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Chapter 1

Motivation

Horizontal transport and mixing processes [1–3] are central to the study of the physi-
cal, chemical, and biological dynamics of the ocean. Correct understanding and precise
modelling of them are relevant from a theoretical viewpointand crucial for a range of
practical issues, such as plankton dynamics or the fate of pollutant spills. In this regard,
the last few years have seen the appearance of interesting new developments [4] on the La-
grangian description of transport and mixing phenomena, many of them coming from the
area of nonlinear dynamics. Such approaches do not aim at predicting individual tracer
trajectories, but at locating spatial structures that are known from dynamical systems the-
ory to act as templates for the whole flow [5,6]. This is mainlydue to the capacity of the
Lagrangian diagnostics to exploit the spatiotemporal variability of the velocity field by
following fluid particle trajectories, at difference of Eulerian ones which analyze frozen
snapshots of data. Among these Lagrangian techniques, a powerful class consists in the
computation of local Lyapunov exponents (LLE) which measure the relative dispersion
of transported particles [7–14]. In particular, there are the so called finite-size Lyapunov
exponents (FSLEs) where one computes the time taken by two trajectories, initially sep-
arated by a finite distance, to reach a larger final finite distance [11–14].

LLEs are attracting the attention of the oceanographic community [15–20]. The main
reasons for this interest are the following: a) they identify and display the dynamical
structures in the flow that strongly organizes fluid motion (Lagrangian Coherent Struc-
tures (LCSs)) like vortices, barriers to transport, fronts, etc ; b) they are relatively easy
to compute; c) they provide extra information on characteristics time-scales for the dy-
namics; d) they are able to reveal oceanic structures below the nominal resolution of the
velocity field being analyzed; and e) The FSLE, in addition, is specially suited to analyze
transport in closed areas [15].

Despite the growing number of applications of FSLEs, the focus of the present work,
a systematic analysis of many of their properties is still lacking. In particular, the fol-
lowing questions remain open: how do errors in the velocity field propagate onto the
FSLE? is the sub-grid information that they provide valid orjust an artifact? How do they
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2 Motivation

transform under changes in scale? The main objective of thiswork is to address these
questions. In particular with reference to their potentialapplications into ocean dynam-
ics, and to the characterization of fluid transport at the mesoscale (10-100 kilometers) and
at submesoscale (1-10 kilometers). To do this, we will studythe FSLEs at different spatial
resolutions and analyze their scaling properties and theirresponse to different sources of
error both in the velocity data and in the way that particle trajectories are computed. In
order to keep close to the oceanographic applications we usenumerical data of the marine
surface velocity of the Mediterranean Sea, though the particular physical phenomena in
the area are not our focus in this work.

This work is organized as follows. We start in Chapter 1 with an introduction in
which basic tools and concepts are briefly displayed. In Chapter 2 we comment on the
data and methodology that will be used along the study, and weshow properties obtained
from FSLE applied to the Balearic Sea. In Chapter 3 the scale invariance properties of
the FSLEs are analyzed. Chapter 4 is devoted to study the influence of errors in the
FSLEs fields: both errors in the velocities and errors arising from neglecting small-scale
turbulence in the trajectories of the particles. Finally, in the Summary section we write
down our conclusions.



Chapter 2

Concepts and Tools

In this chapter we introduce the concepts and tools, borrowed from the theory of nonlinear
dynamical systems, which will help us to understand the global geometry of fluid flows,
and will allow a quantitative analysis of transport and mixing in oceanic process.

2.1 Eulerian and Lagrangian descriptions

The description of fluid motion can be addressed following two different ways. One can
deal at any time with velocity, pressure and density fields atany spatial point in the fluid,
or either, one deals with the trajectory of each fluid particle. The first approach is usually
calledEulerianand the second oneLagrangian. In principle both are equivalent, and if
we denote byv(x,t) the Eulerian velocity field, which tells us the value of the fluid velocity
at any space-time point (x,t), then the motion of a fluid particle with initial localization
x(0) is given by

dx
dt

= v(x, t). (2.1)

This expression establishes the physical connection between the Eulerian and La-
grangian description. It clearly reads that when a particular fluid particle is known to
be at a specific space-time point, its Lagrangian velocity must be equal to the Eulerian
field value at that space-time point.

2.2 Dynamical Systems

A dynamical system of general form is often expressed by

dx
dt

= v(x(t), t) (2.2)

x(t0) = x0 (2.3)
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4 Concepts and Tools

dx
dt

= v(x(t)) (2.4)

x(t0) = x0 (2.5)

In the differential Eqs. (2.2), (2.3),t represents time and it is the independent variable,
and the dependent variable,x(t), represents the state of the system at time t. The vector
functionv(x, t) typically satisfies some level of continuity. As a side note,through this
introduction we will try to denote vector valued quantitiesby boldfaced letters.
As time evolves, solution of Eqs. (2.2), (2.3) trace out curves, or in dynamical systems
terminology, they flow along their trajectory. Numerical solutions of Eqs. (2.2), (2.3) can
almost always be found by numerically integratingv, however such solutions by them-
selves are not very desirable for general analysis. While the exact solution of Eqs. (2.2),
(2.3) would be ideal, unlessv(x, t) is a linear function of the statex and independent of
time t, and a few other cases, there is no general way to determine the analytic solution of
Eqs. (2.2), (2.3).

If v is independent of timet the system is known as time-independent, or autonomous,
and there are a number of standard techniques for analyzing such systems. For instance,
the global flow geometry of autonomous systems can often be understood by studying
invariant manifolds of the fixed points of Eqs. (2.2), (2.3),in particular stable and unsta-
ble manifolds often play a central role. These concepts are described in the following. A
fixed point ofv is a pointxc such thatv(xc) = 0. The stable manifolds of a fixed pointxc

are all trajectories which asymptote toxc whent → ∞. Similarly, the unstable manifolds
of xc are all trajectories which asymptote toxc whent → −∞ . Often, stable and unsta-
ble manifolds act as separatrices, which separate distinctregions of motion, making them
effective in understanding the flow geometry.

For example consider the planar, frictionless pendulum. This setup has a point mass,
m, at the end of a weightless rod of lengthl, as shown in Fig. 2.1. The dynamics is given
by the second order equation

d2θ

dt2
= −mgl sin θ(t), (2.6)

whereg denote the acceleration due to gravity. Since any nth-ordersystem is equiva-
lent to a set of first order equations, let us definex = θ andy = θ̇, which allows us to
write Eq.(2.6) as

ẏ = −mgl sin x , ẋ = y, (2.7)
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which places it in the first-order vector form given by Eq.(2.2).

Figure 2.1: Pendulum setup

Figure 2.2: Pendulum phase portrait

The phase portrait of the pendulum is shown in Fig. 2.2. Sinceall values for the
positionsθ are repeated to a value over the interval from -π to π, we only show the phase
portrait forθ ranging over this interval. If we equate positions in this manner, then tech-
nically θ = π is equivalent toθ = −π, however they appear as two separate points in the
phase portrait, but one can reconcile this by mentally wrapping the phase portrait around
a cylinder such thatθ = π and θ = −π meet up. The pendulum has fixed points at
(θ, θ̇)=(0, 0) and(θ, θ̇)=(π, 0). The fixed point(π, 0) is hyperbolic. In a system of dif-
ferential equations a hyperbolic point is a stationary point such that the eigenvalues of
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the linearized system have non-zero real part, and is the point where the stable and un-
stable manifolds intersect. We will see later that hyperbolicity plays an important role in
transport. The stable and unstable manifolds of the fixed point (π, 0) are shown in blue in
Fig. 2.2 and form separatrices. These separatrices divide the flow into regions of distinct
dynamics. Inside these separatrices, the pendulum oscillates back and forth. Outside the
separatrices, the pendulum continually spins in one direction.

The pendulum example helps demonstrate how the stable and unstable manifolds can
help uncover the global flow geometry of a dynamical system. This is one of the main
reasons most introductory texts on dynamical systems dedicate time to explaining such
notions and proving their existence. In fact, numerous people have researched different
methods for computing, or growing, such manifolds. Many methods rely on growing
manifolds from their hyperbolic fixed points. This is possible because for autonomous
systems the stable and unstable manifolds of a fixed point arelocally tangent to the eigen-
vectors of the linearized vector field about that point.

The notion of stable and unstable manifolds becomes ambiguous for time-dependent
systems, which are the most relevant for us. For example, such systems rarely even have
fixed points in the traditional sense, and in addition asymptotic limits for such systems
are often meaningless. While there are many academic examples of time-independent dy-
namical systems, many dynamical systems of practical importance are time-dependent,
especially in cases where the dynamical system represents the motion of a fluid.

Even time-dependent dynamical systems typically have regions of dynamically dis-
tinct behavior which can be thought of as being divided by separatrices. However, for
such systems these regions change over time, and hence so do the separatrices.

To find separatrices in time-dependent systems, one might take an approach similar
to above and look at fixed points of the instantaneous vector field and try to grow these
manifolds by seeding near an instantaneous fixed point and advecting the points accord-
ing to the time-dependent vector field. While this might seemreasonable, separatrices in
time-dependent flows usually are not connected to instantaneous fixed points, although
they might be located nearby.

Instead of trying to directly grow these manifolds, or separatrices, let us try to indi-
rectly obtain them. We will do this by considering the behavior of trajectories near such
structures. Our indirect method will spare us from such things as first having to locate
fixed points, which can itself be a formidable task (plus these points are not typically
meaningful for time-dependent systems).
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To get us thinking in the right direction, consider a generichyperbolic point and its
associated stable and unstable manifolds, which is depicted in Fig. 2.3. If we integrate
two points that are initially on either side of a stable manifold forward in time, then these
points will eventually diverge from each other. Likewise, if we started two points on either
side of an unstable manifold, then these points would quickly diverge from each other if
integrated backward in time. This is why these manifolds areoften called separatrices,
since they separate trajectories which do qualitatively different things.
Therefore we take the viewpoint that since separatrices divide regions of qualitatively

Figure 2.3: Two points on either side of a separatrix will diverge from each other

different dynamics, we can perhaps uncover or define such structures by looking at the
divergence or stretching between trajectories. To find separatrices that are analogous to
stable manifolds, we measure stretching forward in time andto find separatrices that are
analogous to unstable manifolds, we measure stretching backward in time (Fig. 2.3).
However, one should not read into the analogy between these separatrices and traditional
definitions of stable and unstable manifolds too much. In fact, since the notions of stable
and unstable manifolds are not well defined for time-dependent flows, we refer to theses
separatrices as Lagrangian Coherent Structures (LCS), a name which is common in fluid
mechanics, but its meaning is often only loosely defined. While there are numerous ways
to measure ”stretching”, we have found that the Local Lyapunov Exponent (Finite-Time
Lyapunov Exponent and Finite-Size Lyapunov Exponent) provides the best measure when
trying to understand the flow geometry of general time-dependent systems.
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2.3 The Non-asymptotic Lyapunov Exponents

The possibility of chaotic systems was first introduced by the French mathematician Henri
Poincare in the 1890s in a paper on the stability of the Solar System. Some time later,
other scientists found additional chaotic systems and theydeveloped new mathematics
and theories (Kovalevska, Hopf, Kolmogorov among others).In 1963, Edward Lorentz
described the behavior related to chaotic attractors occurring in dissipative systems, and
recognized the unpredictability of chaotic behavior in connection with the numerical so-
lution of an atmospheric model. Chaos is a motion irregular in time, unpredictable in
the long term and sensitive to initial conditions, and complex, but ordered, in the phase
space: it is associated with a fractal structure. In presentday literature a system is said
to be chaotic if small– i.e. infinitesimal– perturbations grow exponentially with time, and
this is connected to a positive Lyapunov exponent.

δx(t) ∼ eλtδx(t0) (2.8)

The classical Lyapunov exponent is defined as the exponential rate of separation, aver-
aged over infinite time, of particle trajectories initiallyseparated infinitesimally. Consider
x(t0) andx(t) = x(t0) + δx(t) as two particle trajectories separated initially by a distance
δx(t0). The global Lyapunov exponent is defined by

λ = lim
t→∞

lim
δx(t0)→0

1

t
ln

|δx(t)|
|δx(t0)|

, (2.9)

This number,λ, is useful for distinguishing among the various types of systems.
Negative Lyapunov exponents are characteristic of stable solutions of dissipative or non-
conservative systems (the damped harmonic oscillator for instance). Such systems exhibit
asymptotic stability (the orbit attracts to a stable fixed point or stable periodic orbit). Ifλ
is positive, the orbit is unstable and chaotic. Nearby points will diverge to any arbitrary
separation. All neighborhoods in the phase space will eventually be visited. These points
are said to be unstable. For a continuous system, the phase space would be a tangled sea
of wavy lines like a pot of spaghetti.

The Lyapunov exponent is quite useful in the study of time-independent dynamical
systems. The seminal works of [21, 22] were very important inlaying the theory of Lya-
punov exponent for time-independent systems, although themanuscript by [23] contains
a good modern and comprehensive treatment of the subject. However, many dynamical
systems of practical importance, especially in the realm offluids, are time-dependent and
only known over a finite interval of time and space. Because ofits asymptotic nature,
the classical Lyapunov exponent is not suited for analyzingtime-dependent dynamical
systems or those that are only defined on a finite time-space interval, so its value is quite
limited for practical analysis. The infinite-time limit in Eq.(2.9) makes the Lyapunov ex-
ponent of limited practical use when dealing with experimental data. The second limit,
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δx(t0) → 0, makes it an even more difficult quantity to evaluate either experimentally
or numerically. Whereas the (global) Lyapunov exponent gives a measure for the total
predictability of a system, it is sometimes interesting to estimate the local predictability
around a pointx in phase space. In this case, a generalization of the Lyapunov exponent,
called the Local Lyapunov exponent (LLE), has been proposedto study the growth of
noninfinitesimal perturbations (distance between trajectories) in dynamical systems. Re-
cently the concept of a LLE has been applied to study dispersion in turbulent flow fields.

The LLE is a scalar value which characterizes the amount of stretching about the
trajectory of pointx over time interval. For most flows of practical importance, the LLE
varies as a function of space and time. The LLE is not an instantaneous separation rate, but
rather measures the average, or integrated, separation between trajectories. This distinc-
tion is important because in time-dependent flows, the instantaneous velocity field often is
not very revealing about actual trajectories, that is, instantaneous streamlines can quickly
diverge from actual particle trajectories. However the LLEaccounts for the integrated ef-
fect of the flow because it is derived from particle trajectories, and thus is more indicative
of the actual transport behavior. We discuss this points in next sections. Depending on
what asymptotic character is eliminated, there are two non-asymptotic Lyapunov expo-
nents: finite-time and finite-size Lyapunov exponents.

2.3.1 Finite-Time Lyapunov Exponents (FTLEs)

Let us derive the expression for the FTLE considering the stretching between two neigh-
boring particles. Consider an arbitrary pointx in phase space at timet0 advected by the
flow a time intervalT . Since the flow has a continuous dependence on initial conditions,
we known that an arbitrary point nearx at timet0 will behave similarly asx when ad-
vected in the flow, at least locally in time. However, as time evolves, the distanceδx(t0)

between this neighboring point and the point close tox will be x(t) = x(t)+ δx(t), where
we assumeδx(t) is infinitesimal and arbitrarily oriented. After a time intervalT we obtain
an expression for the finite-time Lyapunov exponent (FTLE) at the initial pointx at time
t0 with a finite integration timeT :

λT
t0(x) =

1

|T | ln
δx(t0 + T )

δx(t0)
. (2.10)

The FTLE is a function of the initial positionx at timet0, but if we varyt0, then it is
also a function of time.
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2.3.2 Finite-Size Lyapunov Exponents (FSLEs)

If we want to know about the predictability time in the large with respect to a finite pertur-
bation, it should be determined by a quantity analogous to the Lyapunov exponent. The
natural starting point in looking for such a quantity is the time it takes for a perturbation
to grow from an initial sizeδ to a tolerance∆. This is called the (δ,∆) predictability time
and denote it byT (δ,∆). Generally speaking, the predictability time will fluctuate. The
natural definition of the finite-size Lyapunov exponent is, therefore, an average of some
function of the predictability time, such that if bothδ and∆ are in the infinitesimal range,
we will recover the usual Lyapunov exponent, and an obvious choice is then

Λ(δ, ∆) =

〈

1

T (δ, ∆)

〉

ln

(

∆

δ

)

. (2.11)

In contrast to infinitesimal perturbations, for finite perturbations the threshold∆ is
typically not to be taken much larger than the perturbationδ. What is interesting, and
what makes finite-size Lyapunov exponents different from Lyapunov exponents for in-
finitesimal perturbation, is the dependence onδ.

In the Lagrangian analysis using velocity data of the ocean we say that the initial
perturbation,δ, is the initial spatial separation of two particles,δ0, (one of them placed at
x) and the tolerance∆ is the final separation of these two particles,δf , andτ is the time
required for two particles of fluid to separate from an initial distance ofδ0 to a final one
of δf . Thus the expression for the FSLE at timet0 is given by

Λ(x, t0, δ0, δf ) =
1

|τ | ln
δf

δ0
, (2.12)

Now instead of fixing a finite integration time (FTLE), we fix a finite initial and final
spatial separation between particles.

As the FSLE is a function of the initial distanceδ0 but also of the final distanceδf , we
can analyze oceanic structures at different sizes (LCS) using differentδf values.

In the definition ofΛ in Eq. (2.12), we used|τ | instead ofτ because it is often the
case that we are interested in computingΛ for t > 0 andt < 0, to produce LCS akin to
stable and unstable manifolds, as was mentioned towards theend of the previous section.

The technique identifies dynamical objects that organize the transport, and relevant
coherent structures. Until recently, the power of these novel Lagrangian approaches has
been mainly relegated to mathematical systems or simplifiedworkbench models, since
the required detailed knowledge of the velocity field was notreadily available in real geo-
physical situations. However, in the last decades the situation has dramatically changed,
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with a rapidly increasing amount of data available from Lagrangian drifters [4], satellite
measurements [24], and especially from detailed computer models [25,26]

2.4 Lagrangian Coherent Structures (LCS) as ridges in
the FSLE field

To define a hyperbolic trajectory precisely for systems given only over a finite time-space
interval one should be careful, e.g. see [7, 27]. However, let us just think of hyperbolic
trajectories as ones about which there is a direction of expansion and a direction of com-
pression. In dynamical systems terminology, this means that there should exist stable
and unstable directions about a hyperbolic trajectory. Forincompressible flows, without
sources or sinks, any expansion in one direction must be balanced by compression in an-
other direction, making such trajectories ubiquitous.

If exponential separation between trajectories occurs, and if the domain of the system
is compact, which is typically the case, these trajectoriesmust mix together. This is es-
pecially true for turbulent flows, but even for simple dynamical systems this is also true
and is often termed ”deterministic chaos”, which refers to the phenomenon that simple
vector fields can produce chaotic trajectories. The structures of strongest hyperbolicity
often dictate transport in dynamical systems [5], which we will come to see. However,
for time-dependent systems these structures, which we refer to as LCS, are often recon-
dite when viewing the Eulerian velocity field or even particle trajectories.
For time-independent systems, separatrices are given by the stable and unstable mani-
folds of hyperbolic fixed points, as in the pendulum example presented before. However,
for highly time-dependent systems, the FSLE fields admit analogous ridges that divide
dynamically different regions, and these structures are themselves time-dependent. No-
tions such as stable or unstable manifolds are well defined for time-independent flows, but
for general time-dependent flows, these notions become ambiguous. However, one can
loosely think of studying a time-dependent flow in terms of LCS as the analog of studying
a time-independent flow in terms of stable and unstable manifolds. Experience dictates
that a wide range of systems admit well-defined ridges in the FSLE fields which govern
the global flow structure, however we would like to preciselyknow: Do LCS represent
invariant manifolds?
If we refer to LCS as ridges of the FSLE field, we must define a ridge. Intuitively, a ridge
is a curve such that if somebody walking along a ridge, then stepping in the direction
transverse to the ridge, he would be stepping down. For FTLE,it is known that LCS rep-
resent invariant manifolds, and there is mathematical theory for that, but it is not started
for FSLE. However we assume that ridges in the FSLE field trackthe LCS.
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2.4.1 LCS properties.

• For well-defined LCS, which are obtained from FSLE field with asufficient inte-
gration time, the flux of matter across such structures is expected to be small.

• The FSLE measures the integrated effect of the flow, so if timeis too small then this
integrated effect is ignored and thus the FSLE is not very indicative of Lagrangian
behavior.

• LCS (at least the ones which are clearly visible in the FSLE fields) are invariant
manifolds for all practical purposes.

2.5 Comparison between Eulerian diagnosis and Lagrangian
diagnosis from finite-size Lyapunov exponents

As said before, the Eulerian perspective is typically defined as viewing the fluid at fixed
points in the domain, perhaps at varying instances in time. When viewing the vector field
of a dynamical system, this is the standard perspective. On the other hand, the Lagrangian
perspective views the flow in terms of particle trajectories. While the FSLE field is tech-
nically a Eulerian field, it is thought of as a Lagrangian quantity since it is computed from
particle trajectories.

In contrast with Eulerian diagnostics, Lagrangian tools like the FSLE have the ad-
ventage of exploiting both spatial and temporal variability of the velocity field and are in
principle able to unveil subgrid filaments generated by chaotic stirring. It was found [18],
by comparing with sea-surface temperature patterns, that the two diagnostics provide sim-
ilar results for slowly evolving eddies like the first Alboran gyre. However, the Lyapunov
exponent is also able to predict the (sub-)mesoscale filamentary process. Climatologies of
Lyapunov exponents do not show any compact relation with other Eulerian diagnostics,
unveiling a different structure even at the basin scale.

Filamentation dynamics can be detected by reprocessing available altimetric or nu-
merical velocity data with Lagrangian tools, giving insight into (sub-)mesoscale stirring
processes relevant to tracer observations and complementing traditional Eulerian diagnos-
tics.

2.6 Turbulence and multifractality

In fluid dynamics, [28] turbulence or turbulent flow is a fluid regime characterized by
chaotic and stochastic properties. This includes low momentum diffusion, high momen-
tum convection, and rapid variation of pressure and velocity in space and time. Flow that
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is not turbulent is called laminar. At very low speeds the flowis laminar, i.e., the flow is
smooth (though it may involve vortices on a large scale). As the speed increases, at some
point the transition is made to turbulence. In turbulent flow, unsteady vortices appear on
many scales and interact with each other. Because laminar-turbulent transition is gov-
erned by Reynolds number (that gives a measure of the ratio ofinertial forces to viscous
forces), the same transition occurs if the size of the objectis gradually increased, or the
viscosity of the fluid is decreased, or if the density of the fluid is increased.

In the ocean the turbulence causes the formation of eddies ofmany different length
scales. Most of the kinetic energy of the turbulent motion iscontained in the large scale
structures. In conventional threedimensional turbulence, the energy cascades from the
large scale structures to smaller scale structures by an inertial and essentially inviscid
mechanism. This process continues, creating smaller and smaller structures which pro-
duces a hierarchy of eddies. Eventually this process creates structures that are small
enough that molecular diffusion becomes important and viscous dissipation of energy fi-
nally takes place. The turbulence in oceanic flow is in two dimensions and the energy
cascade is in the inverse direction. There is however a cascade of vorticity towards small
scales.

Moreover, the ocean is a system displaying scale invariant behavior. From complex
systems theory it is know that fractal sets have an intrinsicscale-invariant nature which
can be expressed by a characteristic exponent that is the fractal dimension of the set.
There are many definitions of fractal dimension and none of them should be treated as
the universal one. The fractal dimension [29] is used to characterize quantitatively a self-
similar system. Self-similarity is a symmetry property of the system. By self-similarity
we mean invariance under an isotropic transformation, namely a simple dilation. If we
consider an object S formed by a set of pointsR = (x1, x2,x3,...), a dilation, or similarity
transformation with a scaling factorb, changes the coordinates tobR = (bx1, bx2,bx3,...).
The set S formed by the particles of coordinatesR is self-similar if it is invariant under
this transformation. For a deterministic fractal, scale invariance means that the rescaled
system bS is identical with a part of the original system S.
By embedding dimension,dE, we understand the smallest Euclidean dimension of the
space in which a given object can be embedded. The volumeV (l) of an arbitrary object
can be measured by covering it with balls of linear sizel, and volumeldE . We needN(l)

balls to cover it, so

V (l) = N(l)ld
E

. (2.13)

One might at first expect that for any object,N(l) ∼ l−dE , since the volume of stan-
dard objects does not change with the unit of measurementl. But for fractals we have in
general

N(l) ∼ l−Df . (2.14)



14 Concepts and Tools

Objects withDf < dE are called fractals, withDf is the fractal dimension. In topo-
logical terms, if we have a structure that is a line, the topological dimension isDf=1,
if the structure is a surfaceDf=2, and if we have a structure between a line and a sur-
face, we obtain a dimension equals to a fractional number between one and two (fractal
dimension).

For a homogeneous fractal, with fractal dimensionDf , many relevant scale-dependent
quantities decay as a power law of the scale with exponents which are directly related to
the fractal dimensionDf . The widespread occurrence of this behavior led researchers to
interpret those systems in terms of fractal sets, and try to characterize universality classes
in terms of possible underlying fractal attractors or fractal interfaces.

Nevertheless, a better understanding of the mechanisms that govern the evolution of
some dynamical systems, turbulent flows being one of the mostrelevant cases, evidence
that the observed intrinsic complexity could not be coveredby a simple description based
on the existence of a single fractal interface. As a consequence, a richer framework was
required and the natural step forward was to consider multiple-fractal hierarchies which
could fit better with the available evidence. Therefore a multifractal system is a gen-
eralization of a fractal system in which a single exponent (the fractal dimension) is not
enough to describe its dynamics; instead, a continuous spectrum of exponents is needed
(See Sect. 4.1).

2.7 Langevin equation and eddy-diffusivity

A stochastic differential equation (SDE) [30] is a differential equation which contains a
stochastic processξ(t):

dx(t)

dt
= G(x(t), t, ξ(t)) (2.15)

whereξ(t) is a stochastic process (random process). As a consequence aSDE is not a
single differential equation but rather a family of ordinary differential equations, a differ-
ent one for each outcomeu of the stochastic process:

dxu(t)

dt
= G(xu(t), t, ξu(t)) (2.16)

Therefore, the family of solutionsxu of these differential equations, for different out-
comesu, constitute a stochastic processx(t). We can say that to each realizationξu(t)

of the stochastic processξ, corresponds a realizationxu of the stochastic processx. The
solutionx becomes then a functional of the processξ. To solve a SDE means to charac-
terize completely the stochastic processx(t), i.e. to give the m-times probability density
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function (pdf)f(x1, ..., xm; t1, ..., tm). Again, this is in general a rather difficult task and
sometimes one focuses only on the evolution of the moments〈x(t)n〉 and the correlation
function〈x(t1)x(t2)〉. When the stochastic processξu(t) appears linearly one talks about
a Langevin equation. Its general form being:

dx(t)

dt
= q(x, t) + g(x, t)ξ(t). (2.17)

In this case,ξ(t) is usually referred to as the “noise” term. A word whose origin comes
from the random “noise” one can actually hear in electric circuits. Another notation
concept: if the functiong(x, t) is constant, one talks about additive noise, otherwise, the
noise is said to be multiplicative. Finally,q(x,t) is usually referred to as the ’drift’ term,
whereasg(x,t) is the ’diffusion’ term.
We can use the Langevin equation with additive noise to simulate missing information
between points of the grid of the velocity data in the computation of particle’s trajectories
of the marine flow. In this casex will be the coordinates,q(x, t) is the velocity field and
g(x, t) is the diffusion term related to the oceanic diffusivity. Empirical relations between
diffusion characteristics were investigated [31] by the use of carefully examined data from
instantaneous dye-release experiments in the upper mixed layer of the sea. In this work,
among others things, the relation of the varianceσ2 of the initial distribution of path with
the diffusion time (time of diffusion during which a patch from a point source grows into
the sizeσ) was studied . The following empirical relation was found:

σ2 = 0.0108 t2.34 (2.18)

whereσ2 andt are expressed in terms ofcm2 andsec, respectively. The scale of diffusion
represents in our case the spatial resolution of the velocity data. The relationship between
the diffusivityDa, in m2s−1, and the scale of the diffusion,l in m, is given by

Da = 2.055 10−4l1.15 (2.19)

This ocean diffusivity represents the eddy diffusivity, and it depends on the spatial reso-
lution of the FSLE field.





Chapter 3

Lagrangian Coherent Structures

(LCS) in marine currents of the

Balearic Sea

In this chapter we characterize transport and mixing at meso- and submeso-scale in the
area of the Balearic Sea by means of the Finite-Size LyapunovExponents, by using ve-
locity data from a numerical model. This technique has already been used to analyze the
whole Mediterranean Sea, [16] and the Algerian basin [18].

3.1 Data: Surface velocities in the Mediterranean Sea

In this study and in the studies of the next chapters, we have used data sets from the
DieCAST (Dietrich for Center Air Sea Technology) numericalocean model applied to
the Mediterranean Sea with realistic coastlines and topography. The dataset has been
already used in previous Lagrangian studies [16, 32, 33]. DieCAST [26] is a primitive
equation, z-level, finite difference ocean model using the hydrostatic, incompressible and
rigid lid approximations.

Horizontal resolution is the same in both the longitudinal,φ, and latitudinal,λ, direc-
tions, with resolutions∆0 = ∆ φ = 1/8◦ and∆ λ = ∆ φ cos (λ) . Therefore it is important
to remark that the original spatial resolution of the velocity field is ∆0 = 1/8◦. Vertical
resolution is variable with30 control volume layers, and the temporal resolution is one
day. The thickness of control volumes in the top layer is 10.3m and they are smoothly
increased up to the deepest bottom control volume face at 2750 m. Bathymetry is trun-
cated at 2750m depth and it is not filtered or smoothed.
The model uses monthly mean wind stress reanalyzed from 10m wind output from the
European Centre for Medium-Range Weather forecasts. Monthly climatology of sea sur-
face temperature and salinity [34] is used to determine the heat and the freshwater sources

17
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in the surface layer that are used to force the model. The onlyopen boundary is the Strait
of Gibraltar, where inflow conditions are set similar to observations and outflow is model-
determined by upwind. The model is initialized at a state of rest with the annual mean
temperature and salinity fields taken from the climatological. Each year is considered to
have 12 months, 30 days length each. The climatological forcing we use is adequate to
identify the mechanisms and processes occurring under typical or average circumstances.
Under this approach, high frequency motions are weak in our model and a daily sampling
is adequate. The impact on transport of disturbances containing high frequencies, such
as storms or wind burst, is not the focus of the present study and would need specific
modelling beyond climatological forcing.

We focus on velocity fields obtained at the second layer, which is localized at depth
of 16 m. This is representative of the surface circulation and is not directly driven by
wind as the top layer. We have recorded daily velocities for five years, and concentrate
our work in the area of the Balearic Sea. The two-dimensionalhorizontal velocity field on
this layer is not exactly incompressible, but it is very close to this situation since typical
vertical velocities in the ocean are four orders of magnitude smaller than the horizontal
ones (10−5 vs 10−1m/s). Because of incompressibility, points at which fluid particles di-
verge horizontally along particular directions receive fluid along other directions, so that
the stretching is linked to mixing. On the other hand, withinthe FSLE method used in this
study and presented in the previous sections, to estimate structures at the mesoscale, fluid
particle trajectories need to be integrated only while theyundergo horizontal displace-
ments of the order of 100km, i.e., during 1-10 days (see the next section). Estimating
an effective or average vertical velocity for this time as the spatial average of the vertical
velocity in horizontal regions of that size, one obtains an effective vertical velocity of
0.1 − 0.7 m/day. Thus, during the time of integration, most particles do notleave the
horizontal layer considered. In consequence, restrictingthe study to horizontal motion on
a single model layer is a good description of the full transport processes for the space and
time scales relevant to mesoscale processes within the FSLEapproach.

Fig. 3.1 shows an example of the output of the model for the velocity field in the
second layer (16m depth) of the Balearic Sea at day 640 (the 10th day of the tenthmonth
-October- of the second year of simulation).

Two well known currents, the Northern Current flowing southwards close to the Span-
ish coast and the Balearic Current associated with the NorthBalearic Front and flowing
northeastwards North of the Balearics, are observed although significantly deformed by
the presence of eddies.
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Figure 3.1. Snapshot of the surface velocity field at 16 m depth of the Mediterranean Sea (top) and
Balearic Sea (bottom) corresponding to day 640 (October) simulation of the DieCAST model. The
Westernmost coast is the Spanish one, the islands are the Balearics. The box inside top figure indicate
the area of study.

3.2 Computation of Trajectories and FSLE

As already mentioned, to compute the FSLE (Eq. 2.12) we need to obtain the time,τ ,
required for two particles of fluid (one of them placed atx) to separate from an initial
distance ofδ0 to a final one ofδf . To compute this time we need to know the trajectories
of the particles. The FSLE are computed for the pointsx of a lattice with lattice spacing
coincident with the initial separation of fluid particlesδ0. The equations of motion that
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describe the horizontal evolution of particle trajectories in our velocity field are

dφ

dt
=

u(φ, λ, t)

R cos λ
, (3.1)

dλ

dt
=

v(φ, λ, t)

R
, (3.2)

whereu andv represent the eastwards and northwards components of the surface veloc-
ity field coming from the simulations described in the previous section;R, is the radius
of the Earth (6400km in our computations),φ is longitude andλ latitude. Numerically
we proceed integrating Eqs. (3.1) and (3.2) using a standard, fourth-order Runge-Kutta
scheme, (see Appendix A), with an integration time stepdt = 6 hours. Since information
is provided just in a discrete space-time grid, spatiotemporal interpolation of the velocity
data is achieved by bilingual interpolation (see Appendix B). However we notice that bi-
linear interpolation requires an equally space grid. Our data input is expressed in spherical
coordinates, and the grid is not uniformly spaced in the latitude coordinate. In order to in-
terpolate in an uniformly spaced grid, we transform our coordinate system(λ, φ) to a new
coordinate system with coordinates(µ, φ), where the grid turns out to be uniform [33].
The latitudeλ is related to the new coordinateµ by

µ = log | sec λ + tanλ|. (3.3)

In the new variables the equations of motion are:

dφ

dt
=

u(φ, µ, t)

R cos λ(µ)
(3.4)

dµ

dt
=

v(φ, µ, t)

R cos λ(µ)
, (3.5)

and one can convert theµ values back to latitudesλ by inverting Eq.(3.3):

λ = π/2 − 2 arctan (e−µ). (3.6)

Once trajectories are integrated from these equations, onecan convertµ values toλ by
using Eq.(3.6). Once we integrate the equations of motion, Eqs.(3.4, 3.5), we compute the
FSLEs with Eq. (2.12) for the pointsx of a lattice with spacingδ0. Initial conditions for
which the prescribed final separationδf has not been reached after using all the available
times in the DieCAST simulation are assigned a valueΛ = 0. The largest Lyapunov
values concentrate along characteristic lines which are manifolds of the most relevant
hyperbolic points [11,16,18].
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3.3 Lagrangian diagnosis

The FSLE has been introduced in order to study non-asymptotic dispersion processes,
and for detecting and visualizing Lagrangian structures (e.g., transport barriers or vortex
boundaries). In this section we will focus mainly in the second use, and we will also
use measures of dispersion and mixing based on the Lagrangian structures detected. The
FSLE is inversely proportional to the time at which two particles reach a prescribed sepa-
ration. In order to characterize the strongest separation (and the fastest convergence along
the complementary direction),Λ, is selected as the maximum among the four values ob-
tained when the initial separationδ0 is chosen along four orthogonal directions.
The field of FSLEs depends on the choice of two length scales: the initial separationδ0

and the final oneδf . As in previous works [16, 18] we want to focus here on mesoscale
transport. Thus the final length scale,δf , is fixed to one degree, i.e., separations of about
110km at Balearic Sea latitude, which is a typical mesoscale structure size. On the other
hand, the smallest scaleδ0 determines the spatial resolution of the FSLE field. In this way
the FSLE represents the inverse time scale for mixing up fluidparcels between length
scalesδ0 andδf . In the first part of this section, we are interested in the spatial distribu-
tion of FSLEs, and thus we calculate them at pointsx located on a grid of spacing∆x

= δ0 . A very important fact is that the resolution of the FSLE fieldcan be finer than
that of the velocity data, which enables to study submesoscale processes under the typi-
cal mesoscales (below 10 kilometers) that nowdays provide altimetry data. This scaling
property will be analyzed in the next chapters.

Figure 3.2. Snapshot of spatial distributions of FSLEs backward (left panel) and forward (right
panel) in time starting from simulation day 640 (October) ofthe DieCAST model for the Balearic
Sea at resolutionδ0 = 1/64◦. Mesoscale structures and vortices can be clearly seen. In both of them
we takeδf = 1◦. The colorbar has units ofday−1.

We can compute the FSLEs in two ways (Fig. 3.2): from trajectory integration
forwardsandbackwardsin time. Maximum in the spatial distribution of backward FSLEs
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identify lines of maximum compression, approximating attracting material lines or unsta-
ble manifolds of hyperbolic moving points [11,16]. As observed in others works, forward
FSLE maximum values of the spatial distribution organize inlines [11, 12, 16] that pro-
vide good approximation to repelling material lines (whichare in turn stable manifolds of
hyperbolic moving points). Typical values are in the order of 0.1-0.6days−1 correspond-
ing to mixing times for mesoscale distance of 1.7-10days. Since stable and unstable
manifolds cannot be crossed by particle trajectories, suchlines strongly constrain and
determine fluid motion. These lines organize the transport processes in the Sea surface.
Spatial structures ranging from the small scales to the onestypical of mesoscale vortices
are clearly identified. In the core of the eddies one has low values of FSLEs (i.e., low
dispersion rates); on the contrary, the largest values of the FSLE can be found in the outer
part of the eddies, where the stretching of the fluid parcels is particularly important, and
in lines indicating robust transport barriers.
An important fact, is that in some regions of the vortex cores, chaotic tangles are still
observed as local maximum of the FSLE distribution. These maximum are, however, not
strong. In fact, even if the stretching is locally very high,the requirement for two points
to diverge for more thanδf =110 km gives a low value ofλ to such finer structures.
Since stable and unstable manifolds cannot be crossed by particle trajectories, such lines
strongly constrain and determine fluid motion.
Calculating in this way the FSLEs in the region of the Balearic Sea, we unveil the tangle
of stretching and compressing lines in which vortices are embedded (Fig. 3.3). As men-
tioned, these lines also define the directions of transport.Lobes arising from intersections
of stretching and compressing lines at a vortex edge indicate where transport in and from
the vortex place, whereas tangencies among them provide barriers to transport. In Fig. 3.3
some intersections of stretching and compressing lines areindicated as black dots. These
identify Lagrangian hyperbolic points (and their motion define hyperbolic trajectories).
Such points correspond to areas with strong mixing activity: fluid is advected here along
a compression line and then dispersed away along the stretching line.

This dynamical picture suggests a quantitative measure [16] of mixing in a prescribed
area:M±(t) =

〈√
Λ+Λ−

〉

, whereΛ+ andΛ− are the FSLEs in the forward and in the
backwards time direction, and the average is the spatial average over the area A. This
quantity is large only where hyperbolic points are present.The time dependence of this
quantity when the area is the Balearic Sea is shown in the Figure 3.4, characterizing the
seasonal variations of mixing. Maximum values, of the orderof 0.17days−1, are reached
in the beginning of Spring, and minimum values around the beginning of Autumn. Be-
cause of the approximate incompressible character of the horizontal flow, the temporal
variations of forward and backward FSLEs are strongly correlated, and one expects that
the same information can be obtained from just one of the FSLE. Thus one can use a
simpler measure of mixing in an area asM+(t) = 〈Λ+〉 or M−(t) = 〈Λ−〉. We show in
Figure 3.4 that, as expected ( [16]), it contains essentially the same information asM±(t),
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Figure 3.3. FSLEs calculated from forward (displayed as positive values) and backwards (displayed
as negative values) integrations in time starting from day 640 (October) of the DieCAST model, i.e.,
what is plotted is the fieldΛ+ − Λ− at resolutions ofδ0 = 1/64◦. A region with strong mixing
appears organized by a tangle of stretching and compressingmanifolds. Such lines organize the flow.
The black points indicate some of the hyperbolic points thatare localized at the intersections of the
lines. We takeδf = 1◦. The colorbar has units ofday−1.

but it could be measured from floater experiments. It is thus agood characterization of
mixing strength. We compare in Fig. 3.5 the temporal behavior of mixing in the Balearic
Sea with the whole Mediterranean Sea. This plot shows that the Balearic Sea is an area
with strong mixing activity in the Mediterranean Sea in the Spring and Summer seasons.

Computing such a picture for every day of the year and taking the time average, one
can obtain a map of regions in the Balearic with different mixing activity (Fig. 3.6) .
As expected, the Southern part of the Balearic Sea appears more active, especially in
the eastern part. As a further example we compare (Fig. 3.7) the temporal behavior of
M+(t) in the two regions (the North and South of the Balearic Sea) where we expect, from
Figure 3.6, to see a very different mixing activity. The South area presents more mixing
activity than the North area probably because of the influence of the Algerian current. In
addition, the two areas show seasonal fluctuations but the timing in the mixing processes
are diferent, when one of them reaches a local maximum the other one reaches a local
minimum.
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Figure 3.4. Temporal evolution of the mixing measuresM±(t) andM+(t) for the Balearic Sea
during one simulation year. They display a similar behaviorwith maximun values in March, and
minimum value in September.
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Figure 3.5. M+(t) during one year for the Balearic Sea and the Mediterranean Sea. The figure show
the same seasonal behavior but different values in magnitude in Spring and Summer.
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Figure 3.6. Time average ( for the second simulation year) of the FSLEs inthe Balearic Sea. Geo-
graphical regions of different mixing activity appear. Thecolorbar has units ofday−1.
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Figure 3.7. Temporal evolution of the mixing measuresM+(t) for the North and South area of the
Balearic Sea during one simulation year. They display a seasonal behavior but different in magnitude.





Chapter 4

Scale invariance properties of FSLE

A very important fact is that the resolution of the FSLEs fieldcan be finer than that
of the velocity data. This enables to study submesoscale processes under the typical
mesoscales, below10 kilometers, that are the standard sizes of numerical modelsor of
altimetric data. This is subject to some controversy since one needs to interpolate the
velocity to a grid of resolutionδ0, smaller than the resolution of the initial velocity data
and this could induce some artificiality in the results. A wayto account to this question
is to analyze the multifractal properties of the FSLEs. If they show it then they do not
have a characteristic spatial length and are somehow repeated at every scale. Thus the
FSLE properties under the subgrid scale should be as valid asthe ones above. On the
other side, Lyapunov exponents at infinite time have a multifractal structure and the FTLE
distribution is known to reflect this scaling behavior whenT → ∞ [35]. But no similar
theory has been developed for FSLE. We expect to observe the same multifractal scaling
whenδ0 → 0, and this will be checked in the first section of this chapter.

Another related question is what happens when there is a lossin the resolution of the
velocity field: Do we obtain the same LCS?. We analyze this question in the second part
of the chapter.

4.1 FSLE at different spatial scales

In our computation of the FSLE field, besideδ0 = 1/8◦, which is the DieCAST grid
resolution, we will useδ0 = 1/16◦, 1/32◦, 1/64◦.

In Figure 4.1 we plot the FSLE field for the same day computed atdifferent resolu-
tions. As the resolution gets finer (smallerδ0) more dynamical structures are revealed
and filaments gets thinner, with typical widths much smallerthat the10 kilometers of
the velocity data resolution. This is the reason for the claim that FSLEs provide infor-
mation below data resolution length-scale. It is remarkable, however, that the large-scale
structures are not much affected by the changing resolution: they are just sharper or more
blurred, but maintaining the same shape and locations. We next compute the probability

27
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Figure 4.1. Snapshots of spatial distributions of backward FSLEs, starting from day 640 of the
DieCAST model at different resolutions: a)δ0 = 1/8◦, b)δ0 = 1/16◦, c)δ0 = 1/32◦, d)δ0 = 1/64◦.
In all of them we takeδf = 1◦. The numbers in the color bar have units ofday−1. Initial conditions
for which the separationδf has not been reached after 640 days are assigned a valueΛ = 0.

density distribution of the FSLE,P (δ0, Λ), for different resolutionsδ0. In Fig. 4.2 we
show the histograms (averaged over30 snapshots distributed among15 months) normal-
ized to the same unitary area. One can see that when the resolution gets finer theP (δ0, Λ)

narrows, and the peak height increases. Despite the probability density concentrates close
to a mean value (sayΛ ≈ 0.1), large deviations remain even for relatively high resolution.

The way the structures in Figure 4.1 and the corresponding histograms in Figure 4.2
change with changing resolution suggests a multifractal character for the FSLE field,
different scaling hapens in different points, which organize in manifolds with a particular
dimension. To check this we propose the relationship [36]:

P (δ0, Λ) = P (δ0, Λc) δ
d−D(Λ)
0 , (4.1)

whereP (δ0, Λc) is the maximum value ofP at a given resolution scaleδ0, d is the dimen-
sion of the embedding space (d = 2 in our case), and thusD(Λ) is the fractal dimension
of the set of points having FSLE with the valueΛ. From Eq.(4.1) one has

D(Λ) = d −
log P (δ0,Λ)

P (δ0,Λc)

log δ0
. (4.2)
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The plot ofD(Λ) in Figure 4.2 (right) shows a collapse at different scales confirming
the hypothesis in Eq.(4.1). (The collapse is not perfect dueto the lost of translational
invariance produced by the small size of the domain -the Balearic basin- that we analyze,
as well as to the presence of coasts). Thus, the interfaces ofconstantΛ values build a
multifractal hierarchy and generalized scale invariance is present in the FSLE field.

Maximum values in the histograms (Top figure in Fig. 4.2) are the most probable
FSLE values. These FSLE values have a fractal dimension equal to two (bottom figure in
Fig. 4.2), therefore in the greater part of the FSLE field you find structures of dimension
two. The fractal dimension of the regions with larger valuesof Λ is close to one, and since
objects with dimension one are lines, the ridges of FSLE are located along lines.

4.2 FSLE at different spatial resolution of the velocity
field

As was said the resolution of the velocity field in the DieCASTmodel is∆0 = 1/8◦. To
simulate a resolution loss we replace each square in the gridmade by four points by a
single point, with the velocity there being the average of the four points. In this way we
reduce the velocity resolution to∆0 = 1/4◦. We repeat again the procedure to obtain
a new velocity field with a still coarser resolution of∆0 = 1/2◦. The velocity field at
these new resolutions are plotted in figure 4.3, and the FSLE computed using these new
velocity fields are shown in figure 4.4.

It is clear that the FSLEs fields obtained from lower resolution velocity fields have
a smoother structure, with smaller horizontal mesoscale structures suppressed (the sub-
mesoscale filamentary structure, however, remains, since its size is controlled byδ0). A
pointwise comparison of the fields obtained at the nominal DieCAST resolution and the
coarser ones gives large errors. However, the main large-scale structures and the lines
with the strongest values ofΛ, the LCSs, are not greatly changed.

Fig. 4.5 displays the relative error< ǫ(t) > of the FSLEs with respect to the ones
calculated for the original resolution∆0 = 1/8◦. < ǫ(t) > is obtained from the following
formulas:

ǫ(ti) =

√

1

N

∑

x

|Λα(x, ti) − Λ(x, ti)|2
|Λ(x, ti)|2

, < ǫ(t) >≡ 1

s

s
∑

i=1

ǫ(ti) . (4.3)

with Λα is the Lyapunov field corresponding to coarser values of∆0, andΛ is the Lya-
punov field at original spatial resolution of the velocity field. The sum over pointsx is
restricted to the places whereΛ(x, t) > 0.2, and each panel of the figure is for the two
spatial resolutions of the FSLE fieldδ0 = 1/8◦ andδ0 = 1/64◦. The relative error is
large in both cases. However, it is important to note that this is due to the fact that the
new resolution of the velocity field (∆0 = 1/2◦) is much larger than the original one
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(∆0 = 1/8◦). That is, almost a difference of40km in the velocity spatial resolution. Fi-
nally, To get an idea of how relevant these quantities are, wehave computed the relative
error of shuffled FSLEs with respect to the original field, andobtained the values1.143

and1.292 for δ0 = 1/8◦ andδ0 = 1/64◦, respectively, and at∆0 = 1/8◦. The shuffling
procedure consists in generating Lyapunov maps by doing a random permutation of the
original values of FSLE in space and time. This keeps invariant the FSLE histograms, but
destroys any spatial and temporal correlation.
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Figure 4.2. Top: Comparison of the probability density functionsP (δ0, Λ) for the FSLEs at different
resolutions. It is obtained from the temporal average (30 snapshots) of instantaneous histograms of
λ. Dotted line is forδ0 = 1/8◦, dashed-dotted lineδ0 = 1/16◦, dashedδ0 = 1/32◦, and solid line
for δ0 = 1/64◦. Bottom: D(Λ) calculated from Eq. (4.2) for different values ofδ0. Dotted for
δ0 = 1/8◦, dashed-dotted lineδ0 = 1/16◦, dashedδ0 = 1/32◦, and solid line line forδ0 = 1/64◦.
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(a) (b)

(c)

Figure 4.3. Snapshots of velocity fields for the day 640 of the DieCAST model at different resolu-
tions a)∆0 = 1/8◦, b) ∆0 = 1/4◦, c) ∆0 = 1/2◦.
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Figure 4.4. Snapshots of FSLEs calculated backwards in time starting from day 640 of the DieCAST
model at different resolutions of the velocity field: a)∆0 = 1/8◦, b) ∆0 = 1/4◦, c) ∆0 = 1/2◦. In
all of themδ0 = 1/64◦. The color bar has units ofday−1. Initial conditions for which the separation
δf has not been reached after 640 days are assigned a valueΛ = 0.
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Figure 4.5. Relative error< ǫ(t) > of the FLSE fields at different values of velocity resolution(∆0)
with respect to the nominal case∆0 = 1/8◦ = 0.125◦ (only the points at which the Lyapunov field
at this nominal resolution exceed 0.2 are considered). Spatial resolution isδ0 = 1/8◦ (solid line) and
δ0 = 1/64◦ (dotted line).< ǫ(t) > is obtained by temporally averaging the error in 100 snapshots.
Only The error bar indicates the statistical error of the< ǫ(t) > average.δf = 1◦.



Chapter 5

Robustness of FSLEs

Numerical, satellite or in-situ obtained oceanic surface velocity fields are subjected to
many different sources of error. Numerical models are mainly plagued by errors coming
from the finite scale resolution, uncertainty in the boundary and external forcing condi-
tions, and in the numerical algorithm itself. On the other hand, altimetry-based velocity
errors are due to orbit configuration, estimation methods, smoothing, atmospheric correc-
tions, calculation of the mean flow from the geoid, interpolation of satellite tracks to grid
points, etc. Typical errors for in-situ data are of instrumental origin and human manip-
ulation, but also due to the interpolation of tracks to a grid, atmospheric conditions and
many others. It is therefore natural to ask how theerror in the velocity field translates into
the FSLE computation. In addition one may consider the influence of uncertainties in the
computation of fluid particle trajectories due to unresolved small scales. In this chapter
we consider these: first the role of errors in velocity, and finally the role of the error in the
trajectories.

5.1 Error in the data

We compute the FSLEs after applying a random perturbation toall components of the
velocity field. The velocity is changed from(u, v) to (u′, v′), with u′(x, t) = u(x, t)(1 +

αηx(x, t)) andv′(x, t) = v(x, t)(1 + αηy(x, t)). {ηx(x, t), ηy(x, t)} are sets of Gaussian
random numbers of zero mean and unit variance.α measures the relative size of the
perturbation. We introduce three different kinds of error:uncorrelated noise, i.e. different
and uncorrelated values of{ηx(x, t), ηy(x, t)} for eachx and t; correlated in time and
uncorrelated in space (uncorrelated for differentx but the same values at givenx for
different t); and correlated in space and uncorrelated in time (uncorrelated values for
different t, but the same values for differentx at fixed t). Note that the perturbation is
proportional to the original velocity.

Fig. 5.1 shows snapshots of FSLEs at the same time for different values ofα =

0, 20, 60, 100, for the case of perturbation uncorrelated in time and in space. The com-
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Figure 5.1. Snapshots of FSLEs calculated backwards in time starting from day 600 of the DieCAST
simulation at fixed spatial resolution (δ0 = 1/64◦), and at differentα (relative size of the perturbation
of velocity, for the case in which it is uncorrelated in spaceand time): a)α = 0, b)α = 20 , c)α = 60
, d)α = 100 . In all of them we takeδf = 1◦. The color bar has units ofday−1. Initial conditions for
which the separationδf has not been reached after 600 days are assigned a valueΛ = 0.

puted Lagrangian structures look rather the same, despite the large size (α = 100 means
perturbation 100 times larger than the initial velocity field) of the perturbation introduced.

We quantify the influence of the velocity perturbation in theFSLE calculation by
computing the relative error of the perturbed with respect to the unperturbed Lya-
punov field at a given instant of time, and then averaging in time (we haves = 100

snapshots: t = t1, ..., ts) from formulas similar to 4.3, but withΛ(x, ti) andΛα(x, ti) re-
placed by the FSLEs fields without and with inclusion of the perturbation in the velocity
data, respectively. The sum overx runs over theN = 2679 spatial points. Figure 5.2
displays, as a function ofα, the average error< ǫ(t) >.

The important result is that the relative error has always small values: even forα = 10

(i.e. a perturbation ten times larger than the initial velocity field) the relative error remains
smaller than0.23 for the three kinds of noise, at the same spatial resolution of velocity
data∆0 = 1/8◦, and at spatial resolution of the FSLE fieldδ0 = 1/8◦. This result is also
obtained at a finer spatial resolution of the FSLE fieldδ0 = 1/64◦ and at the same spatial
resolution of the velocity field∆0 = 1/8◦, where the relative error is slightly higher than
0.5. The relative errors computed for the shuffled FSLEs takethe values1.14 and1.3 for
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δ0 = 1/8◦ andδ0 = 1/64◦, respectively.

These results confirm that the values and spatial distribution of the FSLEs are robust
to relatively large amount of error in the velocity field provided the errors are spatially
or temporally uncorrelated. The reason for this is the averaging effect produced when
computing FSLEs by integrating over trajectories which extend in time and space, make
them rather robust against several types of uncorrelated noise in the velocity data.

5.2 Noise in the particle’s trajectories

In section 5.1 we introduced noise in the velocity data to mimic possible uncertainties
affecting them, and computed the FSLEs for the resulting fields. Now we proceed seem-
ingly but by adding the noise to the particle trajectories. This is a simplified way of
including unresolved small scales in the Lagrangian computations [37]. To be precise we
solve numerically (see Appendix C) the following system of equations:

dφ

dt
=

u(φ, λ, t)

R cos(λ)
+

√
2D

R cos(λ)
ξ1(t), (5.1)

dλ

dt
=

v(φ, λ, t)

R
+

√
2Dξ2(t)

R
. (5.2)

ξi(t) i = 1, 2 are the components of a two-dimensional Gaussian white noise with zero
mean and correlations< ξi(t)ξj(t

′) >= δijδ(t − t′). Eqs. (5.1, 5.2) use a simple white
noise added to the trajectories. A more realistic representation of small-scale Lagrangian
dispersion in turbulent fields requires using other kinds ofcorrelated noises [37] but, as
we are interested in examining influences of the missing scales, it is convenient to use
white noise, since this would represent the extreme case of very irregular trajectories
which gives an upper bound to the effects of more realistic smoother small scales. Thus
the tests presented in this subsection are similar to the ones considered in subsection 5.1
when adding uncorrelated perturbations to the velocity, but here the perturbation acts at
arbitrarily small scales, as appropriate for a turbulent field, instead of being smooth below
a cutoff scale, as appropriate for modelling observationalerrors.

For the diffusivity we use Okubo’s empirical formula [31], which relates the effective
eddy-diffusion,D in m2/s, with the spatial scale,l in meters:D(l) = 2.055 10−4 l1.15. If
we takel = 12 km, which is the approximate length corresponding to the1/8◦ DieCAST
resolution at Mediterranean latitudes, we obtainD ∼ 10 m2s−1 ≡ D0.

First, in Fig. 5.3 we show particle trajectories without (top panel) and with (bottom
panel) the eddy diffusion. As expected diffusion modelled by random motion introduces
small scale irregularities on the trajectories, but also itintroduces substantial dispersion
at large scales. In Fig. 5.4 we show snapshots of FSLEs for thesame day and at the same
spatial resolutionδ0 = 1/64◦, but obtained for different values ofD. We can see that the
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main mesoscale structures are maintained, but the small-scale filamental structure is lost
since filaments widen. This is somehow expected a priory because diffusion introduces a
new length scalelD which scales as

√
D. As in Sect. 4.2, pointwise error computations

give large values due to the obvious differences between thefields presented in Fig. 5.4.
Again it is more relevant to restrict to the LCS locations, which we take as the places
whereΛ > 0.2 in theD = 0 computation. Left panel of Fig. 5.5 shows the relative error
with respect to theD = 0 case (computed from formulas analogous to Eq. (4.3)) of the
FSLEs obtained at different values ofD. The relative error monotonously increases with
D, but remains smaller than0.6 for the largest value ofD considered. In the same way
than in previous subsections, in order to get an idea of how relevant these relative errors
are, we computed the relative error of shuffled FSLE with respect to the original field, and
we get a value of1.143.

A complementary set of numerical experiments are plotted inthe right panel of Fig.
5.5. First, with solid line we plot the relative error of FSLEif we consider a fixed eddy
diffusivity (D0 = 10m2s−1), and change the spatial resolution,δ0. It is observed that the
error increases when the spatial resolutionδ0 is finer than the length scale introduced
by the eddy-diffusion. Moreover with dotted-line it is plotted the case in which the
eddy-diffusion takes the value corresponding to eachδ0 using Okubo’s formula (i.e. at
δ0 = 1/16◦ D = 4, 5m2s−1; atδ0 = 1/32◦ D = 2m2s−1; atδ0 = 1/64◦, D = 0.9m2s−1).
Now < ǫ(t) > takes a constant value close to0.45. This result shows that if we use a
spatial resolution smaller than velocity data resolution,the eddy-diffusion must be the
one computed for the corresponding length scale. This constant value somehow corrobo-
rates the diffusion Okubo’s formula. The dashed-dotted line corresponds to the shuffling
experiment, included for comparisons.

A final numerical study (shown in Fig. 5.6) consists in computing the histograms
of FSLEs, with and without eddy diffusion, which takes always the same valueD0 =

10m2s−1, for different resolutions. It is seen that forδ0 = 1/8◦ the histograms with and
without diffusion are coincident. This is due to the fact that the value of diffusion we are
using is the one corresponding, by the Okubo formula, to1/8◦. I.e., we are parametrizing
turbulence below1/8◦, and this has no effects on the FSLE computations if the minimum
scale considered is also1/8. However, this behavior is different for largerδ0 (maintaining
the same valueD0 = 10m2s−1). The histograms forδ0 = 1/16, 1/64◦, with and with-
out diffusion, are clearly different. In fact, one finds thathistograms atδ0 = 1/64◦ with
diffusion turns out to be rather similar to theδ0 = 1/16◦-resolution histogram without dif-
fusion. This somehow confirms the averaging effect over smaller scales that is performed
after adding noise to the particle trajectories.
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Figure 5.2. Relative error< ǫ(t) > of the FSLE fields for different perturbation intensityα in
the velocity data. Solid line is for uncorrelated noise in space and time, dashed-dotted line is for
uncorrelated noise in time and correlated in time, and dotted line is for uncorrelated noise in space
and correlated in time.< ǫ(t) > is obtained by averaging the relative error in 100 snapshots(see Eq.
(4.3)). The error bar is the statistical error of the temporal average< ǫ(t) >. Top: spatial resolution
δ0 = 1/8◦. Bottom: spatial resolutionδ0 = 1/64◦. In all calculations we takeδf = 1◦
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Figure 5.3. Trajectories of five particles without diffusion (top) and with diffusion (bottom). The
difference in the initial positions of all five particles is about0.06◦, and we use these initial conditions
in both computations. These trajectories were computed for50 days of integration. We used the eddy-
diffusion D0 ∼ 10m2s−1 assigned by the Okubo formula to the resolution of the DieCAST model
at Mediterranean latitudes.
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Figure 5.4. FSLEs computed backwards from day 500 of the DieCAST model, at the same
spatial resolution (δ0 = 1/64◦), and for different eddy-diffusion values: a)D = 0 m2s−1 b)
D = 0.9 m2s−1, c)D = D0 = 10 m2s−1, d)D = 17 m2s−1. In all of them we takeδf = 1◦.
The color bar has units ofday−1. Initial conditions for which the separationδf has not been reached
after 500 days are assigned a valueΛ = 0.
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Figure 5.5. Left: Relative error< ǫ(t) > of the FSLE at the different values ofD in the particle
trajectories, with respect to theD = 0 case. Spatial resolution isδ0 = 1/8◦, andδf = 1◦. < ǫ(t) > is
obtained by temporally averaging the relative errors in 100snapshots. The (small) error bars indicates
the statistical error in the< ǫ(t) > average. Right: Dotted line is the relative error< ǫ(t) > of the
FSLE at different spatial resolutionδ0 and at the eddy-diffusionD assigned by the Okubo formula
to every spatial resolution, with respect to theD = 0 case. Solid line is the relative error< ǫ(t) >
of the FSLE at different spatial resolutionδ0, and at the same eddy-diffusionD0 = 10m2s−1 in
the particle trajectories with respect to theD = 0 case. Dashed-dotted line is the relative error of
shuffled FSLE with respect to the original case (D = 0) at different spatial resolution.< ǫ(t) > by
temporally averaging the relative error in 100 snapshots. The (small) error bar indicates the statistical
error in the< ǫ(t) > average. In all of them we takeδf = 1◦.
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Figure 5.6. Comparison between probability density function for the FSLEs at different resolutions
with eddy-diffusion, and without diffusion. It is obtainedfrom the temporal average (30 snapshots)
of histograms. Solid line forδ0 = 1/8◦ at eddy-diffusionD0 = 10m2s−1, dottedδ0 = 1/8◦

without diffusion, dashedδ0 = 1/16◦ without diffusion, dashed-dotted line forδ0 = 1/64◦ with
eddy-diffusionD0 = 10m2s−1, and circle-line forδ0 = 1/64◦ without diffusion.



Chapter 6

Summary

In this work we have analyzed and quantified, from marine surface velocity fields pro-
vided by a numerical model, several statistical propertiesand robustness of FSLE, in
order to study the intermittency and its impact in transportand mixing.

We have increased the spatial resolution of FSLE field improving the identification of
Lagrangian Coherent Structures. The spatial distributionof FSLEs display a scale behav-
ior suggesting a multifractal character. We computed the fractal dimension at the different
spatial resolutions obtaining a collapse at the different scales. Thus, the interfaces of con-
stantΛ build a multifractal hierarchy and generalized scale invariance is present in the
FSLE field. A second objective of this study was to quantify the impact of the uncer-
tainties that can arise from numerous kind of errors in the velocity data on the FSLEs.
This is done by introducing a random perturbation in the velocity data of the Eulerian
model, and computing the relative error of the FSLE with thisperturbation. We obtain
that even for a perturbation of 10 times the velocity data therelative error of the FSLE
is smaller than 25%, showing the robustness of the FSLE. At larger spatial resolution
(δ0 = 1/64◦) this relative error is about 45%. On the other side, missing spatial resolution
of the velocity field generates a relative error with respectto the original field of 70% for a
missing resolution of four times the original. The mesoscale structures remain even with
this coarse spatial resolution. Unresolved small scales are included in the computation of
the particle trajectories modelled as Lagrangian diffusion. The relative error of the FSLE
with the eddy-diffusion corresponding to the resolution ofthe DieCAST model, is smaller
than 45%. The main structures and locations of transport remain, although they became
smeared out at smaller spatial resolution of the velocity data.

We have shown that due to its robustness and scale invariance, the FSLE is a powerful
Lagrangian technique to study mixing and transport properties of the Sea surface.
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Appendix A

Fourth-order Runge-Kutta method

The Runge-Kutta algorithm is a method to solve first-order differential equations (DE).
The generic problem in ordinary differential equations is thus reduced to the study of a set
of N coupledfirst-orderdifferential equations for the functionsyi, i = 1, 2, ..., N , having
the general form

dyi(x)

dx
= fi(x, y1, ....yN), i = 1, ..., N (A.1)

where the functionsfi are known.

Runge-Kutta methods propagate a solution over an interval by combining the infor-
mation from several Euler style steps (each involving one evaluation offi), and then using
the information obtained to match a Taylor series expansionup to some higher order. The
formula for the Euler method is

yn+1 = yn + hf(xn, yn), (A.2)

which advances a solution fromxn to xn+1 = xn +h. It advances the solution through an
intervalh, but uses derivative information only at the beginning of that interval.

The fourth-order Runge-Kutta method [38, 39] requires fourevaluations of the func-
tionsfi per steph:

k1 = hf(xn, yn)

k2 = hf(xn +
h

2
, yn +

k1

2
)

k3 = hf(xn +
h

2
, yn +

k2

2
)

k4 = hf(xn + h, yn + k3)

yn+1 = yn +
k1

6
+

k2

6
+

k3

6
+

k4

6
+ O(h5)).

45





Appendix B

Bilinear interpolation

We sometimes know the value of a functionf(x) at a set of pointsx1, x2, ..., xn, but we
don’t have a analytic expression forf(x) that let us calculate its value at an arbitrary point.

In multidimensional interpolation, we seek an estimatey(x1, x2, ..., xn) from ann-
dimensional grid of tabulated valuesy andn one-dimensional vectors giving the tabulated
values of each of the independent variablesx1, x2, ..., xn.

In two dimensions [39], we imagine that we are given a matrix of functional values
ya(j, k), wherej varies from1 to m, andk varies from1 to n. We are also given an array
x1a of lengthm, and an arrayx2a of lengthn. The relation of these input quantities to an
underlying functiony(x1, x2) is

ya(j, k) = y(x1a(j), x2a(k)). (B.1)

We want to estimate, by interpolation, the functiony at some untabulated point
(x1, x2).
An important concept is that of the grid square in which the point (x1, x2) falls, that is,
the four tabulated points that surround the desired interior point. For convenience, we
will number these points from 1 to 4, counterclockwise starting from the lower left. More
precisely, if

x1a(j) ≤ x1 ≤ x1a(j + 1)x2a(k) ≤ x2 ≤ x2a(k + 1) (B.2)

definesj andk, then

y1 ≡ ya(j, k)

y2 ≡ ya(j + 1, k)

y3 ≡ ya(j + 1, k + 1))

y4 ≡ ya(j, k + 1).
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The simplest interpolation in two dimension is bilinear interpolation on the grid
square. Its formulas are:

t ≡ (x1−x1a(j))/(x1a(j+1)−x1a(j))u ≡ (x2−x2a(k))/x2a(k+1)−x2a(k)) (B.3)

(so that t and u each lie between 0 and 1), and

y(x1, x2) = (1 − t)(1 − u)y1 + t(1 − u)y2 + tuy3 + (1 − t)uy4. (B.4)



Appendix C

Heun’s algorithm

The Heun’s algorithm is a method to solve stochastic differential equations (SDE) based
on the order two Runge-Kutta method for ordinary differential equations (ODE). A
generic SDE has the following expression for a dynamical variablex(t):

x(t)

dt
= q(x, t) + g(x, t)ξw(t)

whereq(x, t) andg(x, t) are functions, linear or non linear, andξw(t) is a white Gaussian
noise, which properties are

〈ξw(t)ξw(t′)〉 = 2Dδ(t − t′)

A possible algorithm [30] to solve the SDE is

k = hq(t, x(t))

l = h1/2u(t)g(t, x(t))

x(t + h) = x(t) + h
2
[q(t, x(t)) + q(t + h, x(t) + l + k)] +

+1
2
h1/2u(t) [g(t, x(t)) + g(t + h, x(t) + l + k)]

whereh is the temporal step andu(t) is a independent set of random Gaussian numbers
with zero mean and variance equal to one.
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