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The multi-mode dynamics of a two-level ring laser is explored numerically using a bidirectional
Travelling Wave Model retaining the spatial effects due to the presence of counter-propagating
electric fields in the population inversion. Novel dynamical regimes where the emission in each
direction occurs at different wavelength are studied. Mode-locked unidirectional emission for large
gain bandwidth and relatively small detuning is reported.

I. INTRODUCTION

Since their inception, Ring Lasers (RLs) have attracted
the interest of both theoretical and experimental re-
search. From the theoretical point of view, the RL de-
sign offers the possibility of unidirectional operation due
to their rotational symmetry which presents a very low
—ideally vanishing— coupling of waves propagating in
one direction and the opposite. Moreover, the RL de-
sign opens the possibility of tailoring the reversibility of
the optical paths. This allows to more efficiently extract
power from these devices, hence the unidirectional RL
design is at the heart of many high-power solid state and
fiber lasers [1]-[3] which are commonplace in many appli-
cations.

The reversibility of the optical path in RLs also allows
for the coexistence of counter-propagating electric fields
in the same gain medium, which leads to a large variety
of operating regimes and dynamics that are profoundly
different from those of Fabry-Pérot lasers [4]-[8]. Such
a property has immediate potential applications for RLs
acting as gyroscopes [9]. Moreover, the coexistence of
counter-propagating waves can also be exploited for all-
optical signal processing and storage via their directional
bistability [10].

The first systematic formulation of the theory of a RL
was proposed by Lamb et al. [11]-[13] in the early years of
laser physics and relies on a derivation of the electromag-
netic field equations in a semi-classical framework. This
work contained the first qualitative analysis of travelling
wave modes in a polygonal cavity, and was focused on
a gas (He-Ne) active medium embedded in a Michelson
polygonal resonator. The work by Lamb, though specific
for gas lasers, already evidenced that each longitudinal
mode showed a twofold degeneracy. Moreover, Lamb’s
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work highlighted that symmetry issues and intra-cavity
reflections have a major impact on the modal structure
in ring lasers; and that pure counter-propagating trav-
elling waves are ideal states only allowed in closed loop
optical cavities without any localized reflection. Detuned
standing waves better fit a close loop optical cavity with
localized reflections, because they adjust nodes and max-
ima of the field intensity according to these special points
along the cavity.

RLs are often modeled by Rate Equations (RE) (
[5], [14]-[16]) for both unidirectional and bidirectional
cases for different laser types. These models usually de-
scribe the electric fields and the population difference
without taking into account the spatial effects explic-
itly. A natural way to take into account the spatial
effects and describe multi-mode dynamics is to use a
Travelling Wave Model (TWM). Such description offers
a comprehensive model, but adds a bigger computational
cost, because RE models are based in systems of Ordi-
nary Differential Equations (ODEs) and a TWM descrip-
tion is based in systems of Partial Differential Equations
(PDEs). A TWM description was already used for Fabry-
Pérot lasers [17], [18], for unidirectional RLs [19] and even
for bidirectional RLs [20]. Although this description for
RL is not new, the novelty presented in this paper is the
study of multi-mode dynamics.

The model here derived is a semi-classical model
where the fields are described classically while the ac-
tive medium is quantized. Since our goal is to formulate
a description of the ring laser allowing for bidirectional
emission and mode competition that retains the essential
features of the dynamics, we consider the active medium
be simply composed of two-level atoms. In this case, the
interaction of the active medium and the optical field is
well known and its description in time domain poses no
additional problems as it would be the case for e. g.
semiconductor systems. In addition, although a com-
plete description of the system requires the full three-
dimensional wave equation to describe the cavity field
exactly, our approach only takes into account the axial
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direction of propagation by assuming a single-transverse
mode be supported by the cavity.

The paper is organized as follows. In Section II, the
TWM is presented and analytical and quasi-analytical
results are shown. In Section III, the test performed to
assure the correctness and accuracy of the numerical al-
gorithm used to implement the TWM is presented. In
Section IV, the multi-mode dynamics of the system are
discussed, focussing in two cases: moderate and large
gain bandwidth. Finally, the conclusions are written in
Section V. Moreover we include the detailed derivation of
the model and its numerical implementation in appendix
form.

II. THE MODEL

In this section we briefly summarize the TWM consid-
ered for the ring laser. The details of its derivation can
be found in appendix A.

We consider that the electric field is quasi-
monochromatic and it is decomposed into forward (+)
and backward (-) waves propagating in opposite direc-
tions. The active medium is assumed to be composed
by homogeneously broadened two level atoms. We also
consider a quasi-resonant light matter interaction in the
Rotating Wave Approximation (RWA). The population
inversion density, D, is decomposed in different spatial
harmonics of a fundamental modulation at half the opti-
cal wavelength and, in the resulting hierarchy of contri-
butions, we retain the first order term.

With these assumptions, the dimensionless equations
that define the TWM read

±
∂A±

∂s
+

∂A±

∂τ
= B± − αA± , (1)

1

γ

∂B±

∂τ
= −(1 + iδ̃)B± + g(D0A± + D±2A∓)

+
√

βD0 ξ±(s, τ) , (2)

1

ǫ

∂D0

∂τ
= J − D0 + ∆

∂2D0

∂s2

− (A+B∗
+ + A−B∗

− + c.c.), (3)

1

η

∂D±2

∂τ
= −D±2 −

ǫ

η
(A±B∗

∓ + A∗
∓B±) , (4)

where A± are the slowly varying components of the
counter-propagating electric fields, B± are their respec-
tive polarizations, D0 is the quasi-homogeneous inversion
density and D±2 are the spatially-dependent contribu-
tions to the grating in the population inversion density,

α are the internal losses, and δ̃ is the detuning, ǫ and η are
the decay times for D0 and D±2 respectively, and γ deter-
mines the spectral width of the gain spectrum. The space
s is normalized to the cavity length L, s = z/L, and the
time τ is normalized to a single round trip, τ = t/(L/v),
where v is the group velocity. We note at this point that
the mode spacing is 2π for a ring and π for a FP. For
more details see appendix A.

Equations (1-4) must be completed with the boundary
conditions for the electric fields. We consider the most
general case depicted in Fig. 1, hence the boundary con-
ditions read

A+(0) = t+A+(1)eiγω̃0 + r−A−(0),
A−(1)e−iγω̃0 = t−A−(0) + r+A+(1)eiγω̃0 ,

(5)

where r± and t± denote the reflectivity and transmis-
sivity of the forward and backward waves. These co-
efficients can in general be different for the two direc-
tions in order to describe the effect of non-reciprocal el-
ements as an optical isolator. We note moreover that
|t±|

2 + |r±|
2 = 1 − ε±, where ε± are the losses at the

point coupler.
These general boundary conditions reduce to those for

an ideal ring if r± = 0 and t± 6= 0, and to those for a
Fabry-Pérot cavity if r± 6= 0 and t± = 0. When r+ =
r− and t+ = t− the device is symmetrical for the two
propagation directions.

In the following we shall take γω̃0 = 2πm where
m = 0,±1,±2 . . . then eiγω̃0 = 1 without loss of gen-
erality: it simply means that we take as the carrier fre-
quency ω0 that corresponding to one of the modes of the
cavity. Moreover, we shall restrict ourselves to symmetric
devices unless explicitly noted.

FIG. 1: Schematic representation of the ring laser bound-
ary conditions where t± and r± are the the reflectivity and
transmissivity for the counter-propagating fields A+ and A−

respectively.

A. Laser Threshold

The lasing threshold of the system can be readily deter-
mined by performing the linear stability analysis (LSA)
around the off solution, i.e. Ast

± = 0, Bst
± = 0, Dst

±2 = 0
and Dst

0 = J . We linearize (1-4) around this solution by
introducing the small perturbations

A± = ε a±(s, τ), B± = ε b±(s, τ),
D0 = J + ε2 d0(s, τ), D±2 = ε2 d±2(s, τ).

(6)

Where ε is infinitesimally small, then retaining the terms
to first order in ε and assuming that the perturbations
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evolve in time as

a±(s, τ) = ã±(s)eλτ , b±(s, τ) = b̃±(s)eλτ , (7)

we can obtain the eigenvalues λm (m = 0,±1,±2, ...)
whose real part determines whether or not the mode m
is stable and whose imaginary part determines the modal
frequency. The modal threshold is thus given by the cur-
rent value J th

m such that Re(λm) = 0. In our case, we ob-
tain two different branches of solutions (σ = ±1) whose
modal thresholds read

J th
m (σ) =

(γδ̃ − 2πm)2(α − ln (t + σr))

g(α + γ − ln (t + σr))2
−

1

g
ln (t + σr),

(8)
and which have modal frequencies

Ωm(σ) =
2πm + δ̃(α − ln (t + σr))

1 + 1
γ (α − ln (t + σr))

. (9)

The thresholds for the two branches of solutions are
shown in Fig. 2 for typical ring laser parameters. For
small modal index, the lorentzian can be approximated
by a parabola, which explains the shape of Fig. 2, and the
minimum threshold corresponds to the gain peak. The
two branches of solutions arise from the non-vanishing
reflectivity r: when r = 0, the modes are pure forward
and backward waves which are degenerate; however, for
r 6= 0 the rotational invariance of the system is broken
and the modes are given by combinations of the forward
and backward waves that lift this degeneracy in both
frequency and threshold gain. For r → 0, eqs. (8) and
(9) read

J th
m (σ) = (γδ̃−2πm)2(α−ln t)

g(α+γ−ln t)2 − 1
g ln t

+ σ(γδ̃−2πm)2(α−γ−ln t)
gt(α+γ−ln t)3 r + O(r)2

(10)

and

Ωm(σ) = γ[2πm+δ̃(α−ln t)]
α+γ−ln t

+ γσ(2πm−γδ)
t(α+γ−ln t)2 r + O(r)2.

(11)

Such an effect has been experimentally observed in semi-
conductor ring lasers [21] where the residual reflectivities
in the laser cavity induced modal doublets that corre-
spond to the mode-pulling formula (9). The threshold
difference for these doublets is roughly proportional to
r for small reflectivities hence the gain difference can be
hardly noticeable specially for appreciable internal losses
α.

B. Monochromatic Solutions

The nontrivial monochromatic solutions read

A± = Ast
±e−iω̃τ , B± = Bst

± e−iω̃τ ,
D0 = Dst

0 , D±2 = Dst
±2.

(12)
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FIG. 2: Jth

m vs m. δ̃ = 0.1, g = 1, t = 0.5, r = 0.05, α = 0
and γ = 100. In this case the lowest threshold corresponds to
mode m = 2 with Jth

2 = 0.5981 for σ = +1.

where ω̃ is the lasing frequency. We use (12) in (1-4)
finding

±
∂Ast

±

∂s
+ (α − iω̃)Ast

± = Bst
± , (13)

Bst
± =

g(Dst
0 Ast

± + Dst
±2A

st
∓)

1 + i(δ̃ − ω̃/γ)
, (14)

Dst
0 = J − (Ast

+Bst∗
+ + Ast

−Bst∗
− + c.c.) , (15)

Dst
±2 = −

ǫ

η
(Ast

±Bst∗
∓ + Ast∗

∓ Bst
± ) . (16)

Analytical solutions for these equations can be found
only in the simplest situation r = 0 and α = 0. In this
limit, the two counter-propagating waves are degenerate
and a bidirectional solution also exists. However, the
bidirectional solution is unstable [22, 23]. We thus focus
on the unidirectional solutions Ast

+ 6= 0 and Ast
− = 0 with-

out loss of generality (the counter-propagating solution
can be directly obtained by replacing + with − in the fi-
nal results). Using (14) in (13) and solving the resulting
differential equation, we find

Ast
+(s) = Ast

+ (0)e
iω̃s+ g

1+i(δ̃−ω̃/γ)
G(s)

, (17)

where

G(s) =

∫ s

0

Dst
0 (s′)ds′. (18)

We note that Dst
0 = dG(s)

ds , hence using (14) and (17) in
(15) yields

dG

ds
=

J

1 + 2g

1+(δ̃−ω̃/γ)2
|A+(0)|2e

2g

1+(δ̃−ω̃/γ)2
G(s)

. (19)

Clearly, G(s = 0) = 0, and the boundary condition for
the field Ast

+(0) = tAst
+ (1) imposes that

G(1) =
− ln t

g
[1 + (δ̃ − ω̃/γ)2], (20)

ω̃ =
2πm − δ̃ ln t

1 − ln t
γ

. (21)
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We note that (21) is equivalent to (9) in this simplified
case. Integrating (19) from one end to the other of the
laser cavity and using the boundary conditions for G(s)
allows us to determine

|Ast
+ (0)|2 =

J + ln t
g [1 + (δ̃ − ω̃/γ)2]

e−2 ln t − 1
. (22)

We can therefore solve for G(s) and determine the inten-
sity profile of the field along the laser cavity as shown in
Fig. 3.
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FIG. 3: Re[Ast

+m(s)] in the unidirectional solution. δ̃ = 0.1,
g = 1, t = 0.5, γ = 100 and J = 1.5.

The physical insight gained in the analysis of the sim-
plest case suggests that in general, eqs. (13-16) can be
very efficiently solved by means of a numerical shoot-
ing method [24] which is useful since no analytical so-
lution is possible in this case. In Fig. 4 a bidirectional
monochromatic solution calculated in this way is shown.
This shooting method can be used to quickly find the
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FIG. 4: Bidirectional Monochromatic solutions in the general
case. Intensity of the fields inside the cavity vs space s. Mesh

points N = 100, J = 0.5, δ̃ = 0.1, g = 1, ǫ = η = 10−2, β = 0,
t = 0.5, r = 2 10−2, α = 0 and γ = 100.

steady state solutions for different current values, hence
limited bifurcation diagrams as a function of the pump
can be readily obtained. For instance, Fig. 5 depicts the
pitchfork bifurcation from a bidirectional solution into
two degenerate, almost unidirectional solutions that has

been observed in different ring laser systems [5]. It should
be noted that, in order to obtain a bifurcation diagram
like that in Fig. 5, it is necessary to perform a double
scan, one upwards and one downwards, since the shoot-
ing method follows the resulting branches even if they
are unstable.
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FIG. 5: Bifurcation diagram of the monochromatic solutions:
for decreasing pump J showing a pitchfork bifurcation and
for increasing J showing a bidirectional solution and the off

solution. Mesh points N = 100 , δ̃ = 0, g = 5, ǫ = 10−2,
η = 5, β = 0, t = 0.5, r = 5 10−3, α = 0 and γ = 100.

III. TEST: SINGLE-MODE DYNAMICS

The numerical implementation of partial-differential
equations always represents a challenge from a technical
point of view. In particular, the usual numerical diffusion
present in most algorithms has to be carefully taken care
off. While numerical dissipation can be helpful in context
like e. g. fluid mechanics, to prevent spurious solutions to
rise, multi-mode laser dynamics is mainly governed by ex-
tremely weak gain difference between consecutive modes
that correspond to increasing spatial frequencies. Any
weak numerical dissipation would therefore profoundly
affect the dynamical scenario and has to be avoided. To
this purpose we employ a numerical algorithm that is
based on the one presented in [17], which takes advan-
tage of the fact that the equations for the electric fields
can be formally solved by integration along the charac-
teristics.

In this section we discuss the tests performed in order
to check the correctness and accuracy of the numerical al-
gorithm used to implement the TWM, which is required
for controlling potential implementation mistakes. The
details of the numerical implementation are described
in appendix B, where we also discuss in detail how the
boundary conditions are imposed.

Clearly, the results in II.A and II.B provide a first test
of the accuracy of the numerical implementation. We
have verified that our numerical scheme accurately recov-
ers the lasing threshold yielding monochromatic solutions
that match those obtained by the shooting method.
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FIG. 6: Dynamical behaviors observed for fixed pump J = 0.5

while scanning detuning δ̃. (a) δ̃ = 0.2, (b) δ̃ = 0.5, (c)

δ̃ = 0.7, (d) δ̃ = 0.9. The parameters correspond to those
used in [25] in Figs. 10a - 10i except for the fact that in our
case the two modes have equal losses: Mesh points N = 100,
g = 1, ǫ = η = 1.78 10−5, β = 10−4, t = 0.9, r = 0, α = 0
and γ = 1.

A further test, presented below, is provided by compar-
ing our numerical results in the single longitudinal mode
limit with the dynamical results previously obtained by
Zeghlache et al. [25] with a rate equation model for a CO2

ring laser. In such a model, obtained in the good cavity
limit for a pure single-longitudinal ring laser (r = 0), the
only term that mixes the counter-propagating fields is
the carrier grating, hence the bidirectional regime is un-
stable [22, 23]. Moreover, the analysis performed in [25]
demonstrates that the unidirectional solution can also
become unstable in some pump and detuning regimes.
For certain values of these parameters, square-wave os-
cillations between the counter-propagating fields appear
followed by regular or even chaotic oscillations. Scanning
the pump J for fixed detuning, the system, which is ini-
tially stable or bistable, becomes unstable at a certain
value, and it eventually recovers stability at high pump
values; for fixed pump, instead, stable behavior is not
recovered upon increasing detuning although it must be
recalled that the single-mode approximation will even-
tually break down and the model in [25] be no longer
valid.

A meaningful comparison of our results from those in
[25] requires to establish the equivalence among the pa-
rameters in both models. In order to do so, we reduce
our model to that in [25] by neglecting any spatial depen-
dence while redefining the losses in (1) as αT = α − ln t
(i. e., the total losses). Then, comparison with eqs. (3.11)
in [25] yields the parameter correspondence rules

d‖ = ǫ
αT

, A = gJ
αT

, ∆ = −δ̃. (23)

Our numerical simulations reproduce accurately the
behaviors described in [25]. We perform simulations fix-
ing the pump and increasing the detuning (see Fig. 6), in
this case, we go from the unidirectional steady emission
to a region of instability where the counter-propagating
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FIG. 7: Dynamical behaviors obtained for fixed detuning δ̃ =
0.2 while scanning J . (a) J = 0.6, (b) J = 3.6, (c) J = 8, (d)
J = 20 for the same parameters as in Fig. 6.
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FIG. 8: Single mode chaotic behavior. Mesh points N = 100,

J = 0.4, δ̃ = 0.4, g = 1, ǫ = η = 1.78 10−5, β = 10−4, t = 0.9,
r = 5 10−4, α = 0 and γ = 1.

fields develop a square-wave oscillation with one inten-
sity in anti-phase with the other (Fig. 6 (a)). Increasing
the detuning the square-waves become distorted and a
secondary oscillation appears (Fig. 6 (b) and (c)), pro-
gressing until a chaotic oscillation is obtained for high
detunings as shown in Fig. 6 (d).
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FIG. 9: Single mode chaotic behavior. Mesh points N = 100,

J = 0.5, δ̃ = 1, g = 1, ǫ = η = 1.78 10−5, β = 10−4, t = 0.9,
r = 5 10−4, α = 0 and γ = 1.
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On the other hand, when we fix the detuning and
scan the pump (see Fig. 7) we pass from a unidirectional
steady solution near threshold into a region of instability
where square-waves similar to those in the previous case
developed. In contrast with the previous case, now the
system recovers stability upon increasing J and returns
to one of the unidirectional solutions. The mechanism is
a slowing down of the square-wave modulation as we in-
crease the pump (see Fig. 7 (c)), a characteristic behavior
of heteroclinic bifurcations.

Finally, we remark that the above behaviors are recov-
ered even when putting a small reflection and sponta-
neous emission provided that the good cavity limit still
applies (see Fig. 8 and 9), i. e., they are robust against
small imperfections and noise. However, if the reflectivity
is too large, the system emits bidirectionally at threshold
and its dynamical behavior is no longer the same [5, 7].

IV. MULTI-MODE DYNAMICS

The RE model described in [25] is of limited applica-
bility because in a real laser, increasing the detuning will
eventually lead to at least a change in lasing mode which
is not accounted for in the RE model. Indeed, the max-
imum allowed detuning in a real device corresponds to
having the gain peak just between two laser modes, i. e.,

δ̃ = π/γ in our parametrization. In addition, instabilities
arising from the multi-mode character of the system as
e. g. the Risken-Nummedal instability [26] can develop
when the gain curve is broader than the mode spacing.

The dynamics in these cases can readily be analyzed
with the travelling wave model, which naturally retains
the dynamics of the different modes and the effects of the
detuning. Hence it can allow to explore the dynamics of
the system in cases where different longitudinal modes
are active.

In this section we present and discuss some remark-
able dynamical behaviors obtained in these situations,
although we note that the large variety of behaviors that
we have observed calls for the development of a bifurca-
tion tool of our TWM that would allows to better un-
derstand the role played by the different parameters. To
the best of our knowledge, these results have not been
found in literature. It should be noted, however, that
some of them are obtained for very high pumping levels,
J ∼ 10− 100Jth, which might be difficult or even impos-
sible to achieve in an experiment. First, we present the
situation where a moderate gain bandwidth is taken into
account, and how different behaviors arise in this case
depending on the pump and the detuning. In the second
part of this section the case of a large gain bandwidth is
discussed.

A. Moderate gain bandwidth

We consider here the case when the gain spectrum has
moderate width, γ = 10. We first discuss the case when
the gain spectrum peak lies just between two modes,

δ̃ = 0.3141. In this case, modes m = 0 and m = 1
have exactly the same threshold, so the dynamical sce-
nario at the laser threshold corresponds to a degenerate
Hopf bifurcation. It should moreover be noted that for
each of these frequencies there are two different solution
branches which for small r are also almost degenerate,
as discussed in II.A. This highly degenerated situation
allows the system to lase in a great variety of possible
states, which can give rise to unexpected dynamical be-
haviors. We subsequently discuss the effect of the de-
tuning in this case, since varying the detuning allows to
reduce the degeneracy of the system.
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FIG. 10: Bifurcation diagram near threshold. The fields begin
to emit multi-mode bidirectionally, then after J = 0.028 the

backward (-) field is favored. Mesh points N = 100, δ̃ =
0.3141, g = 5, ǫ = 10−2, η = 0.1, β = 10−4, t = 0.9, r =
5 10−4, α = 0 and γ = 10

Fig. 10 shows the bifurcation diagram near the thresh-
old for the ring laser with moderate gain bandwidth
(laser parameters specified in the caption). First, the two
counter-propagating fields are both emitting with equal
intensity in two modes separated by one mode spacing,
i.e. the laser starts to emit bidirectionally in consecu-
tive modes, m = 0 and m = 1. As we increase the
pump, one of the directions becomes dominant over the
other, and additional modes are excited. For high enough
pump (see Fig. 11), the system emits almost unidirec-
tionally; however, the emission exhibits 100% oscillations
at the roundtrip time which correspond to an emission
spectrum that involves four dominant modes. Further
increasing the pump, the intensity oscillation becomes
nonlinear, which corresponds to the locking of a moder-
ate number of modes (see Fig. 12), this regime can be
interpreted as a shallow mode-locked solution.

At even higher pumps, the nonlinear oscillation disap-
pears and the emission becomes again bidirectional with
both directions emitting stable and with the same power
(see Fig. 13).
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FIG. 11: Unidirectional oscillating emission. (a) Power spec-

tra. (b) Time trace. Mesh points N = 400, J = 1, δ̃ = 0.3141,
g = 5, ǫ = 10−2, η = 0.1, β = 10−4, t = 0.9, r = 5 10−4,
α = 0, γ = 10, n = 1 and L = 1 m.
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FIG. 12: Mode-locked solution. (a) Power spectra. (b) Time
trace. J = 3. Other parameters see Fig. 11.

However, a closer look at the emission in this regime
(see Fig. 14) reveals that, surprisingly, each emission di-
rection is dominated by a single mode, m = 0 for A+ and
m = 1 for A−. Hence each mode contributes in comple-
mentary ways to lasing in each direction: while emission
in the forward direction is dominated by the redmost
mode, the backward direction lases dominantly on the
bluest mode. This regime is of course two fold degener-
ate. This transition comes from the dynamical effect in
the population inversion grating. This grating is known
to favors unidirectional emission since it cross saturate
the forward and backward amplitudes. However, when
the forward and backward modes are separated apart in
lasing frequency, the efficiency of the grating is strongly
decreased since it has to follow the beatnote at the modal
separation. As a consequence, while the system cannot
emit bidirectionally in the same mode [22, 23] due to too
strong a cross saturation, it is still possible to do so when
the energy is mainly distributed between two consecutive
modes for which the grating effect is strongly mitigated.
Decreasing the pump this regime survives and the oscil-
lations do not appear (see Fig. 13), this fact allow us to
conclude that we are in a bistable situation.

0 1 2 3 4 5
0

10

20

30

40

50

60

Pump J [A.U.]

In
te

ns
ity

 [A
.U

.]

 

 

max(|A
+
|2)

min(|A
+
|2)

max(|A
−
|2)

min(|A
−
|2)

FIG. 13: Bifurcation diagram showing the transition from
unidirectional oscillating emission to bidirectional emission at
different frequencies while increasing the pump J . Decreas-
ing the pump the system emits bidirectionally at different
frequencies. (a) Power spectra. (b) Time trace. Mesh points

N = 400, δ̃ = 0.3141, g = 5, ǫ = 10−2, η = 0.1, β = 10−4,
t = 0.9, r = 5 10−4, α = 0 and γ = 10.
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FIG. 14: Bidirectional oscillating emission at different fre-
quencies. (a) Power spectra. (b) Time trace. J = 4. Other
parameters see fig.11.

1. Dependence on detuning

In order to see the effect of the detuning on the behav-
ior of the laser in the case of moderate gain bandwidth,

we perform simulations for different δ̃. For δ̃ = 0.3, the
laser begins to emit bidirectionally in a mode m = 0 but
it rapidly becomes almost unidirectional with a small am-
plitude oscillation that corresponds to residual emission
in mode m = 1 (see inset in Fig. 15). As we increase
the pump, the emission becomes increasingly unidirec-
tional and single mode until J = 0.4, where mode m = 1
starts to lase and favors the opposite direction. Above
this pump value, the laser emits bidirectionally with each
direction dominated by a different mode as in the previ-
ous subsection. However, the non symmetrical position
of the cavity modes with respect to the peak of the gain
curve produces a sensible difference between the intensi-
ties of the two counter-propagating fields (see Fig. 16).

The above results have been obtained by starting the
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FIG. 15: Bifurcation diagram for γ = 10 and δ̃ = 0.3. Inset:
Bifurcation diagram near the threshold. Mesh points N =
400, g = 5, ǫ = 10−2, η = 0.1, β = 10−4, t = 0.9, r = 5 10−4

and α = 0.

simulations from a noisy initial condition that does not
favor any of the emission directions. However, when the
simulations are launched from an initial condition that
privileges one of the directions (see Fig. 17), we find for
some current values an almost unidirectional solution os-
cillating at the modal beat note with almost 100% ampli-
tude. This solution is the analogous to that in Fig. 13 in
the previous subsection, and it eventually also disappears
into the bidirectional solution of Fig. 15. The former re-
sult evidences that the unidirectional oscillating solution
and the bidirectional emission at different frequencies can
coexist depending on the parameters. We have tried to
induce jumps among these two types of solutions by in-
jecting optical pulses, but we have not managed to stably
control the emission state of the system: after a relatively
long transient, the system returned to the original emis-
sion state, indicating that in spite of their coexistence,
the perturbation in phase space requires specific charac-
teristics to place the system into the basin of attraction
of the other solution.

4000 4010 4020 4030 4040 4050
1

2

3

4

Time [ns]

In
te

ns
ity

 [A
.U

.]

−1 −0.5 0 0.5 1
10

0
10

1
10

2
10

3
10

4
10

5

Frequency [GHz]

 

 |A
+
|2

|A
−
|2

(b)

(a)

FIG. 16: Bidirectional emission. (a) Power spectra. (b) Time

trace. Mesh points N = 400, J = 1, δ̃ = 0.3, g = 5, ǫ = 10−2,
η = 0.1, β = 10−4, t = 0.9, r = 5 10−4, α = 0, γ = 10, n = 1
and L = 1 m.

Finally, in the case where the gain peak is close to one
of the cavity modes, multi-mode dynamics is suppressed
because the mode closest to the gain peak takes all the
energy provided to the system. For a detuning value

δ̃ = 0.15 the laser emits single-mode unidirectionally as
shown in Fig. 18.

4000 4010 4020 4030 4040 4050
0

5

10

Time [ns]

In
te

ns
ity

 [A
.U

.]

−1.5 −1 −0.5 0 0.5 1 1.5
10

−2
10

−1
10

0
10

1
10

2
10

3
10

4
10

5

Frequency [GHz]

 

 |A
+
|2

|A
−
|2

(b)

(a)

FIG. 17: Unidirectional oscillating emission. (a) Power spec-
tra. (b) Time trace. For parameters see Fig. 16.
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FIG. 18: Bifurcation diagram for γ = 10 and δ̃ = 0.15. Inset:
Bifurcation diagram near the threshold. Mesh points N =
400, g = 5, ǫ = 10−2, η = 0.1, β = 10−4, t = 0.9, r = 5 10−4

and α = 0.

B. Large gain bandwidth

In this section we consider a large gain bandwidth (γ =
100) that allows for a rich variety of dynamical behaviors
because a large number of modes can become active.

The bifurcation diagram shown in Fig. 19 summa-
rizes the different behaviors observed when the peak
of the gain curve is just between the first two modes,

δ̃ = 0.03141. Close to threshold, the laser emits bidi-
rectionally with two modes active in each direction as in
Fig. 10. Increasing the pump, the forward direction be-
comes dominant and mode m = 0 dominates; conversely,
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FIG. 19: Bifurcation diagram showing different behaviors for

γ = 100 and δ̃ = 0.03141. Inset: Bifurcation diagram near
the threshold. First, close to threshold, the laser emits bidi-
rectionally with both counter-propagating fields emitting at
2 consecutive modes. Then a regime of bidirectional emission
at different frequencies appears (see Fig. 20). Third, a os-
cillating regime where the counter-propagating fields are out
of phase (see Fig. 21). Fourth, a unidirectional multi-mode
solution, composed by not consecutive modes (see Fig. 22).
Fifth, a bidirectional emission at different frequencies at not
consecutive modes (see Fig. 23). Mesh points N = 400, g = 5,
ǫ = 10−2, η = 2 10−2, β = 10−4, t = 0.9, r = 5 10−4 and
α = 0.

the backwards direction is dominated by mode m = 1
(see Fig. 20). In this regime, both emission directions os-
cillate in phase, but as the pump is still increased, more
modes become excited and the oscillations of the inten-
sity of the counter-propagating fields are out of phase
(see Fig. 21).
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FIG. 20: Bidirectional emission at different frequencies. (a)
Power spectra. (b) Time trace. Mesh points N = 400, J =

0.4, δ̃ = 0.03141, g = 5, ǫ = 10−2, η = 2 10−2, β = 10−4,
t = 0.9, r = 5 10−4, α = 0, γ = 100, n = 1 and L = 1 m.

Still increasing the pump, a regime of almost single-
mode, unidirectional emission is recovered (see Fig. 22)
for a small range of pump values. We see that in this case,
the depressed emission direction is dominated by mode
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FIG. 21: Multi-mode alternate oscillations. (a) Power spec-
tra. (b) Time trace. J = 1.5. Other parameters see Fig. 20.

m = 2, with a secondary peak on mode m = −2 excited
by Four-Wave-Mixing processes. Such a regime indicates
that the gain suppression of mode m = 1 by emission
on mode m = 0 is strong enough to inhibit emission on
mode m = 1. However, the large bandwidth of the gain
curve allows modes farther away from mode m = 0 to
become active when the pump is still increased. As shown
in Fig. 23, this leads again to a bidirectional solution
where each direction dominantly lases on different modes
separated by twice the mode spacing.
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FIG. 22: Unidirectional emission. (a) Power spectra. (b)
Time trace. J = 1.9. Other parameters see Fig. 20.

1. Dependence on detuning

For detuning values above δ̃ = 0.025, the behavior of
the system is qualitatively the same described in the pre-
vious subsection (see Fig. 24). However, the non sym-
metrical position of the gain curve peak makes the DC
component of the fields different and a unidirectional so-
lution is found near threshold.

A different scenario emerges at low detunings. When

the detuning is decreased to a value δ̃ = 0.015 (see
Fig. 25), the laser starts emitting bidirectionally with
both directions emitting on two consecutive modes. For
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FIG. 23: Bidirectional emission at different frequencies. (a)
Power spectra. (b) Time trace. J = 2.5. Other parameters
see Fig. 20.
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FIG. 24: Bifurcation diagram for γ = 100 and δ̃ = 0.03.
Inset: Bifurcation diagram near the threshold. First, bidirec-
tional emission is found near threshold, then one of the fields
is suppressed and a unidirectional regime is found, after that
the suppressed field begins to emit at a different frequency
respect to the emitted by the no suppressed field and a bidi-
rectional solution appears. Increasing the pump we find a
unidirectional solution that end up in a bidirectional solution
emitting at not consecutive modes. Mesh points N = 400,
g = 5, ǫ = 10−2, η = 2 10−2, β = 10−4, t = 0.9, r = 5 10−4

and α = 0.

slightly higher pump, one emission direction starts to
dominate with quasi single-mode emission up to J ≈ 2.4,
where a unidirectional solution arises with a high number
of active modes (see Fig. 26). Although this solution ap-
pears very far away from the lasing threshold, it is worth
being examined in detail. The solution has the charac-
teristics of a mode-locked state, with sharp and narrow
(≈ 0.2 ns full-width at half-maximum) pulses being emit-
ted in one direction only. Since the roundtrip time in our
case corresponds to 3.3 ns, the duty-cycle of the pulses
is around 6%. It is worth remarking that this solution
appears without inserting in the cavity any additional
element that favors pulsed operation (i. e., a saturable
absorber or alike), but it merely arises from an instabil-

ity of the CW solution occurring when the power level
is such that the Rabi frequency of the two-level atoms
equals the polarization dephasing rate. From this point
of view, then, the mechanism that triggers this solution
is analogous to that in the Risken-Nummedal instability.
The main difference between our case and the classical
Risken-Nummedal instability is that the large gain curve
that we are considering allows for the excitation of addi-
tional side-modes through Four-Wave Mixing processes
mediated by both D0 and D±2, which give rise to the
pulsed emission of the system.
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FIG. 25: Bifurcation diagram for γ = 100 and δ̃ = 0.015.
Inset: Bifurcation diagram near the threshold. Near threshold
the laser emits bidirectionally but for a wide range on pump
the laser emits unidirectionally single-mode, then near J =
2.2 different modes start to lase and a mode-locked solution
arises (see Fig. 26). Mesh points N = 400, g = 5, ǫ = 10−2,
η = 2 10−2, β = 10−4, t = 0.9, r = 5 10−4 and α = 0.
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FIG. 26: Mode-locked emission. (a) Power spectra. (b) Time

trace. Mesh points N = 400, J = 3, δ̃ = 0.015, g = 5,
ǫ = 10−2, η = 2 10−2, β = 10−4, t = 0.9, r = 5 10−4, α = 0,
γ = 100, n = 1 and L = 1 m.
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V. CONCLUSIONS

The multi-mode dynamics of a two-level ring laser has
been explored using a bidirectional TWM. The model
and its numerical implementation have been tested by
reproducing the dynamical results obtained in the single-
mode limit by Zeghlache et al. [25] We have shown
that the dynamical regimes reported in [25] are robust
against noise and residual reflections provided that the
single-mode limit holds. We have found novel dynami-
cal regimes where the emission in each direction occurs
at different wavelengths, each direction being associated
to a different longitudinal mode. In addition, the influ-
ence of the detuning and the width of the gain spectrum
have been thoroughly analyzed, and the onset of unidi-
rectional, mode-locked emission for large gain bandwidth
and relatively small detuning has been studied in detail.

APPENDIX A: DERIVATION OF THE MODEL

The wave equation for a electric field E(z, t) in a
medium can be written as

∂2E

∂z2
−

n2

c2

∂2E

∂t2
= µ

∂2P

∂t2
, (A1)

where P is the polarization of the medium, n is the re-
fraction index of the medium, c is the speed of light
in vacuum and µ is the magnetic permeability of the
medium [19, 27]. If we suppose that the field is quasi-
monochromatic and decomposed into forward (+) and
backward (-) propagation directions, E(z, t) takes the
form

E(z, t) = [E+(z, t)eiq0z + E−(z, t)e−iq0z]e−iω0t + c.c.,
(A2)

where c.c. denotes complex conjugate and E±(z, t) is
slowly varying both in space and time, as compared with
q−1
0 and ω−1

0 , respectively. In the same way we consider
quasi-resonant light-matter interaction in the RWA, then
the total polarization exhibits only a frequency compo-
nent ω0 and is decomposed into forward and backward
propagation directions, it reads as

P(z, t) = i{[P+(z, t)eiq0z + P−(z, t)e−iq0z]e−iω0t − c.c.}.
(A3)

Using these assumptions we can write the slowly varying
approximation (SVA) [19] for the wave equation (A1) as

±
∂E±

∂z
+

n

c

∂E±

∂t
= −

ω0cµ

2n
P±. (A4)

These equations are complemented with boundary con-
ditions [28] for the geometry considered, in this case a
ring, that can be written as

E+(0) = t+E+(L)eiq0L + r−E−(0),
E−(L)e−iq0L = t−E−(0) + r+E+(L)eiq0L,

(A5)

where L is the length of the ring and t± and r± denote the
transmissivity and reflectivity of the forward and back-
ward waves, which follows |t±|

2 + |r±|
2 = 1 − ε±, where

ε± are the losses at the point coupler.
The medium assumed is composed of N identical two

level atoms per unit volume, with a resonance frequency
ωA between the upper and the lower levels. As one can
find in the literature [19, 27] these features lead to a pair
of equations, one to describe the population difference
dynamics and another equation to describe the polariza-
tion dynamics.

It is known from early studies that the presence of
counter-propagating fields creates a spatial modulation
of the population inversion. This important property
follows from the iterative relationship between the di-
agonal and off-diagonal matrix elements of the density
matrix ρ̂ [29]. As a result only odd harmonics appear
in the expansion of P and only even harmonics appear
in the expansion of the population difference D. This
spatial modulation acts as a Bragg grating and creates
a coupling between the counter-propagating fields. In
order to get the dynamics of this grating explicitly we
decompose the population difference in different spatial
contributions as

D = D0 + D+2e
2iq0z + D−2e

−2iq0z + . . . (A6)

Such a decomposition yields an infinite hierarchy of equa-
tions that has to be truncated in order to keep the prob-
lem treatable. In systems with large diffusion, the trun-
cation can be justified due to the quadratically increas-
ing damping of the high-order terms [18, 20]; in other
cases, the intensity of the fields has to be low compared
to the saturation intensity of the medium [25]. Using the
decomposition of the fields and the polarization in their
propagation directions and the decomposition of the pop-
ulation difference in the spatial contributions we obtain
the equations to describe the medium,

∂P±

∂t
= −(iδ + γ⊥)P± −

µ̃2

~
(D0E± + D±2E∓), (A7)

∂D0

∂t
=

2

~
(E+P ∗

+ + E−P ∗
− + c.c.) + J − γ‖D0 + D∂2

zD0,

(A8)
and

∂D±2

∂t
=

2

~
(E±P ∗

∓ + E∗
∓P±) − (γ‖ + 4q2

0D)D±2. (A9)

Where δ is the detuning, which takes into account the
difference between the atomic transition frequency and
the emission frequency, i. e. δ = ωA − ω0, γ⊥ is the
polarization decay rate, µ̃ is the component of the dipole
operator along the direction of the field, ~ is the Planck’s
constant, γ‖ is the population inversion decay rate, J is
the pump parameter and D is the diffusion coefficient.

Eqs. (A4,A7-A9) are equivalent to eqs. (3.4) in [25]
with the only difference that we retained the slow spatial
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dependence of the fields while the good cavity limit was
invoked in [25] in order to work with time-dependent field
amplitudes only. In this way, our approach allows for
describing multi-mode dynamics that is beyond the scope
of [25].

For numerical purposes it is convenient to rewrite
eqs. (A4) and (A7)-(A9) in dimensionless form,

±
∂A±

∂s
+

∂A±

∂τ
= B± − αA± , (A10)

1

γ

∂B±

∂τ
= −(1 + iδ̃)B± + g(D0A± + D±2A∓)

+
√

βD0 ξ±(s, τ) , (A11)

1

ǫ

∂D0

∂τ
= J − D0 + ∆

∂2D0

∂s2

− (A+B∗
+ + A−B∗

− + c.c.), (A12)

1

η

∂D±2

∂τ
= −D±2 −

ǫ

η
(A±B∗

∓ + A∗
∓B±) , (A13)

where we have scaled the fields and polarizations as

A± =

√
4n

µω0c~γ‖L
E±, B± = −

√
µω0c

n~γ‖L
P± , (A14)

we have included in eq. (A10) a term modeling the inter-
nal losses α for the electric fields, we have defined new
dimensionless parameters

g = µω0cµ̃2L
2n~γ⊥

, γ = γ⊥nL
c , ǫ =

γ‖nL

c ,

η =
(γ‖+4q2

0D)nL

c , ∆ = D

γ‖L2 , δ̃ = δ
γ⊥

,
(A15)

and finally we have defined new coordinates

τ =
c

nL
t, s =

z

L
. (A16)

In this new reference frame, the general boundary condi-
tions for the fields in the laser read

A+(0) = t+A+(1)eiγω̃0 + r−A−(0),
A−(1)e−iγω̃0 = t−A−(0) + r+A+(1)eiγω̃0 ,

(A17)

Usually we shall take γω̃0 = 2πm where m =
0,±1,±2 . . . then eiγω̃0 = 1 without loss of generality.
It means that we take the carrier frequency ω0 as one of
the modes of the cavity.

We note that the effects of diffusion in (A12) are almost
negligible because the characteristic length scale of D0 is
1 (i.e. the cavity length), so that we can set ∆ = 0
in (A12). Instead, we should retain it in (A13) because
the characteristic length scale in this case is the emission
wavelength λ0 = 2πc/ω0.

Finally, spontaneous emission is modeled by including
Langevin noise terms ξ±(s, τ) [18]. They are taken to be
Gaussian white noise in space and time with zero mean
and correlations < ξ±(s, τ)ξ±(s′, τ ′) >= δ(τ−τ ′)δ(s−s′),
and their intensities are proportional to the population
density [30].

APPENDIX B: NUMERICAL ALGORITHM

The numerical algorithm used to perform the simula-
tion of the normalized system of equations (1-4) is based
in the one presented in [17]. This algorithm takes ad-
vantage of the fact that the equations for the fields can
be solved formally in terms of integrals of the polariza-
tions. We discretize time with time step h, hence the
spatial grid has also discretization step h. All spatial
points n = 1, ..., N are internal, with the first and last
points located at h/2 from the nearest end (see Fig. 27).
We denote by Xn

j the value of variable X at time t = nh
and gridpoint s = jh.

We use the mid-point discretization scheme for the
fields [17], so they are updated according to

An+1
+ j =

1 − q

1 + q
An

+ j−1 + p(Bn
+ j−1 + Bn+1

+ j ), (B1)

An+1
− j =

1 − q

1 + q
An

− j+1 + p(Bn
− j+1 + Bn+1

− j ), (B2)

where q = αh/2, p = (h/2)(1 + q)−1. For the polariza-
tions we have

Bn+1
± j = µBn

± j + νD
n+1/2
0 j (An+1

± j + An
± j) (B3)

+ νD
n+1/2
±2 j (An+1

∓ j + An
∓ j) +

√
βhD0 ξ±,

where µ = [1− (γh/2)(1 + iδ̃)][1 + (γh/2)(1 + iδ̃)]−1 and

ν = (ghγ/2)[1 + (γh/2)(1 + iδ̃)]−1, and where we have
used the approximation

∫ t+∆t

t

Dk(t)Al(t)dt ≃ ∆t Dk

(
t +

∆t

2

)
Al(t + ∆t) + Al(t)

2
.

(B4)
At this point we note that eq. (B3) needs the values

of the carriers (D0 and D±2) at intermediate time steps,
hence we use a temporal grid for the carrier densities
which is staggered by half a time step from the fields
and polarizations. This is different from the original al-
gorithm in [17], where the carriers are on the same tem-
poral grid than the fields and the polarizations and then
interpolation is used to evaluate the carriers at the in-
termediate times needed in (B1)-(B3). In our case, the
finite difference equations for carriers are thus

D
n+3/2
0 j = ρD

n+1/2
0 j + θJ (B5)

− θ(An+1
+ j B∗ n+1

+ j + An+1
− j B∗ n+1

− j + c.c.)

D
n+3/2
±2 j = ρD

n+1/2
±2 j , (B6)

− θ
(
An+1

± j B∗ n+1
∓ j + A∗ n+1

∓ j Bn+1
± j

)
.

where ρ =
(
1 + ǫh

2

) (
1 − ǫh

2

)−1
and θ = ǫh

(
1 − ǫh

2

)−1

Boundary Conditions

In order to impose the general boundary conditions
(5), we have to consider that the fields propagate during
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half a step, then experience partial reflection and trans-
mission and then they propagate for another half a step.
In addition, we recall the ring structure of our system
hence points j = 1 and j = N are connected through the
boundary conditions. This procedure for A+ and A− is
implemented as follows:
Step (1): We use an explicit Euler method to compute
the value of the fields just before arriving at boundary
by propagating the fields over half a step

A
n+1/2

+ N+1/2 − (1 − q)A n
+ N = h

2B n
+ N ,

A
n+1/2
− 1/2 − (1 − q)A n

− 1 = h
2 B n

− 1.
(B7)

FIG. 27: Schematic representation of spatial discretization
and the implementation of the boundary conditions for the
A+ electric field. In three steps: (1) Half step explicit Eu-
ler. (2) Boundary Conditions. (3) Half step implicit Euler.
The mesh is composed by N points and N intervals and two
auxiliar points at 0 and N + 1 added for the implementation.

Step (2): We apply the boundary conditions and com-
pute the fields just after the boundary, which are denoted

as Ã+ and Ã−

Ã
n+1/2

+ 1/2 = t+A
n+1/2

+ N+1/2 + r−A
n+1/2
− 1/2 ,

Ã
n+1/2
− N+1/2 = t−A

n+1/2
− 1/2 + r+A

n+1/2
+ N+1/2.

(B8)

Step (3): Finally we use the implicit Euler method for
the remaining half a step to calculate the value of the
fields at time n + 1

(1 + q)An+1
+ 1 − Ã

n+1/2
+ 1/2 = h

2 Bn+1
+ 1

(1 + q)An+1
− N − Ã

n+1/2
− N+1/2 = h

2 Bn+1
− N

. (B9)

Note that these procedure can be very efficiently imple-
mented by adding to the spatial grid two auxiliary points
j = 0 and j = N + 1 (see Fig. 27) located half a step
away from the facets where the fields and polarizations
are

A n
+ 0 = t+A n

+ N + r−A n
− 1

B n
+ 0 = t+B n

+ N + r−B n
− 1

A n
− N+1 = t−A n

− 1 + r+A n
+ N

B n
− N+1 = t−B n

− 1 + r+B n
+ N

(B10)

and updating the fields by means of the standard mid-
point integration

A n+1
+ 1 = 1−q

1+q A n
+ 0 + p(B n

+ 0 + B n+1
+ 1 ),

A n+1
− N = 1−q

1+q A n
− N+1 + p(B n

− N+1 + B n+1
− N ).

(B11)
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