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a b s t r a c t

From the estimation of the Hurst exponent and the multifractality degree we discriminate the security
levels of two typical encoding schemes usually applied in chaos-based communication systems. We also
analyze the effects that the sampling period and the message amplitude have on the goodness of these
techniques. We compare our results with those obtained by considering an information theory approach
[O.A. Rosso, R. Vicente, C.R. Mirasso, Phys. Lett. A 372 (2007) 1018]. The Hurst exponent seems to be a
sensitive and powerful tool for discriminating the presence of a message embedded in a chaotic carrier.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Chaotic optical communication is a hot topic nowadays [1–6]. It
tries to improve and complement software or quantum cryptogra-
phy, introducing a second level of security. The standard chaotic
optical communication system is based on a pair of synchronized
semiconductor lasers, in which a transmitter generates chaotic
optical carrier for embedding the transmitted message, and a recei-

ver laser duplicates the chaotic carrier and filters out the encoded
message. The transmitted message can be recovered after a
straightforward comparison of the received and the synchronized
signals. The main idea is to use the broad bandwidth (typically in
the 10–100 GHz range) and the high dimension of the optical chaos
to hide a small amplitude message. Argyris et al. have demon-
strated high-speed communication based on chaos synchroniza-
tion over 120 km of commercial fibre-optic channel in the
metropolitan area network of Athens, Greece. Transmission rates
in the gigabit per second range and bit-error rates as low as 10�7

were achieved [7]. It is clear that the bit-error rate is determined
by the synchronization condition, i.e., by the parameter matching
between both lasers. However, it was recently shown that the
quality of the recovered message also depends on the filtering
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characteristics of the receiver [3] and the amplitude of the embed-
ded message [8]. For an exhaustive review about synchronization
of chaotic oscillations in semiconductor lasers with optical
feedback and its application to secure communications see Refs.
[9–11].

Based on the semiconductor laser rate equations subject to low
to moderate optical feedback (Lang–Kobayashi model [12]) we
numerically analyze the performance of conventional encryption
schemes within the context of the chaos-based communication
systems. For that purpose we estimate the Hurst exponent and
multifractality degree of the numerical time series by using the
multifractal detrended fluctuation analysis introduced in the pio-
neering work of Castro e Silva and Moreira [13] and developed
more recently by Kantelhardt et al. [14]. This robust and powerful
technique identifies and, more importantly, quantifies the multiple
scaling exponent within a time series. It has been successfully ap-
plied in a variety of different scientific fields, like seismology [15],
cardiac dynamics [16], solar dynamics [17], laser propagation in
turbulent media [18], music [19], epileptic EEG time series [20],
air temperature fluctuations [21], traffic time series [22], color ser-
ies of paintings [23], financial markets [24], river flows [25] and
random multiplicative process [26], to study multifractality. Fur-
thermore, several descriptors derived from the multifractal theory
were introduced to characterize or distinguish system dynamics
[18,21,24,27–33]. Particularly, the two quantifiers mentioned
above, the Hurst exponent and the multifractality degree, have
been recently used to characterize the stage of market develop-
ment of world stock indices [34]. We extrapolate this idea and
use these indicators to measure the efficiency of the encryption
schemes.

The main goal of this work is to estimate the performance, in
terms of security, of two well-known encryption schemes: chaos
modulation (CM) and chaos shift keying (CSK). Although it would
be desirable to directly extract the message it is always important
to know in advance whether any information is hidden or not into
the chaotic carrier, especially in those cases where multiple chaotic
signals are being transmitted simultaneously. This initial test
would also prevent the extra effort required to extract the message
in case the latter is not present in the carrier. So, it should be
stressed that when we talk about encryption efficiency we are
referring to the ability of the scheme to hide the presence of the
message. In this sense, our work aims to provide an upper bound
for the message amplitude in terms of encryption purposes. With
this in mind, we tackle the same questions introduced by Rosso
et al. [35]: (i) which is the optimal sampling frequency that reveals
the presence of information masked in a chaotic signal? (ii) which
is the optimal message amplitude? and (iii) can we distinguish the
security degree of different encryption techniques?

The remainder of this paper is organized as follows. In Section 2
we describe the multifractal detrended fluctuation analysis re-
quired for a proper understanding of the methodology used to esti-
mate our two quantifiers, the Hurst exponent and multifractality
degree. In Section 3, the data used in this study are detailed. In Sec-
tion 4 we present and discuss the results, and, finally, in Section 5,
some concluding remarks are given.

2. Multifractal methodology

The standard partition function multifractal formalism (see
Chapter 6 of Ref. [36]) was developed for stationary time series.
Thus, it does not give correct results for non-stationary time series.
The wavelet transform modulus maxima (WTMM) method [37]
was introduced to analyze strongly non-stationary data.

More recently, Kantelhardt et al. [14] developed a method for
the multifractal characterization of non-stationary time series,

which is based on a generalization of the detrended fluctuation
analysis (DFA) [38]: the multifractal detrended fluctuation analysis
(MFDFA). It has been shown that for short series and negative mo-
ments, the significance of the results for the MFDFA is better than
for the WTMM method [14]. It has also been concluded that the
MFDFA should be recommended for a global detection of multi-
fractal behavior [39]. Moreover, the implementation of the MFDFA
does not involve more effort than the conventional DFA. It just re-
quires one additional step. Due to these reasons, we have chosen
the latter for a proper detection of the multifractality of the data
we aim to analyze.

The MFDFA can be summarized as follow [14]:

� Step 1. Starting with a time series (signal) fui; i ¼ 1; . . . ; Ng,
where N is the length of the series, the corresponding profile is
determined by

YðkÞ ¼
Xk

i¼1

ui � hui½ �; k ¼ 1; . . . ; N; ð1Þ

where h�i denotes the averaging over the whole time series.
� Step 2. The profile YðkÞ is divided into Ns � ½N=s� non-overlap-

ping windows of equal length s. Since the record length N does
not need to be a multiple of the considered time scale s, a short
part at the end of the profile will remain in most cases. In order
to take into account this part of the record, the same procedure
is repeated starting from the other end of the recorded series.
Thus, 2Ns windows are obtained.

� Step 3. The local trend for each window m ¼ 1; . . . ; 2Ns is evalu-
ated by least-square fit of the data. The detrended time series for
the window length s, denoted by YsðiÞ, is calculated as the differ-
ence between the original time series and the fits,

YsðiÞ ¼ Y m� 1ð Þsþ i½ � � pmðiÞ; ð2Þ

for m ¼ 1; . . . ; Ns, and

YsðiÞ ¼ Y N � m� Nsð Þsþ i½ � � pmðiÞ; ð3Þ

for m ¼ Ns þ 1; . . . ; 2Ns. Here, pmðiÞ is the fitting polynomial in the
mth window. Since the detrending of the time series is done by
subtraction of the fits from the profile, these methods differ in
their capability of eliminating trends in the data. In mth order
of MFDFA, trends of order m in the profile and m� 1 in the ori-
ginal record are eliminated. Thus, a comparison of the results for
different orders of MFDFA allows to estimate the polynomial
trend in the time series. Since we use a polynomial fit of order
3, we denote the algorithm as MFDFA-3.

� Step 4. For each of the 2Ns segments the second moment of the
detrended time series YsðiÞ is evaluated by averaging over all
data points i in the mth window

F2
s ðmÞ ¼

1
s

Xs

i¼1

YsðiÞð Þ2: ð4Þ

� Step 5. The qth order fluctuation function is obtained by averag-
ing over all segments

FqðsÞ ¼
1
Ns

XNs

m¼1

F2
s ðmÞ

h iq=2
( )1=q

; ð5Þ

starting from the beginning, and

FqðsÞ ¼
1
Ns

X2Ns

m¼Nsþ1

F2
s ðmÞ

h iq=2
( )1=q

; ð6Þ

starting from the end. The order q can take any real value. How-
ever, for q ¼ 0 the average procedure described by Eqs. (5) and
(6) cannot be applied because of the diverging exponent. In-
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stead, a logarithmic average procedure has to be employed [14].
For q ¼ 2, the standard DFA procedure is retrieved.

� Step 6. Finally, the scaling behavior of the fluctuation is deter-
mined by analyzing log–log plots of FqðsÞ versus s for each value
of q. If the series ui are long-range correlated FqðsÞ increases, for
large values of s, as a power-law

FqðsÞ � shðqÞ: ð7Þ

For monofractal time series with compact support, hðqÞ is inde-
pendent of q, since the scaling behavior of the variance F2

s ðmÞ is
identical for all segments m, and the averaging procedure will give
just this identical scaling behavior for all values of q. Only if small
and large fluctuations scale differently, there will be a significant
dependence of hðqÞ on q. If we consider positive values of q, the
segments m with large variance F2

s ðmÞ will dominate the average
FqðsÞ. Thus, for positive values of q, hðqÞ describes the scaling
behavior of the segments with large fluctuations. On the contrary,
for negative values of q, the segments m with small variance F2

s ðmÞ
will dominate the average FqðsÞ. Hence, for negative values of q,
hðqÞ describe the scaling behavior of the segments with small fluc-
tuations. Obviously, richer multifractality corresponds to higher
variability of hðqÞ. The multifractality degree is estimated from

Dh ¼ maxq½hðqÞ� �minq½hðqÞ�: ð8Þ

This value quantifies the complexity of the data [29,32]. The broad-
er this range, the richer the structure of the system under study. By
using this broadness measure we compare the structural richness of
the different available data sets. We guess that a chaotic carrier
with an embedded signal is structurally richer than the carrier alone
and, therefore, the multifractality degree is expected to be larger in
the former case. So, this quantifier should be able to detect the pres-
ence of a message and it can be used as an efficiency measure of
encryption schemes.

Another representative parameter of the multifractal analysis is
the well-known Hurst exponent H. It was originally introduced
within the Hurst’s rescaled range analysis (R=S analysis) [40] as a
measure of the correlation in time series. Mandelbrot and Van Ness
used this parameter, bounded to the range ð0; 1Þ, within the frac-
tional Brownian motion stochastic model [41]. These processes ex-
hibit memory for any Hurst exponent except H ¼ 1=2. In this case
successive Brownian motion increments are as likely to have the
same sign as the opposite, and thus there is no correlation. When
H > 1=2 the correlations of successive increments decay hyperbol-
ically, and this sub-family of processes have long-memory. Besides,
consecutive increments tend to have the same sign, these pro-
cesses are persistent. For H < 1=2, the correlations of the incre-
ments also decay but exponentially, and this sub-family presents
short-memory. Since consecutive increments are more likely to
have opposite signs, it is said that these are anti-persistent. For a
stationary time series such as the fractional Gaussian noise, the
profile defined in Eq. (1) will be a fractional Brownian motion.
Thus, 0 < hð2Þ < 1 for these processes, and hð2Þ is identical to the
Hurst exponent. On the other hand, if the original signal is a frac-
tional Brownian motion, the profile will be a sum of a fractional
Brownian motion, so hð2Þ > 1. In this case the relationship be-
tween the exponent hð2Þ and the Hurst exponent H is
H ¼ hð2Þ � 1. See Ref. [17] for further details. For these reasons
the exponent hðqÞ is usually known as the generalized Hurst
exponent.

One of us (A. Figliola) has recently shown that the MFDFA is ro-
bust for detecting multifractality in time series corrupted by addi-
tive white noise [42]. It was found that uncorrelated noise does not
affect the shape and location of the multifractal spectrum esti-
mated via the MFDFA. However, in the case of correlated or anti-

correlated noises this multifractal spectrum is narrower than the
spectrum without noise and it is centered in the Hurst exponent
value of the noise. It is clear that real-world data are naturally con-
taminated by uncorrelated noise. So, the MFDFA can be considered
reliable for the multifractal quantification of noisy real data.

It should be stressed that it is not intention of this work to relate
the physical system under analysis with a fractional Brownian mo-
tion stochastic model. Following the same line of reasoning re-
cently introduced by Chlouverakis and co-workers [43] we use
the Hurst exponent H as a numerical estimation tool for quantify-
ing the predictability of a time series. This parameter has also been
introduced by Lam et al. [44] to study the phase fluctuations dy-
namic of semiconductor lasers with optical feedback. It is found
that the Hurst exponent, estimated from experimental and numer-
ical time series, grows from 0.5 to about 0.7 as the feedback
strength is increased.

3. Data description

The chaotic carrier of the data under analysis correspond to
numerical integration of the Lang–Kobayashi equations [12]. These
widely used equations model a semiconductor laser subject to
coherent optical feedback. More precisely, we consider a laser in
the coherence collapse regime with moderate feedback values,
where the laser exhibits chaotic fluctuations [45]. The equations
for the complex slowly varying amplitude of the electric field
EðtÞ and the carrier number inside the cavity NðtÞ read

_EðtÞ ¼ 1þ ia
2

GðtÞ � 1
sp

� �
EðtÞ þ cEðt � sÞe�iU; ð9Þ

_NðtÞ ¼ I
e
� NðtÞ

sN
� GðtÞPðtÞ; ð10Þ

where GðtÞ ¼ gðNðtÞ � N0Þ=ð1þ sPðtÞÞ is the optical gain,
PðtÞ ¼j EðtÞj2, a ¼ 5 is the linewidth enhancement factor, sp ¼ 2ps
is the photon lifetime, sN ¼ 2 ns is the carrier lifetime, g ¼ 1:5�
10�8 ps�1 is the differential gain coefficient, N0 ¼ 1:5� 108 is the
carrier numbers at transparency, s ¼ 5� 10�7 is the gain compres-
sion coefficient, s ¼ 1 ns is the feedback delay time, c ¼ 20 ns�1 is
the feedback strength, U ¼ 0 is the optical feedback phase and e is
the electron charge. The pump current is fixed to I ¼ 1:5Ith with
Ith ¼ 14:7 mA the threshold current.

Different encryption schemes have been proposed to encode the
message within the chaotic carrier: amplitude chaos masking
(ACM), chaos modulation (CM) and chaos shift keying (CSK), with-
out being exhaustive1. In the first technique the message is directly
added to the carrier signal. In the second one the amplitude carrier is
weakly modulated by the message. Finally, in the CSK scheme the
message is introduced in the chaotic carrier by slightly perturbing
the injection current of the laser [48]. In all these methods, the inten-
sity of the message should be small enough in order to avoid detec-
tion in the time or frequency domains. In this work we focus our
comparative analysis on the CM and CSK encryption schemes; they
are widely used and easy to implement experimentally. Moreover,
they have been found to be more secure than ACM.

Time series representing the intensity of the laser output were
numerically integrated using a second-order Runge-Kutta method
with a time step of Dt ¼ 0:1 ps. We analyzed time series with
N ¼ 5 � 105 data points for three different sampling periods
Xs ¼ 1;10;100 ps and message amplitude ranging from A ¼ 0% to
20% of a given reference were considered. The hidden message fol-
lows a pseudo-random binary distribution in all cases and the
duration of a message bit was 1000 ps.

1 It should be stressed that alternatives in the message encryption have been
recently introduced [2,46,47].
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4. Results and discussion

We have estimated the scaling exponents hðqÞ via the MFDFA-3
procedure. Each time series was divided in non-overlapping sets of

5� 103 data points. Thus, we have 100 different realizations for
each configuration of scheme, sampling period and message ampli-
tude. In our analysis q runs from �20 to 20 with a step of 1 and the
window lengths, s, is between 10 and N=4 with a step of 4, where N
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Fig. 1. Generalized Hurst exponent, hðqÞ, as a function of the order q for sampling period Xs ¼ 1ps and different message amplitude percent (0%, 2%, 10%, and 20% from top to
bottom). Left and right columns correspond to the chaos shift keying (CSK) and chaos modulation (CM) encryption schemes, respectively.
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Fig. 2. Same as Fig. 1 for Xs ¼ 10 ps.
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is the length of the time series. A similar q-range was chosen for
the multifractal analysis of geoelectrical data [15], music frequency
series [19] and color series of paintings [23]. Moreover, the s-range
was selected according to the suggestions of Kantelhardt et al. [14].

Figs. 1–3 display the generalized Hurst exponents hðqÞ for sam-
pling periods Xs ¼ 1 ps, Xs ¼ 10 ps and Xs ¼ 100 ps, respectively.
The results obtained for the two encryption schemes and for the
different message amplitudes under analysis ca be compared. Only
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Fig. 3. Same as Fig. 1 for Xs ¼ 100 ps.
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Fig. 4. Hurst exponent, hð2Þ, and multifractality degree, Dh, boxplots for sampling period Xs ¼ 1 ps and different message amplitude percent. Left and right columns
correspond to the chaos shift keying (CSK) and chaos modulation (CM) encryption schemes, respectively.

L. Zunino et al. / Optics Communications 282 (2009) 4587–4594 4591



Author's personal copy

one realization, of the one hundred that we have considered, is
shown. Note that for sampling period Xs ¼ 1 ps (Fig. 1) the general-
ized Hurst exponent curves are very similar for the different con-
figurations of scheme and message amplitude. On the other

hand, for sampling periods Xs ¼ 10 ps and Xs ¼ 100 ps (Figs. 2
and 3, respectively) important differences can be seen. Moreover,
as the message amplitude increases, these differences also
increase.
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In order to visualize the results obtained for the different groups
of data, boxplots2 for our two quantifiers, the Hurst exponent and
the multifractality degree, are shown in Figs. 4–6. These figures cor-
respond to the three sampling periods Xs ¼ 1 ps, Xs ¼ 10 ps and
Xs ¼ 100 ps, respectively. Comparing the estimated values for our
two quantifiers we can analyze the effect that the different message
amplitudes have on both encryption schemes.

It is clear that the results obtained depend on the temporal res-
olution at which the signals are sampled. For Xs ¼ 1 ps (Fig. 4) our
two quantifiers yield very similar results for both encoding tech-
niques and for the different message amplitudes. So, under this cir-
cumstance, they are useless to detect and quantify the effect of a
message encoded within a chaotic carrier. The same result was re-
cently found by Rosso et al. [35]. We attribute this behavior to an
oversampling of the dynamics of the simulated time series. For
Xs ¼ 10 ps (Fig. 5) the Hurst exponent allows a clear discrimination
of the signals with message amplitudes of A ¼ 10% and A ¼ 20%

when compared to pure chaotic carriers (A ¼ 0%) for both encryp-
tion schemes. There is a systematic increment of this quantifier
while increasing the message amplitude. It is important to note
that this effect is more pronounced for the CSK encryption scheme.
The multifractality degree, on the other hand, does not vary appre-
ciably for this sampling period. Finally, for Xs ¼ 100 ps both quan-
tifiers increase as the message amplitude increases. However, in
this case, the Hurst exponent tendency is less noticeable. Again
we conclude that this discriminatory effect is stronger for the
CSK encoding technique.

It should be stressed that in the CSK case the Hurst exponent
shows a marked increment from an anti-persistent to a persistent
behavior. In the CM analysis, however, this parameter lies always
in the anti-persistent region. We guess that the larger message
amplitudes introduce important correlations in the system dy-
namic increasing its predictability.

In summary, we have found that the Hurst exponent is better to
discriminate the presence of an encoded message for a sampling
period of Xs ¼ 10 ps while the multifractality degree is more sen-
sitive for Xs ¼ 100 ps. With respect to the optimal message ampli-
tude we have found that for A ¼ 2% both multifractal quantifiers
are unable to recognize the presence of a hidden message within
the chaotic carrier. This value gives an estimation for the maxi-
mum amplitude for which the message cannot be detected. Finally,
it is confirmed that the performance of the CM as encryption tech-
nique is better than the CSK.

5. Conclusions

We have shown that the multifractal indicators are powerful
tools for quantifying the efficiency of encryption schemes. Under
some circumstances, the proposed measures are useful approaches
to distinguish the presence of a hidden message within a chaotic
carrier. Particularly, the Hurst exponent seems to be a powerful
tool for detecting and quantifying the presence of this hidden mes-
sage. It allows a very clear discrimination of the signals with mes-
sage amplitudes of the order of 5–10% or larger when compared to
pure chaotic carriers (A=0%). From the multifractal approach we
have shown that the chaos modulation encoding technique is bet-
ter that the chaos shift keying. For the same amplitude, messages
encoded with the former technique are more difficult to detect.

These are relevant conclusions for secure optical communications
based on chaos encryption.

The multifractal approch appears to be a more suitable and ver-
satile way of assessing the security efficiency of encryption
schemes for chaotic optical communication. Further research will
be carried out to analyze the quality of other proposed encryption
techniques such as OOPSK (On/Off Phase Shift Keying), where the
feedback phase of the laser that generates the chaotic carrier is
modulated [51]. Also the influence of the injection current, the
length of the external cavity and the message modulation bit rate
on the encryption performance will be analyzed. Finally, chaotic
optical communication data experimentally obtained will be ana-
lyzed in the future with the tools introduced in this work in order
to confirm our numerical results under real-world situations.

Acknowledgements

The authors would like to thank an anonymous reviewer for his
helpful comments. Luciano Zunino, Alejandra Figliola and Osvaldo
A. Rosso were supported by Consejo Nacional de Investigaciones
Cientı́ficas y Técnicas (CONICET), Argentina. The work of Miguel
C. Soriano was supported by MEC (Spain) under a ‘‘Juan de la Cier-
va” contract. Darío G. Pérez was supported by Comisión Nacional
de Investigación Científica y Tecnológica (CONICYT, FONDECYT
Project No. 11060512), Chile, and partially by Pontificia Universi-
dad Católica de Valparaíso (PUCV, Project No. 123.788/2007), Chile.
Part of this work was supported by MEC (Spain) and Feder under
Projects TEC-2006-28105-E and FIS2007-60327 (FISICOS), and by
the EC Project PICASSO, IST-2005-34551. Osvaldo A. Rosso grate-
fully acknowledges support from Australian Research Council
(ARC) Centre of Excellence in Bioinformatics, Australia.

References

[1] Y. Wang, G. Zhang, A. Wang, Opt. Commun. 277 (2007) 156.
[2] A. Bogris, K.E. Chlouverakis, A. Argyris, D. Syvridis, Opt. Lett. 32 (2007) 2134.
[3] Y. Li, Y. Wang, A. Wang, Opt. Commun. 281 (2008) 2656.
[4] V. Tronciu, I. Ermakov, P. Colet, C.R. Mirasso, Opt. Commun. 281 (2008) 4747.
[5] E. Rueda, C.A. Vera, B. Rodríguez, R. Torroba, Opt. Commun. 281 (2008) 5750.
[6] G.-Q. Xia, Z.-M. Wu, J.-F. Liao, Opt. Commun. 282 (2009) 1009.
[7] A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcfa-

Ojalvo, C.R. Mirasso, L. Pesquera, K.A. Shore, Nature 438 (2005) 343.
[8] M.C. Soriano, P. Colet, C.R. Mirasso, IEEE Photon. Technol. Lett. 21 (2009) 426.
[9] S. Donati, C.R. Mirasso (Eds.), Feature section on optical chaos and applications

to cryptography, IEEE J. Quantum Electron. 38 (2002) 1138.
[10] L. Larger, J.P. Goedgebuer (Eds.), Cryptography using optical chaos, C.R. Phys. 5

(2004) 609.
[11] A. Uchida, F. Rogister, J. García-Ojalvo, R. Roy, Prog. Optics 48 (2005) 203.
[12] R. Lang, K. Kobayashi, IEEE J. Quantum Electron. 16 (1980) 347.
[13] A. Castro e Silva, J.G. Moreira, Physica A 235 (1997) 327.
[14] J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H.E.

Stanley, Physica A 316 (2002) 87.
[15] L. Telesca, G. Colangelo, V. Lapenna, M. Macchiato, Phys. Lett. A 332 (2004)

398.
[16] N.K. Vitanov, E.D. Yankulova, Chaos, Solitons Fract. 28 (2006) 768.
[17] M.S. Movahed, G.R. Jafari, F. Ghasemi, S. Rahvar, M. Reza Rahimi Tabar, J. Stat.

Mech. (2006) P02003.
[18] R. Barille, P. LaPenna, Appl. Opt. 45 (2006) 3331.
[19] G.R. Jafari, P. Pedram, L. Hedayatifar, J. Stat. Mech. (2007) P04012.
[20] A. Figliola, E. Serrano, O.A. Rosso, Eur. Phys. J. Special Topics 143 (2007) 117.
[21] G. Lin, Z. Fu, Physica A 387 (2008) 573.
[22] P. Shang, Y. Lu, S. Kamae, Chaos, Solitons Fract. 36 (2008) 82.
[23] P. Pedram, G.R. Jafari, Int. J. Mod. Phys. C 19 (2008) 855.
[24] S. Kumar, N. Deo, Physica A 388 (2009) 1593.
[25] Q. Zhang, C.-Y. Xu, Z. Yu, C.-L. Liu, Y.D. Chen, Physica A 388 (2009) 927.
[26] L.B.M. Silva, M.V.D. Vermelho, M.L. Lyra, G.M. Viswanathan, Chaos, Solitons

Fract. 41 (2009) 2806.
[27] J. Wang, X. Ning, Y. Chen, Physica A 323 (2003) 561.
[28] A. Federico, G.H. Kaufmann, Appl. Opt. 46 (2007) 1979.
[29] A.K. Sen, Solar Phys. 241 (2007) 67.
[30] G. Wang, H. Huang, H. Xie, Z. Wang, X. Hu, Med. Eng. Phys. 29 (2007) 375.
[31] X. Yang, X. Ning, J. Wang, Physica A 384 (2007) 413.
[32] A.K. Sen, G. Litak, T. Kaminski, M. Wendeker, Chaos 18 (2008) 033115.
[33] C. Rodrigues Neto, Z.O. Guimarães-Filho, I.L. Caldas, I.C. Nascimento, Y.K.

Kuznetsov, Phys. Plasmas 15 (2008) 082311.

2 This is a simple and powerful tool of graphically depicting groups of numerical
data without making any assumptions of the underlying statistical distribution
[49,50]. Boxplots illustrate lower and upper lines at the lower quartile (25th
percentile of the sample) and upper quartile (75th percentile of the sample),
respectively, while the line in the middle of the box is the sample median. The
whiskers are lines extending from each end of the box indicating the extent of the rest
of the sample.

L. Zunino et al. / Optics Communications 282 (2009) 4587–4594 4593



Author's personal copy

[34] L. Zunino, B.M. Tabak, A. Figliola, D.G. Pérez, M. Garavaglia, O.A. Rosso, Physica
A 387 (2008) 6558.

[35] O.A. Rosso, R. Vicente, C.R. Mirasso, Phys. Lett. A 372 (2007) 1018.
[36] J. Feder, Fractals, Plenum Press, New York, 1988.
[37] J.F. Muzy, E. Bacry, A. Arneodo, Phys. Rev. Lett. 67 (1991) 3515.
[38] C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Goldberger,

Phys. Rev. E 49 (1994) 1685.
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