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Chapter 1

Motivation

Horizontal transport and mixing processes [1-3] are cemr#he study of the physi-
cal, chemical, and biological dynamics of the ocean. Comederstanding and precise
modelling of them are relevant from a theoretical viewpa@nt crucial for a range of
practical issues, such as plankton dynamics or the fatelaftpot spills. In this regard,
the last few years have seen the appearance of interestindavelopments [4] on the La-
grangian description of transport and mixing phenomenayméthem coming from the
area of nonlinear dynamics. Such approaches do not aim @dicpng individual tracer
trajectories, but at locating spatial structures that a@n from dynamical systems the-
ory to act as templates for the whole flow [5, 6]. This is maihle to the capacity of the
Lagrangian diagnostics to exploit the spatiotemporalakality of the velocity field by
following fluid particle trajectories, at difference of Eulan ones which analyze frozen
shapshots of data. Among these Lagrangian techniques, @fubwlass consists in the
computation of local Lyapunov exponents (LLE) which measive relative dispersion
of transported particles [7—14]. In particular, there dre $o called finite-size Lyapunov
exponents (FSLEs) where one computes the time taken by &jextories, initially sep-
arated by a finite distance, to reach a larger final finite destd11-14].

LLEs are attracting the attention of the oceanographic canity[15—-20]. The main
reasons for this interest are the following: a) they idgnéihd display the dynamical
structures in the flow that strongly organizes fluid motioadtangian Coherent Struc-
tures (LCSs)) like vortices, barriers to transport, fromts ; b) they are relatively easy
to compute; c) they provide extra information on charast@s time-scales for the dy-
namics; d) they are able to reveal oceanic structures bé&lewmdminal resolution of the
velocity field being analyzed; and e) The FSLE, in additisrspecially suited to analyze
transport in closed areas [15].

Despite the growing number of applications of FSLES, theigoaf the present work,
a systematic analysis of many of their properties is stdkiag. In particular, the fol-
lowing questions remain open: how do errors in the veloc#ldfpropagate onto the
FSLE? is the sub-grid information that they provide valigust an artifact? How do they
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2 Motivation

transform under changes in scale? The main objective ofwbik is to address these
guestions. In particular with reference to their poterdigplications into ocean dynam-
ics, and to the characterization of fluid transport at theasesle (10-100 kilometers) and
at submesoscale (1-10 kilometers). To do this, we will sthéyFSLEs at different spatial

resolutions and analyze their scaling properties and theponse to different sources of
error both in the velocity data and in the way that particégetctories are computed. In
order to keep close to the oceanographic applications wewserical data of the marine

surface velocity of the Mediterranean Sea, though theqadati physical phenomena in
the area are not our focus in this work.

This work is organized as follows. We start in Chapter 1 withimtroduction in
which basic tools and concepts are briefly displayed. In @redwe comment on the
data and methodology that will be used along the study, anshwe properties obtained
from FSLE applied to the Balearic Sea. In Chapter 3 the scat&riance properties of
the FSLEs are analyzed. Chapter 4 is devoted to study theemtféuof errors in the
FSLEs fields: both errors in the velocities and errors agi§iom neglecting small-scale
turbulence in the trajectories of the particles. Finallythe Summary section we write
down our conclusions.



Chapter 2

Concepts and Tools

In this chapter we introduce the concepts and tools, bowldwen the theory of nonlinear
dynamical systems, which will help us to understand the @lgleometry of fluid flows,
and will allow a quantitative analysis of transport and mgin oceanic process.

2.1 Eulerian and Lagrangian descriptions

The description of fluid motion can be addressed following tifferent ways. One can
deal at any time with velocity, pressure and density fieldmgtspatial point in the fluid,
or either, one deals with the trajectory of each fluid paatidlhe first approach is usually
calledEulerianand the second oreagrangian In principle both are equivalent, and if
we denote by(x,t) the Eulerian velocity field, which tells us the value o ftuid velocity
at any space-time poink), then the motion of a fluid particle with initial localizan
x(0) is given by

dx

== V(X,t). (2.1)

This expression establishes the physical connection leetwlee Eulerian and La-

grangian description. It clearly reads that when a paiictllid particle is known to

be at a specific space-time point, its Lagrangian velocitgtnne equal to the Eulerian
field value at that space-time point.

2.2 Dynamical Systems

A dynamical system of general form is often expressed by

dx
= V(x(t),1) (2.2)

X(to) = Xo (2.3)
3



4 Concepts and Tools

dx
=
X(to) = Xo (2.5)

v(x(t)) (2.4)

In the differential Egs. (2.2), (2.3) represents time and it is the independent variable,
and the dependent variablg}), represents the state of the system at time t. The vector
functionv(x, t) typically satisfies some level of continuity. As a side ndkgpugh this
introduction we will try to denote vector valued quantitsboldfaced letters.

As time evolves, solution of Egs. (2.2), (2.3) trace out espor in dynamical systems
terminology, they flow along their trajectory. Numericaligmns of Egs. (2.2), (2.3) can

almost always be found by numerically integratwyghowever such solutions by them-
selves are not very desirable for general analysis. Whdesiact solution of Egs. (2.2),
(2.3) would be ideal, unlesgx, t) is a linear function of the stateand independent of

time t, and a few other cases, there is no general way to detetire analytic solution of

Egs. (2.2), (2.3).

If visindependent of timéthe system is known as time-independent, or autonomous,
and there are a number of standard techniques for analyastgsystems. For instance,
the global flow geometry of autonomous systems can often derstood by studying
invariant manifolds of the fixed points of Egs. (2.2), (2iB)particular stable and unsta-
ble manifolds often play a central role. These concepts esertbed in the following. A
fixed point ofv is a pointx® such thaw/(x°®) = 0. The stable manifolds of a fixed poixt
are all trajectories which asymptotexbwhent — oo. Similarly, the unstable manifolds
of x¢ are all trajectories which asymptotexbwhent — —oo . Often, stable and unsta-
ble manifolds act as separatrices, which separate disggins of motion, making them
effective in understanding the flow geometry.

For example consider the planar, frictionless pendulums $étup has a point mass,
m, at the end of a weightless rod of lengtfas shown in Fig. 2.1. The dynamics is given
by the second order equation

d*0

o —mglsin 0(t), (2.6)

whereg denote the acceleration due to gravity. Since any nth-asystem is equiva-
lent to a set of first order equations, let us define- # andy = ¢, which allows us to
write Eq.(2.6) as

y=—mglsinz , & =y, (2.7)
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which places it in the first-order vector form given by Eq2(2.

Figure 2.1 Pendulum setup

-
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W

Figure 2.2: Pendulum phase portrait

The phase portrait of the pendulum is shown in Fig. 2.2. Saltealues for the
positionsy are repeated to a value over the interval frante 7, we only show the phase
portrait for# ranging over this interval. If we equate positions in thisumer, then tech-
nically & = 7 is equivalent t@ = —m, however they appear as two separate points in the
phase portrait, but one can reconcile this by mentally wirapghe phase portrait around
a cylinder such tha# = m andfd = —7m meet up. The pendulum has fixed points at
(0,6)=(0,0) and (6, §)=(,0). The fixed point(r, 0) is hyperbolic. In a system of dif-
ferential equations a hyperbolic point is a stationary peirch that the eigenvalues of
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the linearized system have non-zero real part, and is th& pdiere the stable and un-
stable manifolds intersect. We will see later that hypediglplays an important role in
transport. The stable and unstable manifolds of the fixedtioi 0) are shown in blue in
Fig. 2.2 and form separatrices. These separatrices dived#dw into regions of distinct
dynamics. Inside these separatrices, the pendulum dssilteack and forth. Outside the
separatrices, the pendulum continually spins in one dect

The pendulum example helps demonstrate how the stable atablemanifolds can
help uncover the global flow geometry of a dynamical systetmis is one of the main
reasons most introductory texts on dynamical systems dedtome to explaining such
notions and proving their existence. In fact, numerous |[gebave researched different
methods for computing, or growing, such manifolds. Manyhnods rely on growing
manifolds from their hyperbolic fixed points. This is podsibecause for autonomous
systems the stable and unstable manifolds of a fixed poihbeadly tangent to the eigen-
vectors of the linearized vector field about that point.

The notion of stable and unstable manifolds becomes ambgyiow time-dependent
systems, which are the most relevant for us. For examplé, sygtems rarely even have
fixed points in the traditional sense, and in addition asytipiimits for such systems
are often meaningless. While there are many academic eraroplime-independent dy-
namical systems, many dynamical systems of practical itapoe are time-dependent,
especially in cases where the dynamical system repre$entsdtion of a fluid.

Even time-dependent dynamical systems typically haveoreggof dynamically dis-
tinct behavior which can be thought of as being divided byasafpices. However, for
such systems these regions change over time, and hencels® slepiaratrices.

To find separatrices in time-dependent systems, one migataa approach similar
to above and look at fixed points of the instantaneous vedcttat éind try to grow these
manifolds by seeding near an instantaneous fixed point avettidg the points accord-
ing to the time-dependent vector field. While this might seeasonable, separatrices in
time-dependent flows usually are not connected to instantanfixed points, although
they might be located nearby.

Instead of trying to directly grow these manifolds, or sepaces, let us try to indi-
rectly obtain them. We will do this by considering the beloawf trajectories near such
structures. Our indirect method will spare us from suchghias first having to locate
fixed points, which can itself be a formidable task (plus éhpeints are not typically
meaningful for time-dependent systems).
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To get us thinking in the right direction, consider a genégperbolic point and its
associated stable and unstable manifolds, which is depictEig. 2.3. If we integrate
two points that are initially on either side of a stable malifforward in time, then these
points will eventually diverge from each other. Likewideye started two points on either
side of an unstable manifold, then these points would quidkierge from each other if
integrated backward in time. This is why these manifoldsddten called separatrices,
since they separate trajectories which do qualitativefedint things.

Therefore we take the viewpoint that since separatricesgl@iregions of qualitatively

Figure 2.3. Two points on either side of a separatrix will diverge froncleather

different dynamics, we can perhaps uncover or define suabtates by looking at the
divergence or stretching between trajectories. To find re¢pees that are analogous to
stable manifolds, we measure stretching forward in timetarfohd separatrices that are
analogous to unstable manifolds, we measure stretchingwaad in time (Fig. 2.3).
However, one should not read into the analogy between tlegseatrices and traditional
definitions of stable and unstable manifolds too much. Ity fioce the notions of stable
and unstable manifolds are not well defined for time-depenfli@vs, we refer to theses
separatrices as Lagrangian Coherent Structures (LCS)na wnéich is common in fluid
mechanics, but its meaning is often only loosely defined.|&\thiere are numerous ways
to measure "stretching”, we have found that the Local LyapBxponent (Finite-Time
Lyapunov Exponent and Finite-Size Lyapunov Exponent) ges/the best measure when
trying to understand the flow geometry of general time-ddpanhsystems.
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2.3 The Non-asymptotic Lyapunov Exponents

The possibility of chaotic systems was first introduced leyfrench mathematician Henri
Poincare in the 1890s in a paper on the stability of the Sojateth. Some time later,

other scientists found additional chaotic systems and tlex¢loped new mathematics
and theories (Kovalevska, Hopf, Kolmogorov among otheh$)1963, Edward Lorentz

described the behavior related to chaotic attractors ooguin dissipative systems, and
recognized the unpredictability of chaotic behavior inmection with the numerical so-
lution of an atmospheric model. Chaos is a motion irreguiatime, unpredictable in

the long term and sensitive to initial conditions, and caewpbut ordered, in the phase
space: it is associated with a fractal structure. In predaptliterature a system is said
to be chaotic if small-i.e. infinitesimal— perturbationewyrexponentially with time, and

this is connected to a positive Lyapunov exponent.

SX(t) ~ eMox(to) (2.8)

The classical Lyapunov exponent is defined as the expoheatesof separation, aver-
aged over infinite time, of particle trajectories initiallgparated infinitesimally. Consider
X(to) andx(t) = x(to) + 0X(t) as two particle trajectories separated initially by a dis&a
0X(to). The global Lyapunov exponent is defined by

L Jox()]

6 sx(in) 0 £ |0X(t0)]’

(2.9)

This number,)\, is useful for distinguishing among the various types oftays.
Negative Lyapunov exponents are characteristic of staiblgiens of dissipative or non-
conservative systems (the damped harmonic oscillatonftance). Such systems exhibit
asymptotic stability (the orbit attracts to a stable fixethpor stable periodic orbit). If\
is positive, the orbit is unstable and chaotic. Nearby @oimtl diverge to any arbitrary
separation. All neighborhoods in the phase space will exaiytbe visited. These points
are said to be unstable. For a continuous system, the phase spuld be a tangled sea
of wavy lines like a pot of spaghetti.

The Lyapunov exponent is quite useful in the study of timégejmendent dynamical
systems. The seminal works of [21, 22] were very importamaymg the theory of Lya-
punov exponent for time-independent systems, althougmtmsuscript by [23] contains
a good modern and comprehensive treatment of the subjegtevs, many dynamical
systems of practical importance, especially in the realfluads, are time-dependent and
only known over a finite interval of time and space. Becaus#sohAsymptotic nature,
the classical Lyapunov exponent is not suited for analyzimg-dependent dynamical
systems or those that are only defined on a finite time-spaeev/al, so its value is quite
limited for practical analysis. The infinite-time limit ing52.9) makes the Lyapunov ex-
ponent of limited practical use when dealing with experitaédata. The second limit,
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0X(ty) — 0, makes it an even more difficult quantity to evaluate eithgreeimentally
or numerically. Whereas the (global) Lyapunov exponenégjia measure for the total
predictability of a system, it is sometimes interesting $tireate the local predictability
around a poink in phase space. In this case, a generalization of the Lyapexmonent,
called the Local Lyapunov exponent (LLE), has been propasestudy the growth of
noninfinitesimal perturbations (distance between trajges$) in dynamical systems. Re-
cently the concept of a LLE has been applied to study dispeisiturbulent flow fields.

The LLE is a scalar value which characterizes the amountretcsting about the
trajectory of pointx over time interval. For most flows of practical importandes LLE
varies as a function of space and time. The LLE is not an insteaous separation rate, but
rather measures the average, or integrated, separatiedretrajectories. This distinc-
tion is important because in time-dependent flows, the mateeous velocity field often is
not very revealing about actual trajectories, that isanstneous streamlines can quickly
diverge from actual particle trajectories. However the lddeounts for the integrated ef-
fect of the flow because it is derived from particle trajei@syand thus is more indicative
of the actual transport behavior. We discuss this pointsit sections. Depending on
what asymptotic character is eliminated, there are two asymptotic Lyapunov expo-
nents: finite-time and finite-size Lyapunov exponents.

2.3.1 Finite-Time Lyapunov Exponents (FTLES)

Let us derive the expression for the FTLE considering thetating between two neigh-
boring particles. Consider an arbitrary poiin phase space at tintg advected by the
flow a time intervall'. Since the flow has a continuous dependence on initial dondit
we known that an arbitrary point nearat timet, will behave similarly asx when ad-
vected in the flow, at least locally in time. However, as timelees, the distancéx(t,)
between this neighboring point and the point closetall be x(t) = x(t) + 0x(t), where
we assumeéx(t) is infinitesimal and arbitrarily oriented. After a time inéal 7" we obtain
an expression for the finite-time Lyapunov exponent (FTLEpa initial pointx at time
to with a finite integration tim&":

1 5X(t0 + T)

AL (X) = —In

=™ o) (2.10)

The FTLE is a function of the initial positiox at timet,, but if we varyt,, then it is
also a function of time.



10 Concepts and Tools

2.3.2 Finite-Size Lyapunov Exponents (FSLES)

If we want to know about the predictability time in the larggtwespect to a finite pertur-
bation, it should be determined by a quantity analogoused_jlapunov exponent. The
natural starting point in looking for such a quantity is thee it takes for a perturbation
to grow from an initial sizeé to a tolerancé\. This is called the{,A) predictability time
and denote it byI'(6,A). Generally speaking, the predictability time will fluctaa The
natural definition of the finite-size Lyapunov exponent grefore, an average of some
function of the predictability time, such that if baifand A are in the infinitesimal range,
we will recover the usual Lyapunov exponent, and an obvitwasoe is then

A A) = <ﬁ> In (%) | (2.11)

In contrast to infinitesimal perturbations, for finite petations the threshold is
typically not to be taken much larger than the perturbationWhat is interesting, and
what makes finite-size Lyapunov exponents different fromfdwynov exponents for in-
finitesimal perturbation, is the dependencejon

In the Lagrangian analysis using velocity data of the oceansay that the initial
perturbationy, is the initial spatial separation of two particlés, (one of them placed at
X) and the toleranca is the final separation of these two particleés,andr is the time
required for two particles of fluid to separate from an initlstance ofd, to a final one
of §;. Thus the expression for the FSLE at titges given by

1. dy
A(X, tg, 00,07) = — In = 2.12
(707 0 f) |7_‘ n507 ( )
Now instead of fixing a finite integration time (FTLE), we fix aife initial and final
spatial separation between particles.

As the FSLE is a function of the initial distanégbut also of the final distancg, we

can analyze oceanic structures at different sizes (LC®putifferents, values.

In the definition ofA in Eq. (2.12), we use(lr| instead ofr because it is often the
case that we are interested in computingpr ¢ > 0 andt < 0, to produce LCS akin to
stable and unstable manifolds, as was mentioned towarasthef the previous section.

The technique identifies dynamical objects that organieetthnsport, and relevant
coherent structures. Until recently, the power of theseehbagrangian approaches has
been mainly relegated to mathematical systems or simphfi@dkbench models, since
the required detailed knowledge of the velocity field wasreatily available in real geo-
physical situations. However, in the last decades thetgtudas dramatically changed,
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with a rapidly increasing amount of data available from lzaagyian drifters [4], satellite
measurements [24], and especially from detailed compubelets [25, 26]

2.4 Lagrangian Coherent Structures (LCS) as ridges in
the FSLE field

To define a hyperbolic trajectory precisely for systemsigimely over a finite time-space
interval one should be careful, e.g. see [7,27]. Howevéndgust think of hyperbolic
trajectories as ones about which there is a direction ofesipa and a direction of com-
pression. In dynamical systems terminology, this meantsttieae should exist stable
and unstable directions about a hyperbolic trajectory.ifkasmpressible flows, without
sources or sinks, any expansion in one direction must betadbby compression in an-
other direction, making such trajectories ubiquitous.

If exponential separation between trajectories occursjfghe domain of the system
is compact, which is typically the case, these trajectanest mix together. This is es-
pecially true for turbulent flows, but even for simple dynaatisystems this is also true
and is often termed "deterministic chaos”, which refersht® phenomenon that simple
vector fields can produce chaotic trajectories. The strastof strongest hyperbolicity
often dictate transport in dynamical systems [5], which wk some to see. However,
for time-dependent systems these structures, which weteees LCS, are often recon-
dite when viewing the Eulerian velocity field or even pagitiajectories.

For time-independent systems, separatrices are givenebgtéinle and unstable mani-
folds of hyperbolic fixed points, as in the pendulum exampésented before. However,
for highly time-dependent systems, the FSLE fields admitoguaus ridges that divide
dynamically different regions, and these structures azenielves time-dependent. No-
tions such as stable or unstable manifolds are well defingthfie-independent flows, but
for general time-dependent flows, these notions becomeguobs. However, one can
loosely think of studying a time-dependent flow in terms 0f3.&5 the analog of studying
a time-independent flow in terms of stable and unstable rolaisif Experience dictates
that a wide range of systems admit well-defined ridges in ®leB-fields which govern
the global flow structure, however we would like to precisetpw: Do LCS represent
invariant manifolds?

If we refer to LCS as ridges of the FSLE field, we must define gaidntuitively, a ridge
is a curve such that if somebody walking along a ridge, thephg in the direction
transverse to the ridge, he would be stepping down. For FitliEknown that LCS rep-
resent invariant manifolds, and there is mathematicalrth&w that, but it is not started
for FSLE. However we assume that ridges in the FSLE field tthek_CS.
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2.4.1 LCS properties.

e For well-defined LCS, which are obtained from FSLE field witbudficient inte-
gration time, the flux of matter across such structures igebgal to be small.

e The FSLE measures the integrated effect of the flow, so if tinb@o small then this
integrated effect is ignored and thus the FSLE is not vercatt/e of Lagrangian
behavior.

e LCS (at least the ones which are clearly visible in the FSLEl$jeare invariant
manifolds for all practical purposes.

2.5 Comparison between Eulerian diagnosis and Lagrangian
diagnosis from finite-size Lyapunov exponents

As said before, the Eulerian perspective is typically defias viewing the fluid at fixed
points in the domain, perhaps at varying instances in timeeNWiewing the vector field
of a dynamical system, this is the standard perspectiveh®ather hand, the Lagrangian
perspective views the flow in terms of particle trajectarihile the FSLE field is tech-
nically a Eulerian field, it is thought of as a Lagrangian ditgisince it is computed from
particle trajectories.

In contrast with Eulerian diagnostics, Lagrangian todte lihe FSLE have the ad-
ventage of exploiting both spatial and temporal variapibt the velocity field and are in
principle able to unveil subgrid filaments generated by thairring. It was found [18],
by comparing with sea-surface temperature patterns,lbao diagnostics provide sim-
ilar results for slowly evolving eddies like the first Alborgyre. However, the Lyapunov
exponent is also able to predict the (sub-)mesoscale fil@neprocess. Climatologies of
Lyapunov exponents do not show any compact relation witeroBulerian diagnostics,
unveiling a different structure even at the basin scale.

Filamentation dynamics can be detected by reprocessintableaaltimetric or nu-
merical velocity data with Lagrangian tools, giving insigiito (sub-)mesoscale stirring
processes relevant to tracer observations and complamerdditional Eulerian diagnos-
tics.

2.6 Turbulence and multifractality

In fluid dynamics, [28] turbulence or turbulent flow is a fluiegime characterized by
chaotic and stochastic properties. This includes low mammerdiffusion, high momen-
tum convection, and rapid variation of pressure and vetogispace and time. Flow that
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Is not turbulent is called laminar. At very low speeds the flewaminar, i.e., the flow is
smooth (though it may involve vortices on a large scale).h&sspeed increases, at some
point the transition is made to turbulence. In turbulent flansteady vortices appear on
many scales and interact with each other. Because laminautent transition is gov-
erned by Reynolds number (that gives a measure of the ratreedfal forces to viscous
forces), the same transition occurs if the size of the obgegtadually increased, or the
viscosity of the fluid is decreased, or if the density of thélfis increased.

In the ocean the turbulence causes the formation of eddigsaay different length
scales. Most of the kinetic energy of the turbulent motiooastained in the large scale
structures. In conventional threedimensional turbuletice energy cascades from the
large scale structures to smaller scale structures by atiahand essentially inviscid
mechanism. This process continues, creating smaller aatlesrstructures which pro-
duces a hierarchy of eddies. Eventually this process @esitactures that are small
enough that molecular diffusion becomes important andousdlissipation of energy fi-
nally takes place. The turbulence in oceanic flow is in twoehsions and the energy
cascade is in the inverse direction. There is however a dasgfavorticity towards small
scales.

Moreover, the ocean is a system displaying scale invarianawor. From complex
systems theory it is know that fractal sets have an intrissale-invariant nature which
can be expressed by a characteristic exponent that is tb&lfidimension of the set.
There are many definitions of fractal dimension and none emtishould be treated as
the universal one. The fractal dimension [29] is used toattarize quantitatively a self-
similar system. Self-similarity is a symmetry property bétsystem. By self-similarity
we mean invariance under an isotropic transformation, hamsimple dilation. If we
consider an object S formed by a set of poifits= (x1, z2,,.), @ dilation, or similarity
transformation with a scaling factér changes the coordinatesit® = (bxy, bxa py,,..)-
The set S formed by the particles of coordinates self-similar if it is invariant under
this transformation. For a deterministic fractal, scakaimance means that the rescaled
system bS is identical with a part of the original system S.

By embedding dimension];, we understand the smallest Euclidean dimension of the
space in which a given object can be embedded. The voldfheof an arbitrary object
can be measured by covering it with balls of linear $jznd volumé?z. We needV (/)
balls to cover it, so

V()= N(1)1%". (2.13)

One might at first expect that for any objest(l) ~ [~9#, since the volume of stan-
dard objects does not change with the unit of measureméhit for fractals we have in
general

N(l) ~17P1, (2.14)
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Objects withD; < dg are called fractals, witlD; is the fractal dimension. In topo-
logical terms, if we have a structure that is a line, the topmal dimension isD =1,
if the structure is a surfac®;=2, and if we have a structure between a line and a sur-
face, we obtain a dimension equals to a fractional numbevd®st one and two (fractal
dimension).

For a homogeneous fractal, with fractal dimension many relevant scale-dependent
quantities decay as a power law of the scale with exponenitsvete directly related to
the fractal dimensio;. The widespread occurrence of this behavior led resea¢ber
interpret those systems in terms of fractal sets, and trjpéwacterize universality classes
in terms of possible underlying fractal attractors or fehatterfaces.

Nevertheless, a better understanding of the mechanisrngdtiarn the evolution of
some dynamical systems, turbulent flows being one of the retestant cases, evidence
that the observed intrinsic complexity could not be covdrgd simple description based
on the existence of a single fractal interface. As a consempje richer framework was
required and the natural step forward was to consider niedfiactal hierarchies which
could fit better with the available evidence. Therefore atifnattal system is a gen-
eralization of a fractal system in which a single exponem fractal dimension) is not
enough to describe its dynamics; instead, a continuougrspeof exponents is needed
(See Sect. 4.1).

2.7 Langevin equation and eddy-diffusivity

A stochastic differential equation (SDE) [30] is a diffeti@hequation which contains a
stochastic procesgt):
dx(t)
dt

= G(x(t),t,&(t)) (2.15)

whereé(t) is a stochastic process (random process). As a consequesioE & not a
single differential equation but rather a family of ordipalifferential equations, a differ-
ent one for each outcomeof the stochastic process:

WD) _ G, 6000 2.16)

Therefore, the family of solutions, of these differential equations, for different out-
comesu, constitute a stochastic procesg). We can say that to each realizatigrt)
of the stochastic procesgs corresponds a realizatian, of the stochastic process The

solutionz becomes then a functional of the procés3o solve a SDE means to charac-

terize completely the stochastic proces$s), i.e. to give the m-times probability density
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function (pdf) f(x1, ..., zm; 1, ..., tm). Again, this is in general a rather difficult task and
sometimes one focuses only on the evolution of the momert$”) and the correlation
function (z(¢1)x(t2)). When the stochastic proce§gt) appears linearly one talks about
aLangevin eguation. Its general form being:

d”";it) — gz, 1) + gz, D). (2.17)
In this case£(t) is usually referred to as the “noise” term. A word whose erigpmes
from the random “noise” one can actually hear in electricuis. Another notation
concept: if the functiory(zx, t) is constant, one talks about additive noise, otherwise, the
noise is said to be multiplicative. Finallg(x,t)is usually referred to as the 'drift’ term,
whereag(x,t)is the 'diffusion’ term.
We can use the Langevin equation with additive noise to siteuhissing information
between points of the grid of the velocity data in the compaorteof particle’s trajectories
of the marine flow. In this case will be the coordinates;(z, t) is the velocity field and
g(z, ) is the diffusion term related to the oceanic diffusivity. finical relations between
diffusion characteristics were investigated [31] by the afcarefully examined data from
instantaneous dye-release experiments in the upper mayed of the sea. In this work,
among others things, the relation of the variané®f the initial distribution of path with
the diffusion time (time of diffusion during which a patclofn a point source grows into
the sizes) was studied . The following empirical relation was found:

o? =0.0108 ¢*3* (2.18)

whereos? andt are expressed in terms @f,? andsec, respectively. The scale of diffusion
represents in our case the spatial resolution of the vgldaiia. The relationship between
the diffusivity D,, in m?s~1, and the scale of the diffusiohin m, is given by

D, = 2.055 10~ 415 (2.19)

This ocean diffusivity represents the eddy diffusivitydahdepends on the spatial reso-
lution of the FSLE field.






Chapter 3

Lagrangian Coherent Structures
(LCS) in marine currents of the
Balearic Sea

In this chapter we characterize transport and mixing at ma&sd submeso-scale in the
area of the Balearic Sea by means of the Finite-Size Lyap&xponents, by using ve-
locity data from a numerical model. This technique has dlydseen used to analyze the
whole Mediterranean Sea, [16] and the Algerian basin [18].

3.1 Data: Surface velocities in the Mediterranean Sea

In this study and in the studies of the next chapters, we haee data sets from the
DieCAST (Dietrich for Center Air Sea Technology) numericakan model applied to
the Mediterranean Sea with realistic coastlines and t@plgr.  The dataset has been
already used in previous Lagrangian studies [16, 32, 33gCBIST [26] is a primitive
equation, z-level, finite difference ocean model using yarbstatic, incompressible and
rigid lid approximations.

Horizontal resolution is the same in both the longitudigaknd latitudinal A, direc-
tions, with resolutiong\; = A ¢ = 1/8°andA A = A ¢ cos (\) . Therefore itis important
to remark that the original spatial resolution of the vetipfield is A, = 1/8°. Vertical
resolution is variable witl30 control volume layers, and the temporal resolution is one
day. The thickness of control volumes in the top layer is 10.8nd they are smoothly
increased up to the deepest bottom control volume face d 2.7 3Bathymetry is trun-
cated at 2750n depth and it is not filtered or smoothed.
The model uses monthly mean wind stress reanalyzed from @nd output from the
European Centre for Medium-Range Weather forecasts. Modlilmatology of sea sur-
face temperature and salinity [34] is used to determine ¢la¢ &nd the freshwater sources

17
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in the surface layer that are used to force the model. Theapey boundary is the Strait
of Gibraltar, where inflow conditions are set similar to atvaéions and outflow is model-

determined by upwind. The model is initialized at a stateest with the annual mean

temperature and salinity fields taken from the climatolagi&€ach year is considered to
have 12 months, 30 days length each. The climatologicairfgree use is adequate to
identify the mechanisms and processes occurring undexalypi average circumstances.
Under this approach, high frequency motions are weak in agtehand a daily sampling

is adequate. The impact on transport of disturbances congahigh frequencies, such
as storms or wind burst, is not the focus of the present stadyveould need specific

modelling beyond climatological forcing.

We focus on velocity fields obtained at the second layer, wtlgdocalized at depth
of 16 m. This is representative of the surface circulation and isdiectly driven by
wind as the top layer. We have recorded daily velocities far jiears, and concentrate
our work in the area of the Balearic Sea. The two-dimensibaatzontal velocity field on
this layer is not exactly incompressible, but it is very elas this situation since typical
vertical velocities in the ocean are four orders of magratadhaller than the horizontal
ones (0~° vs 10~'m/s). Because of incompressibility, points at which fluid peles di-
verge horizontally along particular directions receivedflalong other directions, so that
the stretching is linked to mixing. On the other hand, witthie@ FSLE method used in this
study and presented in the previous sections, to estimatestes at the mesoscale, fluid
particle trajectories need to be integrated only while thegergo horizontal displace-
ments of the order of 100m, i.e., during 1-10 days (see the next section). Estimating
an effective or average vertical velocity for this time as $ipatial average of the vertical
velocity in horizontal regions of that size, one obtains #rative vertical velocity of
0.1 — 0.7 m/day. Thus, during the time of integration, most particles do leave the
horizontal layer considered. In consequence, restrictiagtudy to horizontal motion on
a single model layer is a good description of the full tramspoocesses for the space and
time scales relevant to mesoscale processes within the Bpach.

Fig. 3.1 shows an example of the output of the model for theoisl field in the
second layer (16: depth) of the Balearic Sea at day 640 (the 10th day of the taptith
-October- of the second year of simulation).

Two well known currents, the Northern Current flowing soudinels close to the Span-
ish coast and the Balearic Current associated with the NBatearic Front and flowing
northeastwards North of the Balearics, are observed aitihsignificantly deformed by
the presence of eddies.
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Figure 3.1. Snapshot of the surface velocity field at 16 m depth of the Medinean Sea (top) and
Balearic Sea (bottom) corresponding to day 640 (Octobenjiisition of the DieCAST model. The
Westernmost coast is the Spanish one, the islands are thar®al The box inside top figure indicate
the area of study.

3.2 Computation of Trajectories and FSLE

As already mentioned, to compute the FSLE (Eqg. 2.12) we neethtain the timey,
required for two particles of fluid (one of them placedxatto separate from an initial
distance ob, to a final one ob;. To compute this time we need to know the trajectories
of the particles. The FSLE are computed for the poxnts a lattice with lattice spacing
coincident with the initial separation of fluid particlés The equations of motion that
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describe the horizontal evolution of particle trajectsiiie our velocity field are

do  u(g, A t)
dt ~ Rcos\ (3.1)
d\ B U((Z), A, t)

whereu andv represent the eastwards and northwards components ofrfaeesweloc-
ity field coming from the simulations described in the pregcection;R, is the radius
of the Earth (640@:m in our computations)y is longitude and\ latitude. Numerically
we proceed integrating Egs. (3.1) and (3.2) using a standlaudh-order Runge-Kutta
scheme, (see Appendix A), with an integration time step- 6 hours. Since information
is provided just in a discrete space-time grid, spatiotenapoterpolation of the velocity
data is achieved by bilingual interpolation (see AppendixHbwever we notice that bi-
linear interpolation requires an equally space grid. Ota dgut is expressed in spherical
coordinates, and the grid is not uniformly spaced in théuda coordinate. In order to in-
terpolate in an uniformly spaced grid, we transform our dowte systeng\, ¢) to a new
coordinate system with coordinatés, ¢), where the grid turns out to be uniform [33].
The latitude) is related to the new coordingteby

= log|sec A + tan \|. (3.3)

In the new variables the equations of motion are:

dp  u(o,u,t)
dt — RcosA(p) (34)
du  v(o,p,t)
dt — RcosA(p)’ (3:5)

and one can convert thevalues back to latitudes by inverting Eq.(3.3):
A =m/2 —2arctan (e *). (3.6)

Once trajectories are integrated from these equationscan&onveri: values to\ by
using Eq.(3.6). Once we integrate the equations of motigs,(B.4, 3.5), we compute the
FSLEs with Eq. (2.12) for the pointsof a lattice with spacing,. Initial conditions for
which the prescribed final separati®nhas not been reached after using all the available
times in the DieCAST simulation are assigned a value- 0. The largest Lyapunov
values concentrate along characteristic lines which areifolds of the most relevant
hyperbolic points [11, 16, 18].
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3.3 Lagrangian diagnosis

The FSLE has been introduced in order to study non-asynepiitgpersion processes,
and for detecting and visualizing Lagrangian structureg. (&ansport barriers or vortex
boundaries). In this section we will focus mainly in the setase, and we will also
use measures of dispersion and mixing based on the Lagresigiectures detected. The
FSLE is inversely proportional to the time at which two pads reach a prescribed sepa-
ration. In order to characterize the strongest separadiod {he fastest convergence along
the complementary direction),, is selected as the maximum among the four values ob-
tained when the initial separatidp is chosen along four orthogonal directions.

The field of FSLEs depends on the choice of two length scalesinitial separation,

and the final oné;. As in previous works [16, 18] we want to focus here on medesca
transport. Thus the final length scade, is fixed to one degree, i.e., separations of about
110km at Balearic Sea latitude, which is a typical mesoscale s&trasize. On the other
hand, the smallest scalg determines the spatial resolution of the FSLE field. In thagw
the FSLE represents the inverse time scale for mixing up fhaictels between length
scalesy, andd;. In the first part of this section, we are interested in theiapdistribu-
tion of FSLEs, and thus we calculate them at pointecated on a grid of spacingz

=y . A very important fact is that the resolution of the FSLE fielmh be finer than
that of the velocity data, which enables to study submesogracesses under the typi-
cal mesoscales (below 10 kilometers) that nowdays provtdeedry data. This scaling
property will be analyzed in the next chapters.

Figure 3.2. Snapshot of spatial distributions of FSLEs backward (leftgd) and forward (right
panel) in time starting from simulation day 640 (October}te# DieCAST model for the Balearic
Sea at resolutiofiy = 1/64°. Mesoscale structures and vortices can be clearly seemttrolh them
we taked; = 1°. The colorbar has units afzy—*.

We can compute the FSLEs in two ways (Fig. 3.2): from trajgciategration
forwardsandbackwardsn time. Maximum in the spatial distribution of backward FESi
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identify lines of maximum compression, approximatingatting material lines or unsta-
ble manifolds of hyperbolic moving points [11,16]. As obsat in others works, forward
FSLE maximum values of the spatial distribution organizénes [11, 12, 16] that pro-
vide good approximation to repelling material lines (whask in turn stable manifolds of
hyperbolic moving points). Typical values are in the orded.d-0.6days ' correspond-
ing to mixing times for mesoscale distance of 1.7¢<p)s. Since stable and unstable
manifolds cannot be crossed by particle trajectories, $nes strongly constrain and
determine fluid motion. These lines organize the transpotgsses in the Sea surface.
Spatial structures ranging from the small scales to the typésal of mesoscale vortices
are clearly identified. In the core of the eddies one has ldwegof FSLES (i.e., low
dispersion rates); on the contrary, the largest valuessofF 8L_LE can be found in the outer
part of the eddies, where the stretching of the fluid parsefsrticularly important, and
in lines indicating robust transport barriers.

An important fact, is that in some regions of the vortex cpasotic tangles are still
observed as local maximum of the FSLE distribution. Theseimam are, however, not
strong. In fact, even if the stretching is locally very higfe requirement for two points
to diverge for more that; =110 km gives a low value of to such finer structures.
Since stable and unstable manifolds cannot be crossed bgi@arajectories, such lines
strongly constrain and determine fluid motion.

Calculating in this way the FSLESs in the region of the Bale&ga, we unveil the tangle
of stretching and compressing lines in which vortices arbexded (Fig. 3.3). As men-
tioned, these lines also define the directions of transpoties arising from intersections
of stretching and compressing lines at a vortex edge ineliwhaere transport in and from
the vortex place, whereas tangencies among them provideisao transport. In Fig. 3.3
some intersections of stretching and compressing linemdieated as black dots. These
identify Lagrangian hyperbolic points (and their motiorfide hyperbolic trajectories).
Such points correspond to areas with strong mixing activityd is advected here along
a compression line and then dispersed away along the strgtiate.

This dynamical picture suggests a quantitative measuijeflixing in a prescribed
area: M. (t) = (/A;AZ), whereA, andA_ are the FSLEs in the forward and in the
backwards time direction, and the average is the spatiabhgeeover the area A. This
quantity is large only where hyperbolic points are presdihe time dependence of this
guantity when the area is the Balearic Sea is shown in the&ig4, characterizing the
seasonal variations of mixing. Maximum values, of the oafér.17days~!, are reached
in the beginning of Spring, and minimum values around tharmgg of Autumn. Be-
cause of the approximate incompressible character of thedmdal flow, the temporal
variations of forward and backward FSLEs are strongly datee, and one expects that
the same information can be obtained from just one of the FSlbEs one can use a
simpler measure of mixing in an area s (t) = (Ay) or M_(t) = (A_). We show in
Figure 3.4 that, as expected ( [16]), it contains essewtilaé same information a¥/_ (¢),
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Figure 3.3. FSLEs calculated from forward (displayed as positive vs)aad backwards (displayed
as negative values) integrations in time starting from d&y @ctober) of the DieCAST model, i.e.,
what is plotted is the field\,. — A_ at resolutions ofy = 1/64°. A region with strong mixing
appears organized by a tangle of stretching and compressingolds. Such lines organize the flow.
The black points indicate some of the hyperbolic points #natlocalized at the intersections of the
lines. We takel; = 1°. The colorbar has units @y .

but it could be measured from floater experiments. It is thgead characterization of
mixing strength. We compare in Fig. 3.5 the temporal belrasfionixing in the Balearic

Sea with the whole Mediterranean Sea. This plot shows tleaB#iearic Sea is an area
with strong mixing activity in the Mediterranean Sea in thigg and Summer seasons.

Computing such a picture for every day of the year and takiegitne average, one
can obtain a map of regions in the Balearic with different imgxactivity (Fig. 3.6) .
As expected, the Southern part of the Balearic Sea appeas awtive, especially in
the eastern part. As a further example we compare (Fig. Berj@mporal behavior of
M, (t) in the two regions (the North and South of the Balearic Se&re/tve expect, from
Figure 3.6, to see a very different mixing activity. The Soatea presents more mixing
activity than the North area probably because of the inflaari¢he Algerian current. In
addition, the two areas show seasonal fluctuations butriiadiin the mixing processes
are diferent, when one of them reaches a local maximum ther otine reaches a local
minimum.
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Figure 3.4 Temporal evolution of the mixing measur@$, (¢) and M (t) for the Balearic Sea
during one simulation year. They display a similar behawih maximun values in March, and

minimum value in September.
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Figure 3.5. M (t) during one year for the Balearic Sea and the MediterraneanT3e figure show
the same seasonal behavior but different values in magnitu8pring and Summer.
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Figure 3.6. Time average ( for the second simulation year) of the FSLEBdrBalearic Sea. Geo-
graphical regions of different mixing activity appear. T¢worbar has units afay .
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Figure 3.7. Temporal evolution of the mixing measur&s, (¢) for the North and South area of the
Balearic Sea during one simulation year. They display asseddehavior but differentin magnitude.






Chapter 4

Scale invariance properties of FSLE

A very important fact is that the resolution of the FSLEs fielth be finer than that
of the velocity data. This enables to study submesoscaleepses under the typical
mesoscales, below) kilometers, that are the standard sizes of humerical mamtedé
altimetric data. This is subject to some controversy sinoe weeds to interpolate the
velocity to a grid of resolution,, smaller than the resolution of the initial velocity data
and this could induce some artificiality in the results. A wayccount to this question
is to analyze the multifractal properties of the FSLEs. Hytlshow it then they do not
have a characteristic spatial length and are somehow expeatevery scale. Thus the
FSLE properties under the subgrid scale should be as valideasnes above. On the
other side, Lyapunov exponents at infinite time have a nmattthl structure and the FTLE
distribution is known to reflect this scaling behavior when— oo [35]. But no similar
theory has been developed for FSLE. We expect to observathe sultifractal scaling
whend, — 0, and this will be checked in the first section of this chapter.

Another related question is what happens when there is arldle resolution of the
velocity field: Do we obtain the same LCS?. We analyze thistjoe in the second part
of the chapter.

4.1 FSLE at different spatial scales

In our computation of the FSLE field, besidg = 1/8°, which is the DieCAST grid
resolution, we will us&, = 1/16°,1/32°,1/64°.

In Figure 4.1 we plot the FSLE field for the same day computetifigrent resolu-
tions. As the resolution gets finer (smallg) more dynamical structures are revealed
and filaments gets thinner, with typical widths much smathet the10 kilometers of
the velocity data resolution. This is the reason for thenclthat FSLES provide infor-
mation below data resolution length-scale. It is remarkabhbwever, that the large-scale
structures are not much affected by the changing resotuti@y are just sharper or more
blurred, but maintaining the same shape and locations. Wiecoenpute the probability

27
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Figure 4.1. Snapshots of spatial distributions of backward FSLEs{tistafrom day 640 of the
DieCAST model at different resolutions:dg)= 1/8°, b)dy = 1/16°, ¢)dg = 1/32°,d) o9 = 1/64°.
In all of them we takel; = 1°. The numbers in the color bar have unitsiaf,~*. Initial conditions
for which the separatiodi; has not been reached after 640 days are assigned a/value

density distribution of the FSLEP(d,, A), for different resolutions,. In Fig. 4.2 we
show the histograms (averaged ogérsnapshots distributed amomg months) normal-
ized to the same unitary area. One can see that when thetiesg@ats finer the” (¢, A)
narrows, and the peak height increases. Despite the piipalensity concentrates close
to a mean value (say ~ 0.1), large deviations remain even for relatively high resiout

The way the structures in Figure 4.1 and the correspondstgdmams in Figure 4.2
change with changing resolution suggests a multifractaraitter for the FSLE field,
different scaling hapens in different points, which orgarnn manifolds with a particular
dimension. To check this we propose the relationship [36]:

P(80,A) = P(6g, Ao) 60 PW), (4.1)

whereP(dy, A.) is the maximum value oP at a given resolution scalg, d is the dimen-
sion of the embedding spacé € 2 in our case), and thuB(A) is the fractal dimension
of the set of points having FSLE with the valde From Eq.(4.1) one has

o . P((SQ,AC)
D) = d — — T 4.2)
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The plot of D(A) in Figure 4.2 (right) shows a collapse at different scalesfioming
the hypothesis in Eq.(4.1). (The collapse is not perfect tduthe lost of translational
invariance produced by the small size of the domain -the@adasin- that we analyze,
as well as to the presence of coasts). Thus, the interfacesnstantA values build a
multifractal hierarchy and generalized scale invariasgarésent in the FSLE field.

Maximum values in the histograms (Top figure in Fig. 4.2) dre most probable
FSLE values. These FSLE values have a fractal dimension emtyeo (bottom figure in
Fig. 4.2), therefore in the greater part of the FSLE field yod ftructures of dimension
two. The fractal dimension of the regions with larger valok4 is close to one, and since
objects with dimension one are lines, the ridges of FSLE@gateéd along lines.

4.2 FSLE at different spatial resolution of the velocity
field

As was said the resolution of the velocity field in the DieCA®®ddel isA, = 1/8°. To
simulate a resolution loss we replace each square in thentaake by four points by a
single point, with the velocity there being the average efftbur points. In this way we
reduce the velocity resolution td, = 1/4°. We repeat again the procedure to obtain
a new velocity field with a still coarser resolution &f, = 1/2°. The velocity field at
these new resolutions are plotted in figure 4.3, and the FQInipated using these new
velocity fields are shown in figure 4.4.

It is clear that the FSLEs fields obtained from lower resolutvelocity fields have
a smoother structure, with smaller horizontal mesoscaietsires suppressed (the sub-
mesoscale filamentary structure, however, remains, siacgze is controlled byy). A
pointwise comparison of the fields obtained at the nominaldAST resolution and the
coarser ones gives large errors. However, the main lage-structures and the lines
with the strongest values df, the LCSs, are not greatly changed.

Fig. 4.5 displays the relative errer ¢(¢) > of the FSLEs with respect to the ones
calculated for the original resolutial, = 1/8°. < €(t) > is obtained from the following
formulas:

\/ Z A% (X, t |(;( WE ) s= %Ze(ti) . @43)

i=1

with A“ is the Lyapunov field corresponding to coarser valueagfandA is the Lya-
punov field at original spatial resolution of the velocityldie The sum over pointg is
restricted to the places whergx,¢) > 0.2, and each panel of the figure is for the two
spatial resolutions of the FSLE field = 1/8° andd, = 1/64°. The relative error is
large in both cases. However, it is important to note that ihidue to the fact that the
new resolution of the velocity fieldY, = 1/2°) is much larger than the original one
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(Ap = 1/8°). That is, almost a difference dbkm in the velocity spatial resolution. Fi-
nally, To get an idea of how relevant these quantities arehave computed the relative
error of shuffled FSLEs with respect to the original field, abdained the value.143
and1.292 for 6, = 1/8° andd, = 1/64°, respectively, and ah, = 1/8°. The shuffling
procedure consists in generating Lyapunov maps by doingd@ora permutation of the
original values of FSLE in space and time. This keeps innatlee FSLE histograms, but
destroys any spatial and temporal correlation.
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Figure 4.2. Top: Comparison of the probability density functiaB®&,, A) for the FSLEs at different
resolutions. It is obtained from the temporal average (2pshots) of instantaneous histograms of
A. Dotted line is fordy = 1/8°, dashed-dotted ling, = 1/16°, dashed, = 1/32°, and solid line
for 6o = 1/64°. Bottom: D(A) calculated from Eq. (4.2) for different values &f. Dotted for

0o = 1/8°, dashed-dotted lin& = 1/16°, dashed, = 1/32°, and solid line line fop, = 1/64°.



Scale invariance properties of FSLE

32

43 4250 42 4150 41

i

40.50 40 39.50 39

/

ey 092y oF 0G'ly ¥ 090F OF 0S'6E 6€

43 4250 42 4150 41 4050 40 39.50 39

=1,

& 092y g 0G'lv ¥ 0S0F Or 0S6E 6F

(b)

@)

43 42.50 42 41.50 41 40.50 40 39.50 39
| o A e

ey 092y v 0SLy ¥ 090F OF 09'6E 6€

©

Figure 4.3. Snapshots of velocity fields for the day 640 of the DieCAST eiad different resolu-

tions a)A
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Figure 4.4. Snapshots of FSLESs calculated backwards in time startorg tay 640 of the DieCAST
model at different resolutions of the velocity field: &) = 1/8°, b) Ay = 1/4°,¢) Ag = 1/2°. In
all of themdy = 1/64°. The color bar has units @fzy—!. Initial conditions for which the separation
07 has not been reached after 640 days are assigned a/vaiug
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Figure 4.5. Relative errox ¢(t) > of the FLSE fields at different values of velocity resolutiay)
with respect to the nominal cage, = 1/8° = 0.125° (only the points at which the Lyapunov field
at this nominal resolution exceed 0.2 are considered) i@pasolution isi, = 1/8° (solid line) and
dp = 1/64° (dotted line).< e(t) > is obtained by temporally averaging the error in 100 snajssho
Only The error bar indicates the statistical error of the(t) > averaged; = 1°.



Chapter 5

Robusitness of FSLEs

Numerical, satellite or in-situ obtained oceanic surfaeueity fields are subjected to
many different sources of error. Numerical models are nggptdgued by errors coming
from the finite scale resolution, uncertainty in the bougdard external forcing condi-

tions, and in the numerical algorithm itself. On the othemdhaaltimetry-based velocity

errors are due to orbit configuration, estimation methausathing, atmospheric correc-
tions, calculation of the mean flow from the geoid, interpiolaof satellite tracks to grid

points, etc. Typical errors for in-situ data are of instrunta origin and human manip-
ulation, but also due to the interpolation of tracks to a gainospheric conditions and
many others. Itis therefore natural to ask howeh®er in the velocity field translates into
the FSLE computation. In addition one may consider the infteeof uncertainties in the
computation of fluid particle trajectories due to unresdlgenall scales. In this chapter
we consider these: first the role of errors in velocity, andliynthe role of the error in the

trajectories.

5.1 Errorinthe data

We compute the FSLEs after applying a random perturbaticalltoomponents of the
velocity field. The velocity is changed frofw, v) to (v, v'), with «/(X, t) = u(x, t)(1 +
ang(X,t)) andv’'(x,t) = v(X,t)(1 + an,(X,t)). {n.(x,t),n,(X,t)} are sets of Gaussian
random numbers of zero mean and unit varianaemeasures the relative size of the
perturbation. We introduce three different kinds of ertgrcorrelated noise, i.e. different
and uncorrelated values ¢f),(x,t),n,(x,t)} for eachx and¢; correlated in time and
uncorrelated in space (uncorrelated for differgnbut the same values at givenfor
different ¢); and correlated in space and uncorrelated in time (uniectec values for
different¢, but the same values for differextat fixedt). Note that the perturbation is
proportional to the original velocity.

Fig. 5.1 shows snapshots of FSLEs at the same time for ditfer&lues ofa =
0, 20, 60, 100, for the case of perturbation uncorrelated in time and ircepahe com-
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Figure 5.1. Snapshots of FSLESs calculated backwards in time startorg étay 600 of the DieCAST
simulation at fixed spatial resolutioty(= 1/64°), and at different (relative size of the perturbation
of velocity, for the case in which it is uncorrelated in space time): a) = 0, b)a =20, ¢)a = 60

, d)a =100 . In all of them we také; = 1°. The color bar has units @ky~!. Initial conditions for
which the separatiodiy has not been reached after 600 days are assigned a/vatug

puted Lagrangian structures look rather the same, de$@tiatge sizeq = 100 means
perturbation 100 times larger than the initial velocitydjedf the perturbation introduced.

We quantify the influence of the velocity perturbation in f88LE calculation by
computing the relative error of the perturbed with respecthe unperturbed Lya-
punov field at a given instant of time, and then averagingnmet{iwe haves = 100
snapshotst = ¢, ..., t;) from formulas similar to 4.3, but with\(x, ¢;) andA*(x, t;) re-
placed by the FSLEs fields without and with inclusion of thetiymdation in the velocity
data, respectively. The sum owveruns over theN = 2679 spatial points. Figure 5.2
displays, as a function ef, the average error €(t) >.

The important result is that the relative error has alwayalbvalues: even forr = 10
(i.e. a perturbation ten times larger than the initial vélofteld) the relative error remains
smaller tharD.23 for the three kinds of noise, at the same spatial resolutiorelocity
dataA, = 1/8°, and at spatial resolution of the FSLE fielgd= 1/8°. This result is also
obtained at a finer spatial resolution of the FSLE figld= 1/64° and at the same spatial
resolution of the velocity field\, = 1/8°, where the relative error is slightly higher than
0.5. The relative errors computed for the shuffled FSLES tiakeraluesl.14 and1.3 for
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dp = 1/8° andé, = 1/64°, respectively.

These results confirm that the values and spatial distabuif the FSLEs are robust
to relatively large amount of error in the velocity field pided the errors are spatially
or temporally uncorrelated. The reason for this is the ayiagpeffect produced when
computing FSLEs by integrating over trajectories whicleextin time and space, make
them rather robust against several types of uncorrelatiseé mothe velocity data.

5.2 Noise in the particle’s trajectories

In section 5.1 we introduced noise in the velocity data to mipossible uncertainties
affecting them, and computed the FSLESs for the resultinggieNow we proceed seem-
ingly but by adding the noise to the particle trajectorieshisTis a simplified way of
including unresolved small scales in the Lagrangian coatpris [37]. To be precise we
solve numerically (see Appendix C) the following system @fi&ions:

do u(p,\t) V2D

dt — Rcos(\) Rcos()\)gl(w’ (5.1)
A _ v A V2D&(t) 52

dt R R

&(t) i = 1,2 are the components of a two-dimensional Gaussian whitesvaith zero
mean and correlations &;(t)¢;(¥') >= 6;;0(t — ). Egs. (5.1, 5.2) use a simple white
noise added to the trajectories. A more realistic represemnt of small-scale Lagrangian
dispersion in turbulent fields requires using other kindsafelated noises [37] but, as
we are interested in examining influences of the missingescal is convenient to use
white noise, since this would represent the extreme caseyf iregular trajectories
which gives an upper bound to the effects of more realistioatrer small scales. Thus
the tests presented in this subsection are similar to the coesidered in subsection 5.1
when adding uncorrelated perturbations to the velocityhlewe the perturbation acts at
arbitrarily small scales, as appropriate for a turbuled fimstead of being smooth below
a cutoff scale, as appropriate for modelling observatienalrs.

For the diffusivity we use Okubo’s empirical formula [31]high relates the effective
eddy-diffusion,D in m?/s, with the spatial scalé,in meters:D(l) = 2.055 10~* {115 If
we takel = 12 km, which is the approximate length corresponding tolth&® DieCAST
resolution at Mediterranean latitudes, we obt&in- 10 m?s~! = D,.

First, in Fig. 5.3 we show particle trajectories withoutp(feanel) and with (bottom
panel) the eddy diffusion. As expected diffusion modellgddndom motion introduces
small scale irregularities on the trajectories, but aldatioduces substantial dispersion
at large scales. In Fig. 5.4 we show snapshots of FSLESs faraime day and at the same
spatial resolutiod, = 1/64°, but obtained for different values @. We can see that the
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main mesoscale structures are maintained, but the snad-Blamental structure is lost
since filaments widen. This is somehow expected a prioryusscdiffusion introduces a
new length scalé, which scales as/D. As in Sect. 4.2, pointwise error computations
give large values due to the obvious differences betweefidlus presented in Fig. 5.4.
Again it is more relevant to restrict to the LCS locations,iahhwe take as the places
whereA > 0.2 in the D = 0 computation. Left panel of Fig. 5.5 shows the relative error
with respect to théD = 0 case (computed from formulas analogous to Eq. (4.3)) of the
FSLEs obtained at different values bt The relative error monotonously increases with
D, but remains smaller thah6 for the largest value oD considered. In the same way
than in previous subsections, in order to get an idea of htevaat these relative errors
are, we computed the relative error of shuffled FSLE witheesto the original field, and
we get a value of .143.

A complementary set of numerical experiments are plottatierright panel of Fig.
5.5. First, with solid line we plot the relative error of FSlifEve consider a fixed eddy
diffusivity (D, = 10m?2s~!), and change the spatial resolutiép, It is observed that the
error increases when the spatial resolutdgns finer than the length scale introduced
by the eddy-diffusion. Moreover with dotted-line it is pied the case in which the
eddy-diffusion takes the value corresponding to e&chsing Okubo’s formula (i.e. at
S0 =1/16° D = 4,5m?s™'; atdy = 1/32° D = 2m?s~1; atdy = 1/64°, D = 0.9m?s71).
Now < ¢(t) > takes a constant value closed5. This result shows that if we use a
spatial resolution smaller than velocity data resolutite eddy-diffusion must be the
one computed for the corresponding length scale. This aohsalue somehow corrobo-
rates the diffusion Okubo’s formula. The dashed-dottee tiarresponds to the shuffling
experiment, included for comparisons.

A final numerical study (shown in Fig. 5.6) consists in compgitthe histograms
of FSLEs, with and without eddy diffusion, which takes alwdiie same valu®, =
10m?s~!, for different resolutions. It is seen that f& = 1/8° the histograms with and
without diffusion are coincident. This is due to the facttitiee value of diffusion we are
using is the one corresponding, by the Okubo formula/&. |.e., we are parametrizing
turbulence belowt /8°, and this has no effects on the FSLE computations if the mimm
scale considered is aldg8. However, this behavior is different for larg&r (maintaining
the same valu®, = 10m?s~'). The histograms fof, = 1/16,1/64°, with and with-
out diffusion, are clearly different. In fact, one finds thétograms af, = 1/64° with
diffusion turns out to be rather similar to thge= 1,/16°-resolution histogram without dif-
fusion. This somehow confirms the averaging effect over kemstales that is performed
after adding noise to the particle trajectories.
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Figure 5.2. Relative error< e(t) > of the FSLE fields for different perturbation intensttyin
the velocity data. Solid line is for uncorrelated noise ia@p and time, dashed-dotted line is for
uncorrelated noise in time and correlated in time, and ddite is for uncorrelated noise in space
and correlated in time< €(t) > is obtained by averaging the relative error in 100 snapgsetsEqg.
(4.3)). The error bar is the statistical error of the tempavarage< €(t) >. Top: spatial resolution
dp = 1/8°. Bottom: spatial resolutiof, = 1/64°. In all calculations we také; = 1°
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Figure 5.3. Trajectories of five particles without diffusion (top) andthvdiffusion (bottom). The
difference in the initial positions of all five particles is@ut0.06°, and we use these initial conditions
in both computations. These trajectories were computesifaiays of integration. We used the eddy-
diffusion Dy ~ 10m?s~! assigned by the Okubo formula to the resolution of the DieCA®del

at Mediterranean latitudes.
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Figure 5.4 FSLEs computed backwards from day 500 of the DieCAST modethe same
spatial resolutiond, = 1/64°), and for different eddy-diffusion values: @) = 0 m?s~! b)
D = 09m?s 1 ¢c)D = Dy = 10 m?s~1, d)D = 17 m?s~ L. In all of them we takej; = 1°.
The color bar has units afzy—!. Initial conditions for which the separatidn has not been reached
after 500 days are assigned a value- 0.
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Figure 5.5. Left: Relative error< ¢(¢) > of the FSLE at the different values &f in the particle
trajectories, with respect to thie = 0 case. Spatial resolutionds = 1/8°, andd; = 1°. < €(t) >is
obtained by temporally averaging the relative errors indrpshots. The (small) error bars indicates
the statistical error in the: ¢(¢) > average. Right: Dotted line is the relative errofe(¢) > of the
FSLE at different spatial resolutiafy and at the eddy-diffusio assigned by the Okubo formula
to every spatial resolution, with respect to the= 0 case. Solid line is the relative errer e(t) >

of the FSLE at different spatial resolutidp, and at the same eddy-diffusidny, = 10m2s—! in

the particle trajectories with respect to the= 0 case. Dashed-dotted line is the relative error of
shuffled FSLE with respect to the original cage £ 0) at different spatial resolution< €(¢) > by
temporally averaging the relative error in 100 snapshdte. (§mall) error bar indicates the statistical
error in the< €(t) > average. In all of them we takig = 1°.
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Figure 5.6. Comparison between probability density function for th& ES at different resolutions
with eddy-diffusion, and without diffusion. It is obtainéim the temporal average (30 snapshots)
of histograms. Solid line fod, = 1/8° at eddy-diffusionD, = 10m?s~!, dottedd, = 1/8°
without diffusion, dashed, = 1/16° without diffusion, dashed-dotted line fép = 1,/64° with
eddy-diffusionDy = 10m?s~1, and circle-line fo, = 1/64° without diffusion.



Chapter 6

Summary

In this work we have analyzed and quantified, from marineas@fvelocity fields pro-
vided by a numerical model, several statistical properdied robustness of FSLE, in
order to study the intermittency and its impact in transpad mixing.

We have increased the spatial resolution of FSLE field imipigothe identification of
Lagrangian Coherent Structures. The spatial distribudfdfSLESs display a scale behav-
ior suggesting a multifractal character. We computed thet&l dimension at the different
spatial resolutions obtaining a collapse at the differeates. Thus, the interfaces of con-
stantA build a multifractal hierarchy and generalized scale irarase is present in the
FSLE field. A second objective of this study was to quantify tmpact of the uncer-
tainties that can arise from numerous kind of errors in thHecry data on the FSLEs.
This is done by introducing a random perturbation in the eiyodata of the Eulerian
model, and computing the relative error of the FSLE with fhesturbation. We obtain
that even for a perturbation of 10 times the velocity datarétative error of the FSLE
is smaller than 2%, showing the robustness of the FSLE. At larger spatial te&oi
(0o = 1/64°) this relative error is about 45. On the other side, missing spatial resolution
of the velocity field generates a relative error with respedhe original field of 70 for a
missing resolution of four times the original. The mesosadtuctures remain even with
this coarse spatial resolution. Unresolved small scakegatuded in the computation of
the patrticle trajectories modelled as Lagrangian diffnsibhe relative error of the FSLE
with the eddy-diffusion corresponding to the resolutioth&f DieCAST model, is smaller
than 4%4. The main structures and locations of transport remaihpatih they became
smeared out at smaller spatial resolution of the velocitg.da

We have shown that due to its robustness and scale invayidu@deSLE is a powerful
Lagrangian technique to study mixing and transport progedf the Sea surface.
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Appendix A

Fourth-order Runge-Kutta method

The Runge-Kutta algorithm is a method to solve first-ordéedintial equations (DE).
The generic problem in ordinary differential equationsisstreduced to the study of a set
of N coupledfirst-orderdifferential equations for the functions,i = 1, 2, ..., IV, having
the general form

d i\ L .
ydi: ) = filx,y1,...yn), i=1,...N (A1)

where the functiong; are known.

Runge-Kutta methods propagate a solution over an integvabimbining the infor-
mation from several Euler style steps (each involving orauation off;), and then using
the information obtained to match a Taylor series expangoio some higher order. The
formula for the Euler method is

Yn+1 = YUn + hf(!L‘n, yn)7 (A2)

which advances a solution from), to x,,,; = x,, + h. It advances the solution through an
interval h, but uses derivative information only at the beginning et interval.

The fourth-order Runge-Kutta method [38, 39] requires fexaluations of the func-
tions f; per steph:

kl - hf(xna yn)
1

h
_ " )

ko = hf(zn + h,yn + ks3)
ki ky ks Ky
Ynt1 y+6+6+6+6+0( )
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Appendix B

Bilinear interpolation

We sometimes know the value of a functigfr) at a set of points:, zo, ..., z,,, but we
don’t have a analytic expression fffx) that let us calculate its value at an arbitrary point.

In multidimensional interpolation, we seek an estimgte,, =, ..., z,,) from ann-
dimensional grid of tabulated valuggndn one-dimensional vectors giving the tabulated
values of each of the independent variahlesrs, ..., z,,.

In two dimensions [39], we imagine that we are given a matfikuactional values
ya(j, k), wherej varies froml to m, andk varies froml to n. We are also given an array
xla of lengthm, and an array:2a of lengthn. The relation of these input quantities to an
underlying functiony(z;, x2) is

ya(j, k) = y(zla(j), #2a(k)). (B.1)

We want to estimate, by interpolation, the functigrat some untabulated point

(ZL‘l, 1‘2).

An important concept is that of the grid square in which thenpor,, x2) falls, that is,
the four tabulated points that surround the desired intgrant. For convenience, we
will number these points from 1 to 4, counterclockwise stgrfrom the lower left. More

precisely, if

zla(j) <z < zla(j + 1)x2a(k) < xo < x2a(k + 1) (B.2)

defines; andk, then

v = ya(y, k)
y2 = ya'(] + ]-7 k)
ys=ya(j+1,k+1))
ys = ya(j, k+1).
47
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The simplest interpolation in two dimension is bilineareirolation on the grid
square. Its formulas are:

t = (x1—zla(y))/(xla(j+1)—zla(j))u = (x2—22a(k))/x2a(k+1) —22a(k)) (B.3)
(so that t and u each lie between 0 and 1), and

y(zr,22) = (1 = 6)(1 — wyr + ¢(1 — w)ys + tuyz + (1 — t)uya. (B.4)



Appendix C

Heun’s algorithm

The Heun'’s algorithm is a method to solve stochastic diffeat equations (SDE) based
on the order two Runge-Kutta method for ordinary differenhtquations (ODE). A
generic SDE has the following expression for a dynamicahiée =(t):

x(t)
dt
whereg(z, t) andg(x, t) are functions, linear or non linear, agg(t) is a white Gaussian
noise, which properties are

= Q(x7t> + g(x,t)gw(t)

(6w ()Ew(t)) = 2D5(t — ')

A possible algorithm [30] to solve the SDE is
k= hq(t, z(t))
[ = h"u(t)g(t,=(t))

z(t+ h) =z(t) + 2 g(t, z()) + q(t + h,z(t) + 1+ k)] +
+ IR 2u(t) [g(t, x(1)) + g(t + h,z(t) + 1 + k)]

whereh is the temporal step andt) is a independent set of random Gaussian numbers
with zero mean and variance equal to one.
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