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Introduction

Physicists have been using statistical concepts to describe Nature even before the
foundations of Statistical Mechanics were laid out in the late XIX century. Nowa-
days, Statistical Mechanics is a well developed theory that has been able to relate
the macroscopic properties of matter and radiation with their microscopic behavior.
This has been most successful in systems at thermal equilibrium where a formal
program, that of equilibrium ensembles, can be fully worked out, although in many
cases mathematical complexity prevents from finding the actual solution to a given
problem.

Very often, when studying systems which are composed by many particles or
which interact with the surroundings in an uncontrolled way, a detailed description
of the system is not possible. We need then a stochastic formulation of the pro-
cess. In many cases, even though the microscopic variables evolve in an irregular
and unpredictable way, there exists a level of description in which some macroscopic
variables follow simple laws. The rest, eliminated, variables, however, make them-
selves present through fluctuations over the macroscopic behavior. Most often, these
fluctuations are negligible and can be ignored. However in some other cases they
are important and even dominant in the macroscopic range.

A classical example is the Brownian motion. A heavy particle is immersed in a
fluid of light molecules which collide with it in a random fashion. As a consequence,
the particle undergoes an erratic movement. It is not possible to describe the (de-
terministic) motion of all the molecules of the system, however if we focus on the
position of the Brownian particle and assign probabilities to its possible displace-
ments after a given time step (during which it suffered many collisions), we are able
to derive the probability distribution of the position of the particle in time and from
it, the statistical properties of the motion. .This approach can be applied to many
situations, especially in systems out of equilibrium where other approaches fail and
master equations (differential equations for the evolution in time of the probability)
play a prominent role, but are usually very hard to solve.

In this dissertation we review the basic mathematical formalism to describe
stochastic processes, and we introduce master equations and some methods of so-
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lution. In the second part, we present and analyze a novel method to approximate
the solution of a master equation. We apply it to several processes of interest in the
literature and compare it with the other presented methods.
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Stochastic processes

Let us start with some mathematical definitions.

A probability space is defined by a triple (Ω, F, P), consisting on a space of
elementary events Ω, a σ-algebra of events F in Ω and a measure P defined on F
such that P(Ω) = 1 (P is called the probability).

A random variable X is an application from the space of elementary events to
the real numbers. If the random variable has a continuous one dimensional range
(we will assume that in what follows), the probability that X takes a value between
x and x + dx is given by P (x)dx, where P is a real-valued function such that
P (x) > 0 and

∫

dxP (x) = 1.
P (x) is called the probability density at x.

A stochastic process or random function (Y ) is an application from a set (usu-
ally the reals or the integers, interpreted as time) and a random variable to the reals.
So if X is a random variable, we have:

YX(t) = f(X, t) (2.1)

When X takes one of its possible values (x), the stochastic process (Y ) takes
another, according to:

Yx(t) = f(x, t)

If X is distributed following PX(x), we can compute the moments of Y :

〈YX(t)〉 =

∫

dxPX(x)Yx(t)

〈YX(t1)YX(t2) . . . YX(tn)〉 =

∫

dxPX(x)Yx(t1)Yx(t2) . . . Yx(tn)

The probability density for YX(t) to take the value y at a time t is:

P (YX(t) = y) ≡ P1(y, t) =

∫

dxPX(x)δ(Yx(t) − y)
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And the joint probability density that Y takes the value y1 at t1, y2 at t2,..., yn at
tn:

P (YX(t1) = y1; YX(t2) = y2; . . . ; YX(tn) = yn) ≡ Pn(y1, t1; y2, t2; . . . ; yn, tn)
=
∫

dxPX(x)δ(Yx(t2) − y2) . . . δ(Yx(tn) − yn)

Now we can compute the moments as:

〈Y (t)〉 =

∫

dyyP1(y, t)

〈Y (t1)Y (t2) . . . Y (tn)〉 =

∫

dy1dy2 . . . dyny1y2 . . . ynPn(y1, t1; y2, t2; . . . ; yn, tn)

In general, any hierarchy of functions Pn which obey:
1. Pn > 0
2. Pn is invariant under the change (yi, ti) and (yj, tj)
3.
∫

Pn(y1, t1; . . . ; yn−1, tn−1; yn, tn)dyn = Pn−1(y1, t1; . . . ; yn−1, tn−1)
4.
∫

P1(y, t)dy = 1
completely determines a stochastic process Y (t) as defined in (2.1).

In this way, the hierarchy of distribution functions constitutes an alternative
definition of a stochastic process. Usually the stochastic variable X with corresponds
to a given hierarchy is rather abstract and of little interest in physical applications,
and the characterization of the process via the hierarchy of distribution functions is
the more common one.

2.1 Markovian processes

The conditional probability densities are defined as:

Pl|n−l(y1; t1; . . . ; yl, tl|yl+1, tl+1; . . . ; yn, tn) =
Pn(y1; t1; . . . ; yl, tl; yl+1, tl+1; . . . ; yn, tn)

Pn−l(yl+1, tl+1; . . . ; yn, tn)

Pl|n−l(y1; t1; . . . ; yl, tl|yl+1, tl+1; . . . ; yn, tn) represents the probability density that Y
takes the values y1 at t1,...,yl at tl given that it takes the values yl+1 at tl+1,...,yn at
tn.

A Markov process is a stochastic process with the property:

P1|n−1(yn, tn|y1, t1; . . . ; yn−1, tn−1) = P1|1(yn, tn|yn−1, tn−1) (2.2)

for any set of n successive times (t1 < t2 < · · · < tn). A Markov process is fully
determined by the functions P1(y, t) and P1|1(y2, t2|y1, t1). We can recover the whole
hierarchy of probability densities form these two functions:

Pn(y1, t1; . . . ; yn, tn) = P1(y1, t1)P1|1(y2, t2|y1, t1)P1|1(y3, t3|y2, t2) . . . P1|1(yn, tn|yn−1, tn−1)
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(for t1 < t2 < · · · < tn).

When the transition probabilities depend on time differences alone, the process
is said to be homogeneous.

Now, the function P1|1(y1, t1|y2, t1) is not arbitrary since:

P3(y1, t1; y2, t2; y3, t3) = P2|1(y2, t2; y3, t3|y1, t1)P1(y1, t1)
= P1|1(y3, t3|y2, t2)P1|1(y2, t2|y1, t1)P1(y1, t1)

dividing the right hand sides by P1(y1, t1) and integrating over y2, we obtain:

P1|1(y3, t3|y1, t1) =

∫

dy2P1|1(y3, t3|y2, t2)P1|1(y2, t2|y1, t1) (2.3)

This is called the Chapman-Kolmogorov equation and is an identity obeyed by all
Markov processes (when t1 < t2 < t3).
Any two nonnegative functions P1 and P1|1 that follow the Chapman-Kolmogorov
equation and the consistency condition:

P1(y2, t2) =

∫

dy1P1|1(y2, t2|y1, t1)P1(y1, t1)

define uniquely a Markov process.

2.2 The master equation

The Chapman-Kolmogorov equation is a functional relation that is not easy to
handle in practice. A more convenient form of it and closer to physical concepts,
is the master equation, which is a differential form of the Chapman-Kolmogorov
equation.

To obtain it, we have to ascertain how P1|1 behaves for small time differences
(from now on we write P for P1|1). We have:

P (x, t + ∆t|y, t) = W (x|y, t)∆t +
(

1 −
∫

dvW (v|y, t)∆t
)

δ(x − y) + O(∆t2) (2.4)

That is, W (x|y, t) is the probability density per unit of time for the system to go
from y to x at time t (the second term represents the probability that the system
stays at y during ∆t).
Now, using the Chapman-Kolmogorov equation, we can write:

P (x, t + ∆t|z, t′) =
∫

dyP (x, t + ∆t|y, t)P (y, t|z, t′)
=
∫

dy
[

W (x|y, t)∆t +
(

1 −
∫

dvW (v|y, t)∆t
)

δ(x − y) + O(∆t2)
]

P (y, t|z, t′)
= P (x, t|z, t′) +

∫

dy
[

W (x|y, t)P (y, t|z, t′) − W (y|x, t)P (x, t|z, t′)
]

∆t + O(∆t2)

Subtracting P (x, t|z, t′), dividing by ∆t and taking the limit ∆t → 0, we obtain:

∂P (x, t|z, t′)
∂t

=

∫

dy
[

W (x|y, t)P (y, t|z, t′) − W (y|x, t)P (x, t|z, t′)
]

(2.5)
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This is usually written in a simplified form:

∂P (x, t)

∂t
=

∫

dy
[

W (x|y, t)P (y, t)− W (y|x, t)P (x, t)
]

(2.6)

The meaning of (2.6) is that the solution of this equation with P (x, t′) = δ(x − z)
gives the transition probability of the Markov process (P1|1(x, t|z, t′)) for all t > t′

and for any choice of z and t′. It is not meant as an equation for the single time
distribution.
However, if we know the initial state of the system, that is, P1(x, t0) = δ(x − x0),
then we have P1(x, t) =

∫

dyP1|1(x, t|y, t0)P1(y, t0) = P1|1(x, t|x0, t0) and then, the
solution of (2.6) with initial condition P (x, t0) = δ(x − x0) gives the single time
distribution P1(x, t) for all t > t0.

If the process has a discrete set of possible states, labeled by n, the master
equation reduces to:

∂P (n, t)

∂t
=
∑

n′

[

Wn,n′(t)P (n′, t) − Wn′,n(t)P (n, t)
]

(2.7)

If the process is homogeneous the explicit dependence of t in Wn,n′(t) disappears.

2.3 Methods of solution

In the case of a discrete set of states, the master equation is a system of several (usu-
ally infinite) coupled first order differential equations, and solving it is often a hard
task. There are some methods to approach this problem (usually approximated)
and we discuss some of them in the following.

2.3.1 Generating function

The probability generating function (G(s, t)) is defined by:

G(s, t) =
∑

n

snP (n, t) (2.8)

Clearly, G(1, t) = 1, G(0, t) = P (0, t). Moreover, we can obtain the moments of n
knowing the derivatives of G(s, t) at s = 1, for example:

〈n(t)〉 =
∂G(s, t)

∂s

∣

∣

∣

∣

s=1

, 〈n2(t)〉 =
∂2G(s, t)

∂s2

∣

∣

∣

∣

s=1

+
∂G(s, t)

∂s

∣

∣

∣

∣

s=1

Starting with the master equation we can obtain a partial differential equation
for the generating function that, in some cases, can be solved. Once we have the
expression of G(s, t), expanding it in powers of s we get the probabilities.
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Let’s apply this technique to the following example.
We consider a population of individuals. Each individual has a probability per unit
of time d of dying and there is a probability per unit of time b for a new individual
to enter in the population (we consider it independent of the number of individuals
for simplicity). This is known as the birth and death process. Its master equation
is given by:

∂P (n, t)

∂t
= d(n + 1)P (n + 1, t) + bP (n − 1, t) − (dn + b)P (n, t) (2.9)

This is equivalent to (2.7) setting Wn,n′(t) = dn′δn′,n+1 + bδn′,n−1.
Multiplying both sides of (2.9) by sn and summing over all values of n, we get:

∂G(s, t)

∂t
= d(1 − s)

∂G

∂s
+ b(s − 1)G(s, t) (2.10)

This partial differential equation can be solved by the Lagrange method, and its
solution with initial condition G(s, 0) = sN (which comes from P (n, 0) = δn,N) is:

G(s, t) = e
b
d
(s−1)(1−e−dt)

(

se−dt + 1 − e−dt
)N

Expanding G(s, t) in powers of s we get the probabilities P (n, t).It’s expression
is rather complicated in the time-dependent case, but gets much simplified in the
stationary (t → ∞) case, when we have:

G(s, t → ∞) = e
b
d
(s−1)

P (n, t → ∞) =
e−b/d

n!

[

b
d

]n
(2.11)

a Poisson distribution with parameter b
d
.

As we have seen, using the generating function we transform a set of coupled
first order differential equations into a single partial differential equation. However,
in many cases (when Wn,n′ are nonlinear functions of n′) the equation obtained is a
high order partial differential equation with nonconstant coefficients and its general
solution is not known. In this cases approximated methods are needed.

2.3.2 Van Kampen’s expansion

In many cases the master equation depends on a large parameter, Ω, (usually the
system size or volume) and the evolution of the system becomes deterministic as
this parameter goes to infinity. In this cases a systematic expansion of the master
equation in powers of Ω−1/2 is possible.

The expansion is based on the existence of two different scales. On one hand
the macroscopic properties of the system are functions of the intensive variable x/Ω,



10 Chapter 2.

so that we expect that the probability for a transition to take place depends on this
variable i. e. as Ω varies the probability remains the same function of x/Ω. On the
other hand, the size of the transition jumps are function of the extensive variable x.
Formally, it is assumed that we can write the transition probabilities as:

WΩ(x|y) = f(Ω)
[

Φ0(
y
Ω
, x − y) + Ω−1Φ1(

y
Ω
, x − y) + Ω−2Φ2 + ...

]

(2.12)

For concreteness, we are going to consider a master equation with discrete states of
the form:

∂P (n, t)

∂t
=

∞
∑

k=−∞

(Ek − 1)

[

Gk(n)

Ωgk−1
P (n, t)

]

(2.13)

where Gk is a polynomial in n of degree gk and E is a linear operator such that
E
[

f(n)
]

= f(n + 1). Note that the transition probabilities follow the assumption
(2.12). In most of the cases one meets in practice the master equation can be written
in this general form.

Next, the following ansatz is formulated:

n = Ωφ(t) + Ω1/2ξ (2.14)

with φ, ξ ∼ O(Ω0). This means that the stochastic variable n has a macroscopic
component of order Ω and a fluctuating part of order Ω1/2. This ansatz is the
essential step of the expansion and is justified because we will find that P (n, t),
when expressed in ξ, does not depend on Ω to first approximation.
Now we proceed performing the time-dependent change of variables from n to ξ in
the master equation (2.13) and expanding in powers of Ω. We obtain:

∂Π(ξ, t)

∂t
= Ω1/2 dφ

dt

∂Π

∂ξ
+

∞
∑

k=−∞

(

kΩ−1/2 ∂

∂ξ
+

k2

2
Ω−1 ∂2

∂ξ2
+ ...

)(

Gk(Ωφ + Ω1/2ξ)

Ωgk−1
Π

)

(2.15)
where Π(ξ, t) = P (Ωφ(t) + Ω1/2ξ, t).
The terms of order Ω1/2 vanish if we choose φ(t) to satisfy:

dφ

dt
= −

∞
∑

k=−∞

kagk
φgk (2.16)

This is the macroscopic equation. Next, the terms of order Ω0 give:

∂Π

∂t
=

∂

∂ξ

[(

∞
∑

k=−∞

kgkagk
φgk−1

)

ξΠ

]

+
1

2

∂2

∂ξ2

[(

∞
∑

k=−∞

k2agk
φgk

)

Π

]

(2.17)

This is a linear Fokker-Planck equation whose coefficients depend on t through φ(t).
Its solution is a Gaussian distribution and therefore is fully determined by the first
two moments, which follow:

d〈ξ〉
dt

= −
∞
∑

k=−∞

kgkagk
φgk−1〈ξ〉 (2.18)
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d〈ξ2〉
dt

=
∞
∑

k=−∞

(

−2kgkagk
φgk−1〈ξ2〉 + k2agk

φgk
)

(2.19)

The equations for 〈ξ(t)〉 and〈ξ2(t)〉 are linear and uncoupled, so they can be solved
analytically, provided that we can solve the macroscopic equation for φ(t) which in
general is nonlinear.
If higher order terms are included in (2.17) the Gaussian character is lost. However,
these corrections are of order Ω−1/2 and can be neglected in a first approximation.

We propose another (maybe simpler) way to obtain the equations for 〈ξ(t)〉and
〈ξ2(t)〉 that consists on writing the exact equations for 〈n(t)〉 and 〈n2(t)〉 from (2.13),
change variables to ξ and expand in powers of Ω. If we consider a change of variables
of the form n = Ωaφ(t)+Ωbξ, the only values for a and b consistent with φ, ξ ∼ O(Ω0)
are a = 1, b = 1

2
, as expected.

2.3.3 Gillespie method

An exact (in the sense of not biased) numerical algorithm for simulating realizations
of an homogeneous Markovian process was proposed by Gillespie [5].
The method is based on the fact that the rate at which the several possible individual
transitions happen is fixed as long as the state of the system does not change.

If there are k possible transitions and wi is the rate at which the transition
i takes place, the time at which this transition will actually happen is distributed
according to: P (ti = t) = wie

−wit. The time (τ) at which the first transition takes
place is the minimun of those times and is, then, distributed according to:

P (τ = t) =

k
∑

i=1

P (ti = t)
∏

j 6=i

P (tj ≥ t) =

k
∑

i=1

wie
−wite

P

j 6=i −wjt = wtote
−wtott

with wtot =
∑k

i=1 wi.
We have used the fact that the individual transitions are independent, and neglected
the probability of several simultaneous transitions.
In the case of the birth and death process commented in a previous section, there
are two possible transitions:
(1) Birth of and individual at a rate b, (2) death of an individual at a rate nd (n
being the number of alive individuals).
Once we know when the first transition will take place, we need to know which
transition will it be. The probability for each transition is proportional to its rate
wi.

The Gillespie algorithm, then, works as follows:
1. Compute the transition rates, ωi, (which depend on the state of the system) and
the total rate, wtot =

∑k
i=1 wi.



12 Chapter 2.

2. Obtain the time, τ , at which a transition takes place, from a random num-
ber distributed following P (τ = t) = wtote

−wtott. This can be calculated from
τ = − 1

wtot
log(u), with u a random number uniformly distributed between 0 and

1
3. Establish which transition takes place, each of them having a probability propor-
tional to it’s rate.
4. Update the state of the system according to the transition chosen, and the time
adding the value τ .
Go back to 1.

We can go from 4 to 1 because the exponential distribution obeys:

P (t = τ |t > τ0) = P (t = τ − τ0)

so after a given transition the probability for any other transition to take place is
again exponentially distributed with time origin in the current time.

To obtain mean values of arbitrary functions we can perform M different real-
izations of the process via this method and average the corresponding results. The
error in the averages obtained in this way decays as M−1/2, so when high accuracy
is needed the method can be slow.



3

The Gaussian approximation

We propose an approximated method to obtain the average and variance of a stochas-
tic process that follows a master equation. The method is based on ideas coming
form van Kampen’s expansion approach (the fact that the probability distribution
is Gaussian at first order), but it is not completely equivalent to it. We analyze the
error introduced and compare with van Kampen’s method.

3.1 Formulation

We consider a general master equation of the form:

∂P (n, t)

∂t
=

∞
∑

k=−∞

(Ek − 1)

[

Gk(n)

Ωgk−1
P (n, t)

]

(3.1)

where Gk is a polynomial in n of degree gk, E is a linear operator such that E(f(n)) =
f(n + 1) and Ω is a large parameter of the system (typically the system size).
Equations of this form appear on the description of chemical reactions, ecological
systems and opinion dynamics among other examples.
From (3.1), after some algebra, we can get the exact equations for the moments,

defined as 〈nm〉 =

∞
∑

n=−∞

nmP (n, t):

d〈nm〉
dt

=

∞
∑

k=−∞

1

Ωgk−1
〈[(n − k)m − nm]Gk(n)〉 (3.2)

Particular cases are:

d〈n〉
dt

=
∞
∑

k=−∞

(−k)

Ωgk−1
〈Gk(n)〉 (3.3)

d〈n2〉
dt

=

∞
∑

k=−∞

1

Ωgk−1
〈(k2 − 2kn)Gk(n)

〉

(3.4)

13
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If Gk(n) is not linear (degree greater than 1) for some k, then the equation for
each moment depends on higher order ones, so we get an infinite system of coupled
differential equations.
The approximation proposed here consists on assuming that the distribution P (n, t)
is Gaussian so all the moments can be expressed as a function of the first two and
in this way we can get a closed system of equations for 〈n(t)〉 and 〈n2(t)〉. This
assumption is not arbitrary because, as we saw in the previous chapter, the van
Kampen’s expansion [1] method shows that, for a master equation of this form, the
probability distribution is Gaussian except for corrections of order Ω−1/2.
In the approximation proposed we have:

d〈n〉
dt

=
∞
∑

k=−∞

(−k)

Ωgk−1
〈Gk(n)〉G (3.5)

d〈n2〉
dt

=

∞
∑

k=−∞

1

Ωgk−1
〈(k2 − 2kn)Gk(n)

〉

G
(3.6)

where 〈nk〉G denotes the expression of 〈nk〉 as a function of 〈n〉 and 〈n2〉 that holds
for Gaussian probability distributions:

〈nk〉G = 〈(n + 〈n〉)k〉G =

k
∑

m=0

(

k

m

)

〈nk−m〉G〈n〉m

and

〈nk−m〉G=

{

(k − m − 1)!!〈n2〉(k−m)/2 = (k − m − 1)!!(〈n2〉 − 〈n〉2)(k−m)/2 if k − m even
0 if k − m odd

with (m′)!! ≡ m′(m′ − 2)(m′ − 4)....

So we have:

〈n2k〉G =

k
∑

m=0

(

2k

2m

)

〈n〉2m(2k − 2m − 1)!!

k−m
∑

l=0

(

k − m

l

)

〈n2〉k−m−l〈n〉2l(−1)l (3.7)

〈n2k+1〉G =

k
∑

m=0

(

2k + 1

2m + 1

)

〈n〉2m+1(2k − 2m − 1)!!

k−m
∑

l=0

(

k − m

l

)

〈n2〉k−m−l〈n〉2l(−1)l

The expression of the firsts Gaussian moments are shown in table 3.1.

The Gaussian approximation for obtaining the first moments from a master
equation of the form (3.1) proceeds as follows:
1. Compute the exact evolution equations for 〈n(t)〉 and 〈n2(t)〉, (3.3) (3.4).
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2. Whenever a higher order moment appears, substitute it with its Gaussian ap-
proximation (table 3.1)
3. Solve the system of two coupled first order differential equations.

Moment Gaussian approximation
〈n3〉 〈n3〉G = 3〈n2〉〈n〉 − 2〈n〉3
〈n4〉 〈n4〉G = 3〈n2〉2 − 2〈n〉4
〈n5〉 〈n5〉G = 15〈n2〉2〈n〉 − 20〈n2〉〈n〉3 + 6〈n〉5
〈n6〉 〈n6〉G = 15〈n2〉3 − 30〈n2〉〈n〉4 + 45〈n〉6

Table 3.1: Gaussian moments

This approach is easily generalizable to master equations with several variables.
In the case of two variables, and with a master equation of the following form:

∂P (n1, n2, t)

∂t
=

∞
∑

k=−∞

∞
∑

l=−∞

(Ek
1El

2 − 1)

[

Gk,l(n1, n2)

Ωgk,l−1
P (n1, n2, t)

]

(3.8)

The equations of evolution for the moments are:

d〈ni〉
dt

=

∞
∑

k1=−∞

∞
∑

k2=−∞

(−ki)

Ωgk1,k2
−1 〈Gk1,k2

(n1, n2)〉G (3.9)

d〈n2
i 〉

dt
=

∞
∑

k1=−∞

∞
∑

k2=−∞

1

Ωgk1,k2
−1 〈(k2

i − 2kini)Gk1,k2
(n1, n2)

〉

G
(3.10)

d〈n1n2〉
dt

=

∞
∑

k1=−∞

∞
∑

k2=−∞

1

Ωgk1,k2
−1 〈(k1k2 − k2n1 − k1n2)Gk1,k2

(n1, n2)〉G(3.11)

(i=1,2)

In this case we assume that the joint distribution P (n1, n2) is Gaussian, so all
higher moments can be expressed as a function of 〈ni〉, 〈n2

i 〉, 〈n1n2〉. We can compute
the successive values using Wick’s theorem. In table (3.2) we write the expression
of the firsts terms.

Moment Gaussian approximation
〈n2

1n2〉 〈n2
1〉〈n2〉 + 2〈n1〉〈n1n2〉 − 2〈n1〉2〈n2〉

〈n2
1n

2
2〉 〈n2

1〉〈n2
2〉 + 2〈n1n2〉2 − 2〈n1〉2〈n2〉2

〈n3
1n2〉 3〈n2

1〉〈n1n2〉 − 2〈n1〉3〈n2〉
〈n3

1n
2
2〉

6〈n1n2〉2〈n1〉 + 6〈n1〉3〈n2〉2 + 6〈n1n2〉〈n2〉(〈n1〉2 − 2〈n1〉2
−6〈n2

1〉〈n2〉2〈n1〉 + 3〈n2
1〉〈n2

2〉〈n1〉 − 2〈n1〉3〈n2
2〉

Table 3.2: Gaussian moments with 2 variables
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3.2 Error of the method

Using the ansatz employed in van Kampen’s expansion: n = Ωφ + Ω
1

2 ξ, we can
write:

〈n〉2(m+l)〈n2〉k−m−l

Ω2k−1
= Ωφ2k + Ω1/2φ2k−12k〈ξ〉 + Ω0φ2k−2(2k2 − 2k + m + l)〈ξ〉2

+(k − m − l)〈ξ2〉 + O(Ω−1/2)
= f1(k, m) + lf2(k, m) + O(Ω−1/2)

Inserting this into (3.7) and taking into account that:
k−m
∑

l=0

(

k − m

l

)

(−1)l = (1 − 1)k−m = δk,m

k−m
∑

l=0

(

k − m

l

)

l(−1)l = −∂b((a − b)k−m)|a=b=1 = −δk−1,m

we get

〈n2k〉G
Ω2k−1

=
k
∑

m=0

(

2k

2m

)

(2k − 2m)!![(Ωφ2k + Ω1/2φ2k−12k〈ξ〉 + φ2k−2(2k2 − k)〈ξ〉2)δk,m

−〈ξ〉2δk−1,m + 〈ξ2〉δk−1,m] + O(Ω−1/2)

= Ωφ2k + Ω1/2φ2k−12k〈ξ〉 +
(

2k
2

)

〈ξ2〉 + O(Ω−1/2) =
〈n2k〉
Ω2k−1

+ O(Ω−1/2)

Similar calculation can be performed for odd exponent, and we finally have
the general result:

〈nk〉G
Ωk−1

=
〈nk〉
Ωk−1

+ O(Ω−1/2) (3.12)

From (3.12) we see that the error we introduce in the equations for the moments
when performing the Gaussian approximation (3.5 and 3.6) is of order O(Ω−1/2) for
〈n〉 and O(Ω1/2) for 〈n2〉. So we have:

d〈n〉
dt

= f1(〈n〉, 〈n2〉) + O(Ω−1/2) (3.13)

d〈n2〉
dt

= f2(〈n〉, 〈n2〉) + O(Ω1/2) (3.14)

d〈n〉G
dt

= f1(〈n〉G, 〈n2〉G) (3.15)

d〈n2〉G
dt

= f2(〈n〉G, 〈n2〉G) (3.16)

where f1(2) is the right hand side of equation 3.5(3.6), and 〈n〉G, 〈n2〉G denotes the
value of the moments obtained performing the Gaussian approximation.
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Defining the errors as:
〈n〉 = 〈n〉G + ǫn, 〈n2〉 = 〈n2〉G + ǫn2

And using equations (3.13)-(3.16) we get:

dǫn

dt
=

∂

∂〈n〉f1(〈n〉G, 〈n2〉G)ǫn +
∂

∂〈n2〉f1(〈n〉G, 〈n2〉G)ǫn2 + (Ω−1/2) (3.17)

dǫn2

dt
=

∂

∂〈n〉f2(〈n〉G, 〈n2〉G)ǫn +
∂

∂〈n2〉f2(〈n〉G, 〈n2〉G)ǫn2 + (Ω1/2) (3.18)

In this equations we can neglect higher order terms if ǫn ∼ O(Ωa),ǫn2 ∼ O(Ωb) with
a < 1, b < 2, since ∂〈n〉 ∼ O(Ω−1), ∂〈n2〉 ∼ O(Ω−2). Taking into account that
f1 ∼ O(Ω), f2 ∼ O(Ω2), we have:

dǫn

dt
= O(Ω0)ǫn + O(Ω−1)ǫn2 + O(Ω−1/2) (3.19)

dǫn2

dt
= O(Ω)ǫn + O(Ω0)ǫn2 + O(Ω1/2) (3.20)

If we set ǫn ∼ O(Ωa), ǫn2 ∼ O(Ωb), equations (3.19), (3.20) imply b = a + 1 > 1/2.
If the initial conditions are known, initially ǫn = ǫn2 = 0 and this equations make
ǫn ∼ O(Ω−1/2), ǫn2 ∼ O(Ω1/2). This scaling is then respected by equations (3.19),
(3.20).

In conclusion, when performing the Gaussian approximation we get 〈n〉 +
O(Ω−1/2), 〈n2〉 + O(Ω1/2), σ2 + O(Ω1/2).
In first order van Kampen’s expansion we obtain 〈ξ〉+O(Ω−1/2) and 〈ξ2〉+O(Ω−1/2),
and from them 〈n〉+O(Ω0), 〈n2〉+O(Ω1/2), σ2 +O(Ω1/2). So the error in the Gaus-
sian approximation is of smaller order than the error in first order van Kampen’s
expansion, as we see in table (3.3).

Error in 〈n〉 Error in σ2

1st order van Kampen’s expansion O(Ω0) O(Ω1/2)

Gaussian approximation O(Ω−1/2) O(Ω1/2)

Table 3.3: Order of the methods
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4

Reaction-limited process A + B → 0

In this and the following chapters we will compare the Gaussian approximation pre-
sented here with the first order van Kampen’s expansion in some specific examples.

Chemical reactions are suitable processes for a stochastic description. The
stochastic approach is specially necessary when the number of molecules considered
is small, because in this case fluctuations can be very important.
We start with the reaction A + B → 0 (reaction limited process). The master
equation describing this process is:

∂P (n, t)

∂t
=

κ

Ω

[

(n + 1)(∆ + n + 1)P (n + 1, t) − n(n + ∆)P (n, t)
]

(4.1)

Where n is the number of particles of specie A, ∆ = Ωδ is the difference of the
number of particles of type A and B (conserved in the process), κ is the rate at
which the reaction is produced and Ω is the volume of the system.
Note that this equation can be written in the form (3.1) setting Gk(n) = δk,1n(n+∆).
In this case Gk(n) depends explicitly on Ω (G1(n) = n(n+Ωδ)) so this has to be taken
into account when performing van Kampen’s expansion, and expressions (2.18),
(2.19) are not directly applicable. However this fact does not affect the Gaussian
approximation, expressions (3.5) and (3.6) are directly applicable and the error

introduced is again of order Ω−1/2 because 〈n3

Ω2
+

Ωn2

Ω2
〉 = 〈n3

Ω2
+

Ωn2

Ω2
〉G +O(Ω−1/2),

as we see from (3.12).
This master equation can be solved exactly using the generating function technique,
so we will compare the results obtained from the Gaussian approximation an the
first order van Kampen’s expansion with the exact results.
The exact solution is given by:

P (n, t) =
M
∑

k=n

Ck(∆, M)Bn,k(∆)e−k(k+∆)κt/Ω (4.2)

with Ck(∆, M) = (−1)k 2k + ∆

k + ∆

(k + 1)∆

∆!

(M − k + 1)k

(M + ∆ + 1)k
, Bn,k(∆) =

(−k)n(k + ∆)n

n!(∆ + 1)n
.
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M is the initial number of A particles and (a)n is the Pochhammer’s symbol: (a)n =
Γ(a + n)

Γ(a)
, or (a)n = a(a + 1)...(a + n − 1)

Details of the calculation in this and in a more general case are given in appendix1.

From (4.1) we can get the exact expression for the first two moments:

〈n(t)〉 =

M
∑

k=1

(2k + ∆)
(M − k + 1)k

(M + ∆ + 1)k
e−k(k+∆)κt/Ω (4.3)

〈n2(t)〉 =
M
∑

k=1

(2k + ∆)(k2 + (k − 1)∆)
(M − k + 1)k

(M + ∆ + 1)k

e−k(k+∆)κt/Ω (4.4)

Using the Gaussian approximation, the evolution equations for the moments
are:

d〈n〉
dt

= −κ

Ω
(〈n2〉 + ∆〈n〉) (4.5)

d〈n2〉
dt

=
κ

Ω
(4〈n〉3 − 6〈n2〉〈n〉 + (1 − 2∆)〈n2〉 + ∆〈n〉) (4.6)

And the first order van Kampen’s expansion gives:

d〈φ〉
dt

= −κφ(φ + δ) → φ(t) =
δφ0

δeδκt + φ0(eδκt − 1)
(4.7)

d〈n〉
dt

= κΩφ2 − κ(δ + 2φ)〈n〉 → 〈n(t)〉 = δ
δeδκt〈n〉0 + φ2

0Ω(eδκt − 1)

(φ0 − eδκt(δ + φ0))2
(4.8)

d〈n2〉
dt

= −2κ(2φ + δ)〈n2〉 − 2κΩφ(φ + δ)〈n〉 + 2κΩ2φ2(2φ + δ) + κΩφ(φ + δ)

→ 〈n2(t)〉 = δ
Ωe3δκtφ0(δ + φ0)

3 + Ω2δφ4 − Ω(1 + 2δΩ)eδκtφ3
0(δ + φ0)

[φ0 − eδκt(δ + φ0)]4

+
δ2e2δκt[δ2〈n2〉0 − Ωδ2φ0 − 3Ωδφ2

0 − 2Ωφ3
0 + 2Ω2δφ3

0 + Ω2φ4
0]

[φ0 − eδκt(δ + φ0)]4

−δ2e2δκt2Ωκφ0(δ + φ0)[(〈n〉0 − Ωφ0)δ
2 + δφ0 + φ2

0]t

[φ0 − eδκt(δ + φ0)]4
(4.9)

In the next figures we compare the exact results with those obtained from the
Gaussian approximation (computed by numerical integration of equations 4.5, 4.6)
and van Kampen’s expansion (equations 4.8, 4.9).

The figures show that the Gaussian approximation reproduces better the exact
results for the mean value, an also slightly better for the fluctuations. Increasing Ω
(the system size) leads to smaller differences between the approximations and the
exact results, as expected. A systematic study of the dependence of the error with
Ω is left for the next example.
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Figure 4.1. 〈n(t)〉/Ω for δ = 1, κ = 1, M = 100 and Ω = 10.
Gaussian approximation (green) is almost indistinguishable from the exact result (red).
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Figure 4.2. Normalized fluctuation σ2/Ω for δ = 1, κ = 1, M = 100 and Ω = 10.
Gaussian approximation (green) is again closer to the exact result (red) than van Kampen’s
expansion (blue).
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5

Autocatalitic reaction

A → X, 2X → B

The master equation describing this process is:

∂P (n, t)

∂t
= ΩφAk(P (n−1, t)−P (n, t))+

k′

Ω
[(n+2)(n+1)P (n+2, t)−n(n−1)P (n, t)]

(5.1)
This equation can be written in the form (3.1) setting Gl(n) = δl,−1kφA +δl,2k

′n(n−
1).
The general solution for this equation is not known, but the stationary solution

(P st(n), obtained setting
∂P (n, t)

∂t
= 0) can be obtained using the generating func-

tion technique and reads:

P st(n) =
(knAΩ/k′)n/2In−1(2

√

knAΩ/k′)

n!
√

2I1(2
√

2knAΩ/k′)
(5.2)

where In denotes a modified Bessel function. Details are given in appendix 2.

The exact equations for the first moments are:

d〈n〉
dt

= ΩkφA + 2k′ 〈n〉
Ω

− 2k′ 〈n2〉
Ω

(5.3)

d〈n2〉
dt

= ΩkφA(2〈n〉 + 1) − k′

Ω
(4〈n3〉 − 8〈n2〉 + 4〈n〉) (5.4)

Performing the Gaussian approximation, we get:

d〈n(t)〉
dt

= ΩkφA + 2k′ 〈n〉
Ω

− 2k′ 〈n2〉
Ω

(5.5)

d〈n2(t)〉
dt

= ΩkφA(2〈n〉 + 1) − k′

Ω
(12〈n2〉〈n〉 − 8〈n〉3 − 8〈n2〉 + 4〈n〉) (5.6)
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While first order van Kampen’s expansion approach leads to:

dφ

dt
= kφA − 2k′φ2 → φ(t) =

e2t(φ0 + 1) + φ0 − 1

e2t(φ0 + 1) + 1 − φ0
(5.7)

d〈n〉
dt

= Ω(kφA + 2k′φ2) − 4k′φ〈n〉

→ 〈n(t)〉 =
2[〈n〉0 − Ωφ0 + Ωφ0 cosh(2t)] + (1 + φ2

0)Ω sinh(2t)

2[cosh(t) + φ0 sinh(t)]2
(5.8)

d〈n2〉
dt

= −8k′φ〈n2〉 + Ω(2kφA + 4k′φ2)〈n〉 + Ω(kφA + 4k′φ2)

→ 〈n2(t)〉 =
e−4tΩ(φ0 − 1)4(4Ω − 3) + e4tΩ(1 + φ0)

4(3 + 4Ω) + 64〈n2〉0 − 8Ω2 + 8Ωt

64[cosh(t) + φ0 sinh(t)]4

+
8e−2tΩ(φ0 − 1)2(φ0 − 1 − 4〈n〉0 + 4Ωφ0) − 8e2tΩ(1 + φ0)

2(−1 − 4〈n〉0 + 4Ωφ0)

64[cosh(t) + φ0 sinh(t)]4

+
8Ωφ0(−7 − 16〈n〉0 + φ0(φ0 + 100 − 2t + φ2

0(t − Ω) − e2tφ0(1 + φ0)
2))

64[cosh(t) + φ0 sinh(t)]4
(5.9)

(The expressions given for φ(t), 〈n(t)〉 and 〈n2(t)〉 correspond to the case
kφA = 1, k′ = 1/2).

To compare the two approximations in the time-dependent case, we simulate
the process using the Gillespie method. The Gillespie method allows us to obtain
single realizations of the process, so to obtain the evolution of the moments we
average over many (over one million) realizations.
In the next figures we show the results obtained with the Gaussian approximation
(computed by numerical integration of equations 5.5, 5.6), van Kampen’s expansion
(equations 5.8, 5.9) and the Gillespie method, and the exact stationary solution
obtained from (5.2), for different system sizes and initial conditions.

We see that the Gaussian approximation fits better the evolution of the mean
value, but the variance is better approximated by the first order van Kampen’s
expansion. Again, the difference between the methods decreases as the system size
is increased.
In figure (5.5) we show the error in 〈n〉 and 〈n2〉 in the stationary state for the
two approximations as a function of system size Ω. We see that the error in 〈n〉
decays as Ω−1 for the Gaussian approximation whereas the other errors scale as Ω0,
consistently with the analysis of the approximations performed.
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Figure 5.1. 〈n(t)〉/Ω for kφA = 1, k′ = 1/2, n0 = 0, Ω = 10, 100.
Gaussian approximation (green) is almost indistinguishable from Gillespie method (red) and
exact result in the stationary case (pink) for Ω = 100, whereas van Kampen’s expansion
result (dotted blue) is clearly different. For Ω = 10 Gaussian approximation (black) is again
closer to the Gillespie method (light blue) and exact stationary result (dashed orange) than
van Kampen’s expansion method (dashed black, independent of Ω) which is significantly far
from the exact result.
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Figure 5.2. σ2(t)/Ω for kφA = 1, k′ = 1/2, n0 = 0, Ω = 10, 100.
For Ω = 100, van Kampen’s expansion (dotted blue) reproduces slightly better the exact
stationary value (pink) and Gillespie results (red) than Gaussian approximation (green). For
Ω = 10 van Kampen’s expansion (independent of Ω) is significantly closer to Gillespie result
(light blue) and exact stationary value (dashed black) than Gaussian approximation (black).
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Figure 5.3. 〈n(t)〉/Ω for kφA = 1, k′ = 1/2, n0 = 1.05Ω, Ω = 10, 100.
Gaussian approximation (green) is almost indistinguishable from Gillespie method (red) and
exact result in the stationary case (black) for Ω = 100, whereas van Kampen’s expansion
result (dotted blue) is clearly different. For Ω = 10 Gaussian approximation (light blue) is
again closer to the Gillespie method (pink) and exact stationary value (dashed black) than
van Kampen’s expansion method (dotted blue, independent of Ω) which is significantly far
from the exact result.
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Figure 5.4. σ2(t)/Ω for kφA = 1, k′ = 1/2, n0 = 1.05Ω, Ω = 10, 100.
For Ω = 100, van Kampen’s expansion (dotted blue) reproduces better the exact stationary
value (black) than Gaussian approximation (green). For Ω = 10 van Kampen’s expansion
(independent of Ω) is significantly closer to the exact stationary value (dashed black) than
Gaussian approximation (light blue).
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Figure 5.5. Error in 〈n〉 and σ2 in the stationary case as a function of Ω for kφA = 1,
k′ = 1/2.
For the Gaussian approximation, the error in 〈n〉 (red crosses) decays as Ω−1 while the error
in σ2 (blue stars) is constant with Ω. For van Kampen’s expansion, both the error in 〈n〉
and in σ2 are constant with Ω.
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6

Opinion formation

In the last few years there has been a growing interest in the application of methods
and techniques coming from statistical physics to the study of complex phenomena in
fields traditionally farm from physics research such as biology, medicine, information
technology or social systems. In particular the application of the physical approach
to social phenomena has been discussed in several reviews [6].
In a recent paper [7] the opinion formation is modeled as follows:
We consider two parties, A and B, and an “intermediate“ group of undecided agents
I. The supporters of A and B do not interact among them, but only through their
interaction with the group I, convincing one of its members with a given probability.
In addition there is a nonzero probability of a spontaneous change of opinion from
I to the other two parties and viceversa.
More specifically, if NA(B) is the number of supporters of party A(B), NI is the
number of undecided agents and N is the total number of individuals, the possible
transitions are:

spontaneous change A → I, occurring with a rate α1NA

spontaneous change I → A, occurring with a rate α2NI

spontaneous change B → I, occurring with a rate α3NB

spontaneous change I → B, occurring with a rate α4NI

convincing rule A + I → 2A, occurring with a rate β1

N
NANI

convincing rule B + I → 2B, occurring with a rate β2

N
NBNI

As the total number of individuals (N = NA + NB + NI) is fixed, there are
only two independent variables (we choose NA and NB so NI = N −NA −NB) and
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the master equation of the process is:

∂

∂t
P (NA, NB, t) = α1(NA + 1)P (NA + 1, NB, t) + α3(NB + 1)P (NA, NB + 1, t)

+α2(N − NA − NB + 1)P (NA − 1, NB, t) + α4(N − NA − NB + 1)P (NA, NB − 1, t)

+(N − NA − NB + 1)

[

β1

N
(NA − 1)P (NA − 1, NB, t) +

β2

N
(NB − 1)P (NA, NB − 1, t)

]

−
[

α1NA + α3NB + (α2 + α4)(N − NA − NB) + β1NA+β2NB

N
(N − NA − NB)

]

P (NA, NB, t)
(6.1)

In this case N plays the role of the large parameter Ω. Again, we note
that this master equation can be written in the general form (3.8) by setting
G1,0 = α1NA , G0,1 = α3NB , G−1,0 = (N − NA − NB)(α2 + β1

N
NA) and G0,−1 =

(N − NA − NB)(α4 + β2

N
NB).

There is not a known exact solution for this master equation so approximate meth-
ods to deal with it are needed.

The exact equations for the firsts moments are:

d〈NA(t)〉
dt

= −(α1 + α2 − β1)〈NA〉 + α2(N − 〈NB〉) −
β1

N
〈N2

A〉 −
β1

N
〈NANB〉 (6.2)

d〈NB(t)〉
dt

= −(α3 + α4 − β2)〈NB〉 + α4(N − 〈NA〉) −
β2

N
〈N2

B〉 −
β2

N
〈NANB〉 (6.3)

d〈N2
A(t)〉
dt

= (α1 + α2(2N − 1) + β1)〈NA〉 + α2(N − 〈NB〉) − 2(α1 + α2 − β1 +
β1

2N
)〈N2

A〉

−(2α2 +
β1

N
)〈NANB〉 −

2β1

N
〈N3

A〉 −
2β1

N
〈N2

ANB〉 (6.4)

d〈N2
B(t)〉
dt

= (α3 + α4(2N − 1) + β2)〈NB〉 + α4(N − 〈NA〉) − 2(α3 + α4 − β2 +
β2

2N
)〈N2

B〉

−(2α4 +
β2

N
)〈NANB〉 −

2β2

N
〈N3

B〉 −
2β2

N
〈NAN2

B〉 (6.5)

d〈NA(t)NB(t)〉
dt

= −(α1 + α2 + α3 + α4 − β1 − β2)〈NANB〉 + α2(N〈NB〉 − 〈N2
B〉)

+α4(N〈NA〉 − 〈N2
A〉) −

β1 + β2

N
(〈N2

ANB〉 + 〈NAN2
B〉) (6.6)

Performing the Gaussian approximation leads to:

d〈NA(t)〉
dt

= −(α1 + α2 − β1)〈NA〉 + α2N − α2〈NB〉 −
β1

N
〈N2

A〉 −
β1

N
〈NANB〉 (6.7)

d〈NB(t)〉
dt

= −(α3 + α4 − β2)〈NB〉 + α4N − α4〈NA〉 −
β2

N
〈N2

B〉 −
β2

N
〈NANB〉 (6.8)
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d〈N2
A(t)〉
dt

= (α1 + α2(2N − 1) + β1)〈NA〉 + α2(N − 〈NB〉) − 2(α1 + α2 − β1 + β1

2N
)〈N2

A〉
−(2α2 + β1

N
)〈NANB〉 − 2β1

N
(3〈NA〉〈N2

A〉 − 2〈NA〉3)
−2β1

N
(〈N2

A〉〈NB〉 + 2〈NA〉〈NANB〉 − 2〈NA〉2〈NB〉)
d〈N2

B(t)〉
dt

= (α3 + α4(2N − 1) + β1)〈NB〉 + α4(N − 〈NA〉) − 2(α3 + α4 − β2 + β2

2N
)〈N2

B〉
−(2α4 + β2

N
)〈NANB〉 − 2β2

N
(3〈NB〉〈N2

B〉 − 2〈NB〉3)
−2β2

N
(〈N2

B〉〈NA〉 + 2〈NB〉〈NANB〉 − 2〈NB〉2〈NA〉)
d〈NA(t)NB(t)〉

dt
= −(α1 + α2 + α3 + α4 − β1 − β2)〈NANB〉 + α2(N〈NB〉 − 〈N2

B〉)
+α4(N〈NA〉 − 〈N2

A〉) − β1+β2

N
(〈N2

ANB〉 + 〈NAN2
B〉)

In van Kampen’s expansion method, we define φA(B), ξA(B) such that

NA(B) = NφA(B) + N1/2ξA(B) (6.9)

The equations for the macroscopic components are ( [7]):

dφA

dt
= −α1φA + [α2 + β1φA](1 − φA − φB) (6.10)

dφB

dt
= −α3φB + [α4 + β2φB](1 − φA − φB) (6.11)

And for the fluctuations:

d〈ξA〉
dt

= −[α1 + α2 + β1(2φA + φB) − β1]〈ξA〉 − (α2 + β1φA)〈ξB〉 (6.12)

d〈ξB〉
dt

= −[α3 + α4 + β2(2φB + φA) − β2]〈ξB〉 − (α4 + β2φB)〈ξA〉 (6.13)

d〈ξ2
A〉

dt
= −2α1〈ξ2

A〉 − 2(α2 + β1φA)(〈ξ2
A〉 + 〈ξAξB〉) + 2β1〈ξ2

A〉(1 − φA − φB)

+α1φA + (α2 + β1φA)(1 − φA − φB) (6.14)

d〈ξ2
B〉

dt
= −2α3〈ξ2

B〉 − 2(α4 + β2φB)(〈ξ2
B〉 + 〈ξAξB〉) + 2β2〈ξ2

B〉(1 − φA − φB)

+α3φB + (α4 + β2φB)(1 − φA − φB) (6.15)

d〈ξAξB〉
dt

= −(α1 + α3)〈ξAξB〉 − (α2 + β1φA)(〈ξAξB〉 + 〈ξ2
B〉) − (α4 + β2φB)(〈ξAξB〉 + 〈ξ2

A〉)
+(1 − φA − φB)(β1 + β2)〈ξAξB〉 (6.16)

From those we can recover the expression in the original variables through
(6.9).
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Figure 6.1. 〈NA(t)〉/Ω for NA,0 = 0, NB,0 = Ω, Ω = 10, 100 and αi = βi = 1.
Gaussian approximation (green and light blue) follows precisely the Gillespie result whereas
van Kampen’s expansion (doted blue, independent of Ω) differs clearly, specially for Ω = 10.

In the next figures we compare the results coming from both approximations
(obtained by numerical integration of the previous equations) and from simulations
of the process performed with the Gillespie algorithm, for different sistem sizes and
some representative values of the parameters and initial conditions.

Again, the Gaussian approximation reproduces better the values for the av-
erage whereas in this case both methods are very similar for the fluctuations and
correlation.
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Figure 6.2. σ2

A(t)/Ω for NA,0 = 0, NB,0 = Ω, Ω = 10, 100 and αi = βi = 1.
Gaussian approximation results (green and light blue) are almost independent of system
size and very close to van Kampen’s expansion results (dotted blue). Both are close to the
Gillespie results for Ω = 100, but differ clearly from those for Ω = 10.
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Figure 6.3. σ2

AB(t)/Ω for NA,0 = 0, NB,0 = Ω, Ω = 10, 100 and αi = βi = 1.
Again Gaussian approximation is very close to van Kampen’s expansion and both methods
fail for small Ω.
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7

Conclusions

In summary, we have proposed a method to obtain the average and variance of a
stochastic process that follows a master equation.

The method is based on assuming that the probability distribution is Gaussian
and using this knowledge to express higher order moments as a function of the two
firsts in the exact equations for these. Although this hypothesis is derived in van
Kampen’s approach, our method is not fully equivalent to it.

We have shown that, for a general class of master equations, the Gaussian
approximation leads to an error in the mean value that scales as one over the square
root of the system size and an error in the variance that scales as the square root of
the system size. In this respect is better than first order van Kampen’s expansion
(error in mean value ∼ O(Ω0), error in σ2 ∼ O(Ω1/2)). Besides that, another
advantage of the method is its simplicity and easy implementation.

In all the examples where we have applied the method it performs better than
first order van Kampen’s expansion for the mean value. For the variance it results
better in the reaction-limited process, worse in the autocatalitic reaction and almost
equal for the opinion formation model.

Taking into account it’s simplicity, we believe that this method can be used
as an alternative to van Kampen’s expansion when there is no intention of going
further than first order.
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8

Appendix1: Reaction-limited

process

8.1 Introduction

Consider the general process A+B
κ
−→
←−
ω

C, limited by reaction. This means that

any two particles A and B have the same probability of reaction. Denoting by A(t)
and B(t), respectively, the number of particles of the A and B substances, the rate
for the A + B −→ C reaction is κ

Ω
A(t)B(t). For the reverse reaction, it is assumed

that C has a constant concentration, and hence the rate is ωΩ. In these expressions
Ω is proportional to the total volume accessible to particles. Since B(t)−A(t) ≡ ∆
is a constant, one only needs to consider one variable, for example, the number
of A particles at time t. Let us denote by Pn(t) the probability that there are n
A-particles at time t. The master equation describing the process is obtained from:

Pn(t + dt) = Pn+1(t)
κ
Ω
(n + 1)(∆ + n + 1)dt+

Pn−1(t)ωΩdt + Pn(t)[1 − k
Ω
n(∆ + n)dt][1 − ωΩdt]

(8.1)

or

dPn(t)

dt
=

κ

Ω
[(n + 1)(∆ + n + 1)Pn+1(t) − n(n + ∆)Pn(t)] + ωΩ[Pn−1(t) − Pn(t)]

(8.2)
which is the basis of the subsequent analysis.

By defining the moments 〈n(t)k〉 =
∑

n nkPn(t), it is simple to arrive at:

d〈n(t)〉
dt

= −κ

Ω

(

〈n(t)2〉 + ∆〈n(t)〉
)

+ ωΩ (8.3)

The typical mean-field assumption neglects fluctuations and approximates 〈n(t)2〉 ≈
〈n(t)〉2. By defining the density of particles ρ(t) =

〈n(t)〉
Ω

one obtains

dρ(t)

dt
= −κρ(t)(ρ(t) + δ) + ω (8.4)
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with δ = ∆/Ω. The solution of this differential equation with the initial condition
ρ(t = 0) = ρ0 is:

ρ(t) =
ρ1 − ρ2ρ̃e−λt

1 − ρ̃e−λt
(8.5)

with ρ1,2 = − δ
2
±
√

δ2

4
+ ω

κ
, ρ̃ = ρ0−ρ1

ρ0−ρ2
and λ = κ

√

δ2 + 4ω/κ. As t → ∞ the

concentration of A particles tends to the equilibrium value ρ1 exponentially:

ρ(t) − ρ1 ≈ (ρ1 − ρ2)ρ̃e−λt (8.6)

An exception to this exponential decay occurs in the irreversible, ω = 0, and sym-
metric, δ = 0, case. In this case, ρ1 = ρ2 = λ = 0 and the solution can be obtained as
the suitable limit of Eq.(8.5) or, more easily, starting from Eq.(8.4) with δ = ω = 0:

ρ(t) =
ρ0

1 + ρ0κt
(8.7)

i.e. a potential t−1 decay towards equilibrium.

This mean-field treatment neglects fluctuations. The purpose of these notes
is to find the exact solution of the master equation (8.2) and to obtain the correct
asymptotic time dependence for the average number of particles 〈n(t)〉 and the
fluctuations 〈n(t)2〉 − 〈n(t)〉2.

8.2 Solution of the master equation

Without loss of generality, let us rescale t → κt/Ω and ω → ωΩ2/κ to get the
simpler equation:

dPn(t)

dt
= (n + 1)(∆ + n + 1)Pn+1(t) − n(n + ∆)Pn(t) + ω[Pn−1(t) − Pn(t)] (8.8)

Furthermore, only the case ∆ ≥ 0 needs to be considered. If ∆ < 0 the change
m = n − ∆ leaves invariant the previous equation provided that we make the iden-
tification Pn(t) → Pn+∆(t). This means that the solutions in both cases are related
by Pn(t; ∆) = Pn−∆(t;−∆).

Introducing the generating function

f(s, t) =
∞
∑

n=0

Pn(t)sn, (8.9)

one arrives at the partial differential equation:

∂f

∂t
= (1 − s)

[

s
∂2f

∂s2
+ (1 + ∆)

∂f

∂s
− ωf

]

(8.10)

It is possible to obtain the general solution of this equation in the irreversible
case ω = 0. This solution will be presented later. We first discuss the equilibrium
solution in the general case.
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8.2.1 The equilibrium solution

By setting ∂f
∂t

= 0 one gets the differential equation:

s
∂2f

∂s2
+ (1 + ∆)

∂f

∂s
− ωf = 0 (8.11)

The solution around the singular regular point s = 0 can be found by the Frobenius
method as a power series

∑∞
n=0 ansn+ν. The regular solution satisfying the boundary

condition f(s = 1) = 1 is1:

f(s) =
s−∆/2I∆ (2

√
ωs)

I∆ (2
√

ωs)
(8.12)

and the equilibrium probabilities are:

Pn =
ωn+∆/2

I∆ (2
√

ω)n!(n + ∆)!
(8.13)

from where the first two moments can be computed as:

〈n〉 =
I∆+1 (2

√
ω)

I∆ (2
√

ω)

√
ω (8.14)

〈n2〉 = ω − I∆+1 (2
√

ω)

I∆ (2
√

ω)
∆
√

ω (8.15)

8.2.2 The time-dependent solution

We now study how the system relaxes towards equilibrium. We will restrict
ourselves to the irreversible case ω = 0. This corresponds to the process A+B → 0,
inert. This is the case considered in the main text. The partial differential equation
(8.10) can be solved by the technique of separation of variables by trying solutions of
the form f(s, t) = f1(s)f2(t). This leads to the pair of ordinary differential equations:

s(1 − s)f ′′
1 + (1 − s)(1 + ∆)f ′

1 + λ2f1 = 0 (8.16)

f ′
2 + λ2f2 = 0 (8.17)

being λ2 the constant arising from the method of separation of variables. The
solution of the time dependent function is e−λ2t and the solution of the s-function
is the hypergeometric function2 F (−µ1, µ2; ∆ + 1; s). The explicit series is:

F (−µ1, µ2; ∆ + 1; s) =
∞
∑

n=0

(−µ1)n(µ2)n

(∆ + 1)n

sn

n!
(8.18)

1There is another solution to this equation, but it contains a term in ln s and it has to be
discarded since it can not be expanded in a power series of s. In the following In(z) is the modified
Bessel function of the first kind.

2There is another solution to the second-order differential equation. As before, this solution
has to be discarded since it can not be expanded in powers of s.
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(a)n is the Pochhammer’s symbol: (a)n = Γ(a+n)
Γ(a)

, or (a)0 = 1, (a)n = a(a + 1) . . . (a + n − 1)
for n > 0, and we have introduced

µ1 =
−∆ +

√
∆2 + 4λ2

2
(8.19)

µ2 =
∆ +

√
∆2 + 4λ2

2
(8.20)

The solution for the function f(s, t) is obtained by linear combination of the ele-
mentary solutions found above:

f(s, t) =
∑

λ

CλF (−µ1, µ2; ∆ + 1; s)e−λ2t (8.21)

This function is, in general, an infinite series on the variable s. In fact the coefficients,
according to (8.9) are nothing but the time-dependent probabilities. However, in this
irreversible case, the probability of having more A-particles that the initial number
at t = 0, say M , has to be zero. Therefore the series must be truncated after
the power sM . This implies that in the previous expression only hypergeometric
functions that represent a polynomial in s can be accepted. This is achieved by
forcing µ1 = k = 0, 1, 2 . . . , M , since the series (8.18) becomes then a polynomial of
degree k. The condition µ1 = k is equivalent to the parameter λ adopting one of the
possible values λk =

√

k(k + ∆). Finally, noticing that µ2 − µ1 = ∆, the solution
can be written as:

f(s, t) =

M
∑

k=0

k
∑

n=0

Ck(∆, M)e−k(k+∆)tBn,k(∆)sn (8.22)

The notation emphasizes that Ck depends both on ∆ and M but Bn,k depends only
on ∆:

Bn,k(∆) =
(−k)n(k + ∆)n

n!(∆ + 1)n
(8.23)

All that remains is to impose the initial condition. We start with M A-particles at
time t = 0, such that f(s, t = 0) = sM . This implies that the coefficients Ck must
satisfy:

M
∑

k=n

Bn,kCk = δn,M (8.24)

for n = 0, 1, . . . , M . The solution starts by finding first CM = 1/BM,M and then
proceeds backwards to find CM−1, CM−2, . . . , C0 in a recursive manner. After some
lengthy algebra, the result is:

Ck(∆, M) = (−1)k 2k + ∆

k + ∆

(k + 1)∆

∆!

(M − k + 1)k

(M + ∆ + 1)k
(8.25)

(in the case ∆ = k = 0 the correct interpretation of the undetermined expression is
C0 = 1). We now give the expression for the probabilities:

Pn(t) =

M
∑

k=n

Ck(∆, M)Bn,k(∆)e−k(k+∆)t (8.26)
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Figure 8.1. Equilibrium values 〈n〉/Ω and normalized fluctuations Ω−1
√

〈n2〉 − 〈n〉2 versus
volume Ω for κ = 1, ω = 1, δ = 1. The mean value tends to the infinite volume result,
0.618 . . . , while fluctuations decrease as 2

3
Ω−1/2.

The normalization condition
∑M

n=0 Pn(t) = 1 is verified with the help of the relation

∑k
n=0 Bn,k = δk,0. The relation

k
∑

n=0

nBn,k = (−1)kk
∆!

(k)∆

(the indetermination aris-

ing when ∆ = k = 0 must be resolved as 0) helps to find the average of the number
of particles:

〈n(t)〉 =

M
∑

k=1

(2k + ∆)
(M − k + 1)k

(M + ∆ + 1)k
e−k(k+∆)t (8.27)

The second moment 〈n(t)2〉 can be found with the help of Eq.(8.3) (remember that

the time has been rescaled) as 〈n(t)2〉 = −d〈n(t)〉
dt

− ∆〈n(t)〉, or:

〈n(t)2〉 =

M
∑

k=1

(2k + ∆)(k2 + (k − 1)∆)
(M − k + 1)k

(M + ∆ + 1)k
e−k(k+∆)t (8.28)

8.3 Comparison with the mean-field solution

In the limit Ω → ∞ the fluctuations should be negligible and the mean-field
result should be recovered.

8.3.1 The equilibrium case

The limit is somewhat complicated from the technical point of view3 but it
can be checked that indeed Eq.(8.14) (after restoring ω → ωΩ2/κ) gives that the

equilibrium concentration ρ = 〈n〉
Ω

tends to ρ1, the mean field equilibrium value,
when Ω → ∞, keeping δ = ∆/Ω finite. It can also be checked that in the same
limit, the normalized fluctuations σ[n]/Ω, with σ2[n] = 〈n2〉 − 〈n〉2, are of order
Ω−1/2 and vanish in the large volume limit.

8.3.2 The time-dependent case

In the limit t → ∞ the leading expression for 〈n(t)〉 corresponds to the term
k = 1 in the sum of Eq.(8.27). Introducing back the original time scale, we get in
this limit:

〈n(t)〉 ∼ (2 + ∆)M

M + ∆ + 1
e−(1+∆)κt/Ω (8.29)

Recalling that ρ(t) = 〈n(t)〉/Ω, δ = ∆/Ω and ρ0 = M/Ω, we get in the limit of large
Ω:

ρ(t) ∼ ρ0δ

δ + ρ0
e−δκt (8.30)

which coincides with Eq.(8.6) (with ω = 0) in this large Ω and large t limit.

3The expansion 9.7.7 in Abramowitz and Stegun is useful.
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The case ∆ = 0 is more complicated. If we just take the leading order term in
Eq.(8.27), we arrive at:

ρ(t) ∼ 2

Ω
e−κt/Ω (8.31)

which says that ρ(t) ∼ 0 decays exponentially, contrary to the mean-field result. To
get a better understanding of what is happening we use the following approximation:

ln
(M − k + 1)k

(M + 1)k
=

k
∑

i=1

ln

(

1 − k

M + i

)

≈
k
∑

i=1

−k

M
= − k2

M
(8.32)

valid in the limit of M → ∞, and then replace the sum in (8.27) by an integral:

〈n(t)〉 =

∫ ∞

k=0

dk2ke−( 1

M
+ κt

Ω
)k2

=
M

1 + M
Ω

κt
(8.33)

which is equivalent to Eq.(8.7). This potential decay is observed up to times of order
t ∼ Ω where there is a transition to the exponential decay (8.31). Therefore, the
mean-field result is valid up to times of order Ω.
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Appendix2: Autocatalitic reaction

In this case, the probability generanting function obeys the following partial differ-
ential equation:

∂G(s, t)

∂t
= (1 − s)

[

−kΩφAG(s, t) +
k′

Ω
(1 + s)

∂2G(s, t)

∂s2

]

(9.1)

It’s general solution is not known. Howhever, the stady state solution follows:

(1 + s)
∂2G(s)

∂s2
= kΩφAG(s) +

k′

Ω
(9.2)

Making the change of variables 1 + s = x, and setting b ≡ kφA

k′
Ω2, we obtain:

x
d2G(x)

dx2
= bG (9.3)

This is the Bessel equation and it’s solution is given by:

G(s) =
√

b(1 + s)
[

C1I1(2
√

b(1 + s)) + C2K1(2
√

b(1 + s))
]

(9.4)

Where I1(z), K1(z) are the modified Bessel functions of first and second kind.

The series expanssion of I1, I1(z) =
∑

anzn, has an > 0, whereas in the one of

K1, K1(z) =
∑

bnzn, bn has no definite sign. As the series expanssion of G(s),

G(s) =
∑

P (n)sn, has P (n) > 0, we choose C2 = 0. The normalicing condition

G(1) = 1 leads to:

G(s) =

√

1 + s

2

I1(2
√

b(1 + s))

I1(2
√

2b)
(9.5)

To find P st(n) we need to expand G in powers of s. Taking into account that:

Iv(x) =

∞
∑

m=0

1

m!(m + v)!
(
x

2
)2m+v (9.6)

45
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We have:

G(s) =
1√

2I1(2
√

2b)

∞
∑

m=0

bm+1/2

m!(m + 1)!
(1+s)m+1 =

1√
2I1(2

√
2b)

∞
∑

m=0

bm+1/2

m!(m + 1)!

m+1
∑

k=0

(m + 1)!

k!(m + 1 − k)!
sk

(9.7)
∞
∑

m=0

m+1
∑

k=0

=
∞
∑

k=0

∞
∑

m=k−1

but m starting at 0 if k=0.

G(s) =
1√

2I1(2
√

2b)

∞
∑

k=0

sk

k!

∞
∑

n=0

bn+k−1/2

n!(n + k − 1)!
(9.8)

(n=m-k+1, n starting at 1 if k=0). As bn+k−1/2 = bk/2

(

2
√

b

2

)2n+k−1

, for n ≥ 1 we

have:

P st(n) =
bn/2In−1(2

√
b)√

2I1(2
√

2b)n!
(9.9)

For n = 0:

1√
2I1(2

√
2b)

∞
∑

k=1

(

2
√

b

2

)2k−1

k!(k − 1)!
=

1√
2I1(2

√
2b)

∞
∑

l=0

(

2
√

b

2

)2l+1

l!(l + 1)!
=

1√
2I1(2

√
2b)

I1(2
√

b)

As I−1(x) = I1(x), and b =
knA

k′
Ω we have the final result:

P st(n) =
(knAΩ/k′)n/2In−1(2

√

kΩnA/k′)

n!
√

2I1(2
√

2kΩnA/k′)
(9.10)

wich is the expression (5.2) of the main text.
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