because of the difficulty of estimating
the optimal times of the better constructive interference and their strong dependence on the site number.
For this reason we work in the limit of large number of sites, fixing the first maximum time as the useful
one for the transport process.

The atomic preparation appears to be highly inefficient, as it can be seen looking at the very small fideli-
ties in Fig. 1. Moreover, is easy to demonstrate that, in the large N limit, the introduction of a topological
phase does not change anything (changing aq − θ into aq′ introduces, in the continuum limit of Eq. (10),
only a inessential phase shift). As we shall discuss in the next section, fidelity increases if the electron
wavefunction is initially delocalized over few sites.
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Fig. 1 Time evolution of the fidelity in
the atomic limit with fixed final site d and
N = 500 . Fidelity is plotted for d =

10, 30, 60, 80.

4 Square packet preparation

The second configuration we consider consists in an electron prepared to be equally delocalized around
the site j = 0. The initial state is given by a square wave packet centered on the 0 site and extended over
2M + 1 sites. The amplitude distribution is

gl =

{
1√

2M+1
If −M ≤ l ≤M

0 Elsewhere,
(12)
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corresponding to the form factor

g̃q =
1√
λ

sinλ qa
2

sin qa
2

, (13)

with λ = (2M + 1).
The fidelity is plotted in Fig. 2 for a 500-site chain and without any phase θ. One can see that a com-

pletely different behavior occurs, even if the efficiency still remains low. The reason is to be ascribed to
the fact that the wave packet actually does not moves but only diffuses, as it is show in Fig 3, where the
probability distribution is reported for different times.
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Fig. 2 Time evolution of the fidelity in
the square packet preparation (M = 5),
without phase θ, with fixed final site d and
N = 500 . Fidelity is plotted for d =

10, 30, 60, 90. Thick line indicate the max-
ima of fidelity reached by each site at dif-
ferent times.
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Fig. 3 Probability distribution for N =

500, in the square packet preparation
(M = 5) and without phase θ. The
function is symmetric and here is plot-
ted only for d positive. The wavepacket
spread is shown for different times. t =

0, 10, 20, 30.

The introduction of a suitable phase θ induces a wavepacket propagation so to increase the transmission
efficiency. In order to estimate the optimal value of the phase, we derive here an approximate analytical
expression for Fd(t) and Pd(t). Considering a very large N we can substitute the sum (8) by an integral
introducing the continuous variable x = qa/2. The expression for the transfer amplitude, with a generic θ
becomes

fd(t) � 1
π

∫ π
2

− π
2

dxG(x)ei(2xd+2wt cos (2x−θ)). (14)

c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.fp-journal.org



Fortschr. Phys. 57, No. 11 – 12 (2009) 1099

The form factor G(x) = λ−1 (sinλx/ sinx)2 in the integral is a periodic function whose peaked principal
maxima are spaced by an amount of π from each other. The integration interval contains only the principal
maximum centered on the origin and so we can expandG(x) around x = 0 approximating it by a Gaussian
function

G(x) � λ

(
1 − λ2 − 1

3
x2

)
� λe−

λ2−1
3 x2

. (15)

Now we expand the argument of the phase factor into the integral. We note that the expansion is to be
performed, at least, until the second order because the first term vanishes as soon as the phase is turned
off. So, if we want to take into account of the effect of phase-free propagation we have to consider the
expansion

cos (2x− θ) � cos θ + 2 sin θx− 2 cos θx2. (16)

Isolating the inessential phase factors we obtain

f(t) � eiφ λ

π

∫ ∞

−∞
dxe−

[
λ2−1

3 −i4wt cos θ
]
x2+i2x(d+2wt sin θ)

, (17)

that can be integrated as a common Gaussian integral. The resulting fidelity is

Fd(t) = A(t)e
− [d+2wt sin θ]2

2σ2
F

(t) , (18)

with

A(t) =
3λ2

π
√

(λ2 − 1)2 + 144w2t2 cos2 θ
, (19)

and

σ2
F (t) =

(λ2 − 1)2 + 144w2t2 cos2 θ
12(λ2 − 1)

. (20)

The same calculation can be done for the probability distribution. Expanding the form factor (13) into

g̃(x) �
√
λe−

λ2−1
6 x2

, (21)

the wave function (6) becomes

ψd(t) =� eiφ

√
λ

π

∫ ∞

−∞
dxe−

[
λ2−1

6 −i4wt cos θ
]
x2+i2x(d+2wt sin θ)

. (22)

Integrating and squaring, we obtain

Pl(t) = B(t)e
− [d+2wt sin θ]2

2σ2
P

(t) , (23)

with

B(t) =
6λ

π
√

(λ2 − 1)2 + 576w2t2 cos2 θ
(24)

σ2
P (t) =

(λ2 − 1)2 + 576w2t2 cos2 θ
24(λ2 − 1)

. (25)
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By this calculation, both Fd(t) and Pd(t) are approximated with Gaussian functions of the variable
d, which propagate and diffuses in time. The propagation velocity is given by v = −2w sin θ, while
the diffusion is quantified by the variance σ2

F,P . We shall study Fd(t) as a function of time with fixed
d (the receiver site), and Pd(x) as a spatial distribution at fixed times. Two different behaviors appear,
corresponding to θ = 0 and θ = −π/2.

In the first case, with θ = 0, the quadratic term in the expansion (16) prevails. There is no propagation
of the probability distribution, v = 0. The wave packet diffuses only, as one can see in Fig. 3. The fidelity
has a maximum in correspondence of the time

t∗ =

√
(λ2 − 1)(12d2 − λ2 + 1)

12w
. (26)

In Fig. 2 is depicted the fidelity at different sites with the curve of the maxima. The result is better than the
atomic case but the efficiency rapidly decreases with the distance.

In the second case, with θ = −π/2, only the linear term in (16) remain. The dispersion becomes
approximately linear and the wavepacket (23)) does not diffuse (Fig. 4). Moreover, it propagates with
velocity v = 2w causing an enhancement in the fidelity. In particular, Fd(t) assumes its maximum value
at the approximate time

t∗ =
d

2w
. (27)

In Fig. 5 time dependent fidelity is reported for different receiving sites, together with the time evolution of
the maxima. As one can see, in this case a fidelity of the order of about 0.8 is achieved even for distances of
the order of 100 sites. Notice that the maximum value of the fidelity one can achieve is almost independent
of the chain length. In Fig. 6 the maximum of fidelity is reported as a function of distance for the two
extremal values of θ and an intermediate one.
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Fig. 4 Probability distribution for N =

500, in the square packet preparation
(M = 5) and with phase θ = −π/2. Here
a propagation of the wavepacket can be ob-
served. The wavepacket spread is shown
for different times. t = 0, 10, 20, 30.

Other preparations, even more experimentally feasible, can be introduced as, for example, a Gaussian
distribution. In this case, being our analytical treatment basically a Gaussian approximation, we expect an
even better fitting with the numerical results. The calculations for every type of initial distribution, can be
done in the same way introducing a suitable g̃q in Eq. (8). Nevertheless, it is enough to show the simple
square-packet case to meet all the interesting physical effects leading to coherent propagation.
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5 Conclusions

We studied the quantum diffusion of an electron in a periodic lattice, in the tight-binding regime. We
shown that,even in the presence of a nonlinear dispersion, it is possible to approach a linear regime where
the electron wave packet spreading is reduced. This is possible by introducing in the system a suitable
topological quantum phase. The new advances in the scalable quantum information and communication
on mesoscopic solid state devices gives rise to a need for new communication channel beyond the usual
photon flying qubit. In this perspective, the possibility of a flying qubit carried by electrons appears a
promising resource for state transfer along mesoscopic scales. .
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[30] H. Wang and S. Kais, Chem. Phys. Lett. 421, 338 (2006).
[31] W. Ehrenberg and R. E. Siday, Proc. Phys. Soc. B 62, 8–21 (1949).
[32] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485–491 (1959).
[33] G. M. Nikolopoulos, D. Petrosyan, and P. Lambropoulos, J. Phys.: Condens. Matter 16, 4991 (2004).
[34] D. Stelitano, Phys. Rev. D 51, 5876 (1995).
[35] F. Ciccarello, G. M. Palma, and M. Zarcone, Phys. Rev. B (Condens. Matter Mater. Phys.) 75, 205415 (2007).
[36] S. M. Giampaolo, F. Illuminati, A. Lisi, and S. Siena, Laser Phys. 16, 1411 (2006).
[37] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University

Press, Cambridge, 2000).
[38] H. Barnum, M. A. Nielsen, and B. Schumacher, Phys. Rev. A 57, 4153 (1998).
[39] A. van Oudenaarden, M. H. Devoret, Y. V. Nazarov, and J. E. Mooij, Nature 391, 768 (1998).
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