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Resumen

Desde hace muchos años los científicos han estado estudiado el sistema
nervioso y sus constituyentes. Uno de los más notables avances en la de-
scripción de la estructura y las unidades funcionales del sistema nervioso
provino del fisiólogo español Santiago Ramón y Cajal a finales del siglo
XIX con su doctrina neuronal. Ramón y Cajal rompió la creencia estable-
cida de que el sistema nervioso estaba compuesto por un solo retículo
o continuo. Usando una técnica de coloración histológica, Cajal pudo
resolver en detalle la estructura y concluir que el sistema nervioso estaba
compuesto de neuronas individuales en lugar de ser un continuo. Por
este descubrimiento, Cajal recibió el premio Nobel de Medicina en 1906.

Actualmente, la neurociencia es un amplio campo donde muchas disci-
plinas convergen para tratar cuestiones como: de que manera se guardan
los recuerdos? cual es el código neuronal? como puede ser el cere-
bro tan rápido?... desde diferentes puntos de vista y usando diferentes
aproximaciones. Con la llegada de los ordenadores y posteriormente con
el incremento de la potencia de cálculo, la neurociencia computacional
surgió como un área fundamental en el análisis y estudio de los sistemas
neuronales. Una gran variedad de modelos matemáticos aparecieron
para describir la dinámica neuronal cubriendo diferentes niveles de com-
plejidad. Mucho de ellos están basados en una descripción detallada de
la anatomía, las reacciones químicas o los circuitos neuronales. Otra clase
de modelos describen cualitativamente el comportamiento neuronal y los
circuitos neuronales basándose en datos experimentales. Es difícil deter-
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xiv RESUMEN

minar cual es el nivel de detalles apropiado que un modelo debe cubrir.
Un buen modelo debería contener detalles suficientes que permitan de-
scribir los principales aspectos biofísicos, pero debe ser lo suficientemente
simple para proveer una clara interpretación de los resultados.

Esta tesis está principalmente dedicada al modelado y simulación de
sistemas neuronales con énfasis en diferentes aspectos. Empezamos con
una introducción a los conceptos preliminares necesarios para un mejor
entendimiento de los siguientes capítulos. Las bases fisiológicas de una
neurona y sus principales mecanismos de operación se detallan en el
capítulo 1. En este capítulo también se introduce los principales modelos
neuronales que se usan durante la tesis.

En el capítulo 2 se investiga el papel del ruido cuando actua sobre neu-
ronas. El fenómeno de resonancia estocástica es caracterizado en un
conjunto de neuronas del sistema motor. Tras la introducción del mod-
elo apropiado para describir la dinámica neuronal y los detalles del
método de integración, la resonancia estocástica es cuantificada medi-
ante la relación señal ruido. Finalmente, en colaboración con el labora-
torio de Neurofisiología Integrativa de la Benemérita Autónoma Univer-
sidad de Puebla en México, se corroboró los resultados experimentales
demostrando que el fenómeno de resonancia estocástica está presente en
el sistema motor.

En el capítulo 3 se modela la propagación de señales a través de la médula
espinal durante el desarrollo de una tarea motora. Basados en estudios
previos, se propone un nuevo circuito neuronal capaz de reproducir los
ritmos y la propagación de señales a lo largo de la médula observados
durante una actividad motora como el rascado. También se reproducen
los fallos espontáneos en la actividad observados experimentalmente du-
rante el transcurso de esta tarea motora y se predice un nuevo tipo. Con-
tinuando la colaboración con el laboratorio de Neurofisiología Integra-
tiva de la Benemérita Autonoma Universidad de Puebla en México, se
ha podido corroborar los resultados numéricos mediante observaciones
experimentales.

Posteriormente, se estudia el papel que juega la heterogeneidad en un
conjunto de neuronas acopladas. En el capítulo 4 se demuestra que la
presencia de diversidad en algunos parámetros de las neuronas puede
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mejorar la respuesta del sistema a una modulación periódica externa.
Primero se estudia un conjunto de neuronas descritas por el modelo de
Fitzhugh-Nagumo cuando la interacción entre las neuronas está medi-
ada por sinapsis químicas y eléctricas. También se ha estudiado una
descripción neuronal que tiene en cuenta aspectos más biológicos como
el modelo de Morris-Lecar. En la última parte del capítulo se desarrolla
una aproximación teórica que cualitativamente reproduce los resultados
numéricos.

La segunda parte de la tesis está centrada en el estudio del efecto de la
topología y el retraso en las conexiones en una red neuronal. Se explora
en el capítulo 5 como las propiedades topológicas y los retrasos en la con-
ducción de diferentes clases de redes afectan la capacidad de las neuronas
para establecer una relación temporal bien definida mediante sus poten-
ciales de acción. En particular, el concepto de consistencia es introducido
y estudiado en una red neuronal en el capítulo 6. El efecto de la inclusión
de plasticidad sináptica en las conexiones entre las neuronas también se
aborda en este capítulo.

Finalmente, en el último capítulo se resumen las principales conclusiones
y resultados que se pueden extraer de la tesis. Esperamos que estos
resultados puedan servir para estimular nuevas investigaciones y que
puedan sacar provecho de ellos. También se describen la lineas abiertas
y las posibles lineas futuras de trabajo.





Preface

Since many years scientists have been studying the nervous system and
its constituent elements. One of the most notable advances in the de-
scription of the structural and functional units of the nervous system
came from the Spanish physician Santiago Ramón y Cajal in the late 19th
century with his neuron doctrine. Ramon y Cajal broke down the widely
believed concept that the nervous system was a reticulum or a continuum
meshwork. Using a histological staining technique, Cajal could resolve
in detail the structure and concluded that the nervous system was com-
posed of individual neurons rather than a continuum. For this discovery,
Cajal was awarded with the 1906 Nobel Price in Medicine.

Nowadays, neuroscience is a broad field where many disciplines converge
to tackle questions like how are the memories stored? what is the neural
code? how can the brain be so fast?... from different points of view and
using different approaches. With the advent of computers and later on the
increase of computational power, computational neuroscience emerged
as a fundamental area in the analysis and study of neuronal systems.
A variety of mathematical models appeared describing the dynamics of
neurons covering different levels of complexity. Many of them are based
on a detailed description of the anatomy, chemical reactions or circuitry
of neuronal systems. Other kind of models qualitatively describe the
behavior of neurons and neural circuits based on experimental data. It
is difficult to determine which is the appropriate level of details covered
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by a model. A good model should contain enough details in order to
describe the principal biophysical aspects but must remain simple enough
to provide a clear interpretation of the results.

This thesis is mainly devoted to the modeling and simulations on neuronal
systems with emphasis in different aspects. We start with an introduction
to the necessary preliminary concepts needed for a better understanding
of the succeeding chapters. The physiological basis of a neuron and its
principal mechanism of operation are provided in Chapter 1. In this
chapter we also introduce the principal neuronal models used during the
thesis.

Chapter 2 investigates the role of noise acting on neurons. The phe-
nomenon of stochastic resonance is characterized on an ensemble of neu-
rons of the motor system. After the introduction of the appropriate model
describing the neuron dynamics and the numerical integration details,
stochastic resonance is quantify by means of the signal-to-noise ratio. Fi-
nally, in collaboration with the Integrative Neurophysiology Laboratory
of the Institute of Physiology of the Benemérita Universidad Autónoma
de Puebla, Mexico, we experimentally corroborate the numerical results
demonstrating that stochastic resonance phenomenon is also presented
in the motor system.

In chapter 3 we model the propagation of signals through the spinal cord
during a motor activity. Based on previous studies, we propose a new
neuronal circuit capable of producing the rhythms and the propagation
along the spinal cord of a specific motor activity such as the scratching.
We also reproduce the experimentally observed spontaneous failures or
absences of activity (deletions) during the scratching and predict a new
kind of deletion. Continuing the collaboration with the Integrative Neu-
rophysiology Laboratory of the Institute of Physiology of the Benemérita
Universidad Autónoma de Puebla, Mexico, we support our numerical
results with experimental observations.

Afterwards we study the role played by the diversity on an ensemble
of interacting neurons. In chapter 4 we demonstrate that the presence
of heterogeneity in some parameters of the neurons can enhance the
response of the system to an external periodic modulation. First, we
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study a set of neurons described by the Fitzhugh-Nagumo model when
the interaction between the neurons is mediated by both chemical and
electrical synapses. A neuronal model taking into account more biological
details such as the Morris-Lecar is also considered. In the last part of the
chapter we develop a mean-field theoretical framework that qualitatively
reproduces the numerical results.

The second part of the thesis is centered in the study of the effect of the
topology and delay in the connections in neuronal networks. We explore
in chapter 5 how the topological properties and conductions delays of
several classes of neural networks affect the capacity of neurons to es-
tablish well-defined temporal relations among the firing of their action
potentials. In particular, the concept of consistency is introduced and
studied in a neuronal network in chapter 6. The effect of the inclusion of
synaptic plasticity in the connections between the neurons is also consid-
ered in this chapter.

Finally, the last chapter gives an overview and summarize the principal
conclusions that can be extracted from the results of this thesis. We hope
that these results will trigger new research that can take profit of them.
We also describe the open prospectives and possible future research lines.





Chapter 1

Introduction

In this chapter we introduce the most relevant concepts needed for a bet-
ter understanding of succeeding chapters. We start the first part with a
basic physiological description of the main subject of study of this the-
sis, the neuron. The principal properties of neurons and their principles
of operation, i.e., the generation and transmission of electrical impulses
are provided afterwards. Section 1.2 is devoted to introduce different
mathematical models describing the dynamics of neurons with special
attention to the Hodgkin-Huxley model. The concept of excitability and
a brief overview of the principal bifurcations associated to neuronal di-
namics are presented in section 1.3. Later, in section 1.4, the modeling of
synaptic transmission and the plasticity mechanism are presented. The
fundamental phenomenon of synchronization is introduced in section
1.5. Finally, in the last section of the Introduction we provide the basic
concepts related to noise and how it affects the neuron behavior.

1.1

Neurons

Neurons are the basic processing units of the nervous system. They are
excitable cells specialized in the processing and transmission of informa-
tion. Their size and shape can vary considerably but a typical neuron can
be divided into three parts: the cell body or soma, the dendrites and the
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CHAPTER 1. INTRODUCTION

axon.
The soma is the metabolic center of the neuron. It contains the nucleus
of the cell where most protein synthesis occurs. The dendrites spread
out from the cell body like the branches of a tree increasing the surface
area available to receive contacts form other neurons. The dendrites size
range from a few tens of µm to several mm in length. The main function
of the dendrites is to collect incoming information from other neurons
or sensory receptors. The dendrites receives these incoming impulses
directly on their surface membrane or on tiny projections of membrane
called dendritic spines. A schematic representation of a typical neuron
can be seen in Figure 1.1.

Figure 1.1: Scheme of a typical neuron.

Electrical impulses are conducted from the neuronal cell body to other
neurons through the axon. The length of the axons covers a long range
going from a few millimeters up to more than one meter. Most axons
develop side branches along the route called axons collaterals in order to

2



1.1. NEURONS

bring information to several parts of the nervous system simultaneously.
Large axons are surrounded by an insulating sheath called myelin, pro-
viding a fast and efficient conduction of action potentials. The myelin
sheath is interrupted at very regular intervals called nodes of Ranvier.
The function of these nodes is to optimize the conduction velocity. At the
end of the axons lie an important specialized structures called synapses
that are responsible of transmitting the nerve impulses form one neuron
to another.
Neurons can be classified depending on their morphology or function.
According to their structure, neurons can be unipolar, bipolar, multipolar
(Figure 1.2). Unipolar neurons are those with a single axon. Many types
of primary sensory neurons are unipolar. Typically these neurons have
special structures for transducing some type of physical stimulus, such
as light, sound, temperature, etc. into electrical activity. Bipolar neurons
possess a single axon and a dendrite arising usually at opposite poles of
the soma. They are part of the sensory pathways for smell, sight, taste,
hearing and the vestibular system. Multipolar neurons represent the most
common structure in the nervous system. They are characterized by one
axon and two or more dendrites. Multipolar neurons have a diversity
of shapes, some of them are so characteristic that are specially named.
Examples of those neurons are: Purkinje cell, pyramidal cell, granule cell
or motoneuron.

Neurons are functionally classified as sensory, motor, or interneuron. Sen-
sory neurons conduct impulses from receptors to the brain and the spinal
cord. Motorneurones conduct impulses from the brain and spinal cord to
muscles and glands acting on the contraction of muscle fibers or the secre-
tion of gland cells. Interneurones act as a link between sensory neurons
and motor neurons. Interneurons are the responsible for the integration,
facilitation, and inhibition.

1.1.1 Nernst Potential

Neurons, as many other cells are enclosed by a membrane which sepa-
rates the interior of the cell from the extracellular medium. A cubic micron
of cytoplasm might contain a huge number of particles like molecules of

3



CHAPTER 1. INTRODUCTION

Figure 1.2: Morphological classification of neurons. Arrows indi-
cate the direction of information propagation.

water, amino acids, nucleotides, ions and proteins, many of them carring
electrical charges, either positive or negative. In a normal situation, there
is an excess concentration of negative charge inside the neuron. This
charge tends to distribute across the internal surface of the membrane.
The membrane is able to maintain a separation between charges inside
and outside the cell because acts as a partially permeable barrier to the
diffusion of ions. Due to this insulating property, the membrane acts as a
capacitor. The difference of concentration between intra and extracellular
media generates an electrical potential usually called membrane potential.

From thermodynamics it is well known that the probability that a particle
stays in a state with energy E is proportional to the Boltzmann factor,
p(E) ∝ e−E/kT, where k is the Boltzmann constant and T the temperature.
The energy of a positive ion with charge q at location x is E(x) = qu(x),
where u(x) is the potential at x. Therefore, the probability of finding an
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1.1. NEURONS

ion in a region around x is proportional to e−qu(x)/kT. We can interpret this
probability as an ion density due to the huge number of ions surrounding
the membrane. Then, the relation between the density at x1 and x2 is

n(x1)
n(x2)

= e−q∆u/kT (1.1)

where ∆u = u(x1)−u(x2) is the difference of electrical potential between x1
and x2 and n(xi) the ion density at xi. Then, we can find an expression for
the difference of electrical potential ∆u that is generated by a difference
of ion density,

∆u =
kT
q

ln
(n1

n2

)
. (1.2)

Expression 1.2 is known as the Nernst potential.

1.1.2 Membrane Resting Potential

There are basically four relevant species of ions involved in the genera-
tion of the membrane potential of a neuron: K+, Na+, Cl− and organic
anions (A−). These ions are not equally distributed across the membrane,
for example, Na+ and Cl− are more concentrated outside the neuron, and
K+ and A− are more concentrated inside the neuron. The typical concen-
tration of these ions is shown in Table 1.1. The membrane is partially
permeable to many of these ions, K+, Na+ and Cl−, and only large or-
ganic anions cannot cross the neuron membrane. Ions can diffuse across
the membrane only at specialized intramembranous proteins pores called
ionic channels. These channels are selective for the types of ions that they
allow to pass. Of the three permeant ions, only Cl− is free to diffuse in
or out of the neuron. Thus, the concentration ratio of Cl− reaches a value
such its Nernst potential ECl is equal to the membrane resting potential
VR.

Due to the different concentration of K+ inside and outside the neuron, a
chemical concentration gradient tends to push K+ out of the neuron. The
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CHAPTER 1. INTRODUCTION

Table 1.1: Typical concentrations of the principal ions in the intra-
cellular and extracellular media at a temperature of T = 25 ◦C.

Ion
Cytoplasm Extracellular media Nernst Potential

(mM) (mM) (mV)

K+ 400 20 -77
Na+ 50 440 +56
Cl− 52 560 -61
A− 385 — —

electrical potential difference originated by the separation of the charges
tends to push K+ back into the neuron. As the diffusion of K+ continues,
the membrane potential continues increasing until it reaches a value in
which K+ is at equilibrium. If K+ was the only permeable cation, the mem-
brane resting potential VR would coincide with the K+ Nernst potential
EK = −77 mV∗. However, the membrane is also permeable to Na+ and, be-
cause the concentration of Na+ is higher outside than inside, tends to flow
into the neuron. The Nernst potential for Na+ is ENa = +56 mV. Then, at
a resting membrane potential of VR = −77 mV, Na+ is far away from its
equilibrium, and a strong electrochemical force drives Na+ through the
membrane into the neuron. The influx of Na+ depolarizes the membrane
driving Vm toward ENa. However, since the membrane is only slightly
permeable to Na+, the membrane resting potential moves only slightly
away from EK. The reason for this is that when Vm departs from EK, an
efflux of K+ appears and tends to compensate the Na+ influx. Finally,
Vm reaches a value at which the outward movement of K+ balances the
inward movement of Na+.

Although these ion fluxes cancel each other, they cannot continue com-
pensating to each other for a long time otherwise [K+]i would be depleted,
[Na+]i would increase, and the ionic gradients would decrease gradually,

∗At T = 25 ◦C, kT = 25.8 mV. Then, Ek = 25.8 ln
(

20
400

)
≈ −77 mV.
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1.1. NEURONS

reducing the resting membrane potential. In order to prevent this re-
duction of the membrane potential, the membrane has another kind of
component: an enzyme called Na-K adenosine triphosphatase, which acts
as a pump, moving Na+ out of the cell and K+ in. This pump requires
energy, and this enzyme use the energy produced in the hydrolysis of
the adenosine triphosphate (ATP) to exchange ions across the membrane.
Figure 1.3 shows a schematic representation of the sodium, potassium
and active-pump channels in the membrane.

Figure 1.3: Schematic representation of the different membrane
ionic channels.

When the neuron is at rest, the active fluxes driven by the pump and the
passive fluxes due to diffusion are balanced. The neuron is not in equi-
librium, but rather in a steady state where a certain quantity of energy is
consumed to maintain the ionic gradients across the membrane.

When the membrane potential is determined by two or more ions, each
ion has an influence on Vm that is determined by its concentration ratio
and by the permeability of the membrane to that ion. In this case, the
membrane potential is given by the Goldman-Hodgkin-Katz equation:

Vm =
RT
F

ln
(

PK[K+]o + PNa[Na+]o + PCl[Cl−]i

PK[K+]i + PNa[Na+]i + PCl[Cl−]o

)
(1.3)

where R and F are the gas and the Faraday constants respectively and

7
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PNa, PK and PCl the permeabilities of sodium, potassium and chlorine
respectively.

1.1.3 Action Potential

At a resting state, the passive Na+ and K+ fluxes are balanced by the ac-
tive fluxes driven by the Na-K pumps that keep constant the membrane
potential. This steady-state balance changes however when the cell is de-
polarized. In addition to the passive ionic channels, the membrane also
contains some channels that are voltage-sensitive and are opened when
the membrane is depolarized. When a transient depolarization occurs,
such an excitatory synaptic potential, some voltage-gated Na+ channels
are opened allowing an influx of Na+. Then, a net influx of positives
charges flows through the membrane generating an accumulation of pos-
itives charges inside the neuron causing a further depolarization. The
increase in depolarization opens more voltage-gated Na+ channels with
the associated increase of the influx of positive charges, which accelerates
the depolarization still further. This feedback cycle develops explosively,
allowing Na+ channels dominate over K+ channels and driving the mem-
brane potential closed to the Na+ equilibrium potential ENa at the peak of
the action potential (Vm ≈ +50 mV). At this voltage values, the voltage-
dependent K+ channels open causing an efflux of K+. After the opening
of the voltage-gated K+ channels there is an inactivation of the Na+ chan-
nels. The increase in K+ efflux together with the decrease in Na+ influx
result in a net efflux of positive charges from inside the neuron, which
continues until the cell reaches its membrane resting potential VR. This
process is illustrated in Figure 1.4.

1.1.4 Nerve Impulse Propagation

An action potential can propagate along the axonal membrane. In un-
myelinated axons, the mechanism of propagation is based on the depo-
larization of the adjacent membrane area close to the generated action

8



1.1. NEURONS

Figure 1.4: Voltage membrane during an action potential and evo-
lution of gNa and gK.

potential. During the generation of an action potential, positive charges
flow into the axon and a positive charge spreads inside the axon neutral-
izing the negative charges on the adjacent membrane area. This neutral-
ization of charges leads to a depolarization of the surrounding area, and
the depolarization to the generation of an action potential in this adjacent
area. This new generated action potential depolarizes the next adjacent
area of the axonal membrane leading to the generation of another action
potential in the next adjacent area. Figure 1.5 schematizes the impulse
propagation across the axonal membrane.

Figure 1.5: Propagation of the action potential.

9
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Theoretically, actions potentials can propagate across both directions of
axons (as observed in in vitro experiments), but there are two main rea-
sons why only one propagation direction is preferential. Normally the
action potential travels from the neuron body to the synapse across the
axon. One of the main cause for that is the fact that the propagation of
the action potential is generated at the beginning of the axons in a place
called axon hillock. Another reason that prevents the propagation in both
directions is the refractory time of the area preceding the action potential.
The membrane usually needs ∼ 1 ms to recovers from the previous depo-
larization, for this reason, new action potentials are generated in front of
the previous ones.

In myelinated axons the propagation of action potentials is different. In
this kind of axons, the action potentials are generated only in the nodes
of Ranvier and the propagation is based on jumps from one node to the
next. This propagation is known as a saltatory conduction. Between
nodes, in the segment of the axon surrounded by myelin, the action
potential propagates passively. This mechanism not only provides a
faster conduction of the action potentials compared with unmyelinated
axons, but also requires less metabolic demand on neurons. Saltarory
conduction is sketched in Figure 1.6.

Figure 1.6: Schematic representation of saltatory conduction.

10



1.1. NEURONS

1.1.5 Synapses

The main role of neurons is to communicate with other neurons. This com-
munication takes place at a site called synaptic junction or synapse. There
are two different types of transmition, chemical and electrical, defining
two different types of synapses. Chemical synapses are the most abun-
dant in the nervous system and the information flows unidirectionally
from the pre- to the postsynaptic neuron. This type of synapses does not
involve a physical contact between the cells and the stimulus must cross
a narrow gap called the synaptic cleft which separates pre- and postsy-
naptic neurons. When a presynaptic electrical potential arrives to the
synapse, a chemical carrier, called neurotransmitter, is released from the
presynaptic terminals. The neurotransmitters diffuse across the synaptic
cleft and interact with the receptor molecules of the postsynaptic mem-
brane opening some ionic channels. This allows a flux of ions through the
postsynaptic membrane changing the electrochemical state of the mem-
brane. The resulting change in voltage is called postsynaptic potential.
The electrical excitability of the membrane can be increased or decreased
depending on the nature of the neurotransmitter and the postsynaptic
receptor, and then, the synapse can be excitatory or inhibitory. Figure 1.7
(a) sketches the typical structure of a chemical synapse.

Another type of synaptic junction is the electrical synapse. In this synapse,
the membrane of pre- and postsynaptic neurons are contiguous, and
therefore, the stimulus is able to pass directly from one neuron to the
other without chemical mediation. This synapse provides bidirectional
communication between neurons and is much faster than the chemical
junctions. Figure 1.7 (b) shematizes the typical structure of an electrical
synapse.

1.1.6 Neurotransmiters

There is a large variety of different molecules used in a chemical synaptic
transmission. However, most chemical transmission is conducted by two
amino acids: glutamate for excitation and GABA for inhibition. Their
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Figure 1.7: Schematic representation of the different types of
synapses. (a) Sketch of a chemical synapse. (b) Illustration of

an electrical synapse.

effects are local, fast (in a fraction of second) and they act directly on the
receptors to open ionic channels. These two neurotransmiters are known
as a classical or fast transmitters.

Other sort of neurochemicals like dopamine, serotonin, noradrenalin,
neuropeptides or nitric oxide do not act directly on the receptors, having
modulatory effects instead. These are called neuromodulators and their
effects persist for a long time, from minutes to hours or even days. The
neuromodulators influence the strength and the duration of the synaptic
transmission mediated by classical neurotransmitters.

Fast and slow synaptic transmission are obtained from different mech-
anisms. Fast synaptic transmission involves receptors that are directly
located on the ionic channel, so that the classical transmitters directly
open the ionic channel. Slow transmission involves metabotropic recep-
tors and second messengers that freely diffuse to reach the ionic channel.
This process is much slower and can last from many second to minutes
producing slow long lasting synaptic responses.
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1.2

Neuron Models

This section is devoted to introduce different neuronal models that will
be used during this thesis. A brief historical overview is provided first,
followed by an introduction to different neuronal models presented in an
order of decreasing complexity.

1.2.1 Historical overview

One of the first models of neuronal excitability was introduced by the
French physiologist Louise Lapicque in 1907 when he was studying the
nerve excitability by stimulating the sciatic nerve of the frog [1]. At that
time it was already known that the membrane acts as a capacitor and, in
order to study the nerve membrane excitation by electrical stimulation,
Lapicque used the concept of equivalent circuit of the axon membrane.
Figure 1.8 shows the original equivalent circuit used by Lapicque to com-
pare what his physiological experiment revealed about the laws of elec-
trical excitation.

Figure 1.8: The equivalent circuit used by Louis Lapicque to study
the nerve excitation. Extracted from [1].

The discovery of the squid giant axon by Young in 1936 [2] and the devel-
opment of the voltage clamp technique by Kenneth Cole in the 1940s [3]
were two important steps in the development of the electrophysiology.
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But it was the work of Alan L. Hodgkin and Andrew Huxley in 1952
on the nerve conduction that the properties of ionic conductances under-
lying the nerve action potential were unveiled. Hodgking and Huxley
proposed a mathematical model for the excitability and conduction in
nerves [4]. Since then, several models have been developed. Among
these models there are two of special relevance to this thesis: the one
introduced in 1961 by Richard FitzHugh [5] and the one introduced by
Cathy Morris and Harold Lecar in 1981 [6].

1.2.2 The Hodgkin-Huxley model

In a series of experiments done in 1952 [7–10], Hodgkin and Huxley
determined that the current through the membrane of the squid giant
axon has a component corresponding to the ions crossing the membrane
and another contribution arising from the membrane capacitance. Thus,
for a small patch of membrane the total current is

I = Cm
dV
dt

+ Iion (1.4)

where Cm is the membrane capacitance, V is the membrane potential
and Iion is the net ionic current flowing across the membrane. At that
time it was already known that the ionic current for the squid giant axon
has basically two mayor components corresponding to sodium INa and
potassium IK currents [11]. One of the major achievement of Hodgkin
and Huxley was to measure the contribution of these two ionic currents.
They also found a remaining small leakage current IL corresponding to
chloride and other ions. In order to separate the ionic current into its
components, Hodgkin and Huxley used a choline solution to reduce
the sodium concentration [Na+] in the external fluid surrounding the
axon. The inward current carried by Na+ was cancelled leaving only the
potassium ionic current component IK. Subtracting the low-Na record
from the ionic current measured in the usual concentration of ions, the
contribution of the sodium ionic current was obtained (see Figure 1.9).
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Figure 1.9: Quantitative measurements of ionic currents in the
squid giant axon using voltage clamp technique. Extracted from

[12].

The total ionic current was expressed thus as

Iion = IK + INa + IL (1.5)

where IK and INa are the potassium and sodium currents and IL is the
leakage current due to other ions. Having separated the current into
components, the next step was to determine the relationship between
the ionic current and the membrane potential. Hodgkin and Huxley
measured what they called instantaneous current-voltage relation finding
a linear current-voltage relation for the open channels, as in Ohm’s law
[9]. Thus, the ionic conductances were defined by

gNa =
INa

V − VNa
(1.6)

gK =
IK

V − VK
(1.7)

gL =
IL

V − VL
(1.8)

Therefore, Eq. (1.4) becomes

Cm
dV
dt

= I − gNa (V − VNa) − gK (V − VK) − gL (V − VL) (1.9)
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They redefined the equivalent circuit representation of the axon mem-
brane to include the three ionic currents they found in their experiments.
Figure 1.10 shows the equivalent circuit of the axon membrane proposed
by Hodgkin and Huxley. The capacitor represents the dielectric proper-
ties of the membrane. The three variable resistors represent the sodium,
potassium and leakage conductances with their different electromotive
forces.

Figure 1.10: Equivalent circuit of axon membrane proposed by
Hodgkin and Huxley. From [4].

The fact that Hodgkin and Huxley succeeded separating the components
of the ionic current, allowed also to determine changes in the conduc-
tances gNa and gK by applying Eq. (1.6) and (1.7) to the separated cur-
rents. They found that, like the ionic currents, gNa and gK are voltage
and time dependent. The sodium conductance of the axon membrane
rises rapidly and then decays during a depolarization, or in other words,
gNa activates and inactivates. Activation is the rapid process that opens
sodium channels during a depolarization. On the contrary, inactivation is
a slower process that closes sodium channels during a depolarization. The
potassium conductance increases following a S-shape function during a
depolarization event whereas during repolarization the decrease is expo-
nential. Figure 1.11 illustrates the changes of gNa and gK in the squid axon
during a depolarization (solid lines) and repolarization (dashed lines).
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Figure 1.11: Ionic conductances changes during depolarization and
repolarization.

Hodgkin and Huxley assumed that there were four independent identi-
cal particles, each with probability n of being in the correct position to
set up an open potassium channel. Thus, the probability that all four
independent particles are correctly placed is n4. Because the potassium
channel is voltage-dependent, the hypothetical particles were assumed
to be electrically charged. The voltage and time changes of n follow a
first-order kinetics reaction

1 − n
αn
−−−−−⇀↽−−−−−

βn

n

where αn and βn are the voltage-dependent transition rates between per-
missive and nonpermissive positions. The rate at which the open proba-
bility for a subunit gate n changes obeys the following equation

dn
dt

= αn (V) (1 − n) − βn (V) n (1.10)
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Equation (1.10) can be rewritten by dividing by αn (V) + βn (V)

τn (V)
dn
dt

= n∞ (V) − n (1.11)

where τn (V) is the voltage-dependent time constant and n∞ (V) is the
steady-state value defined by (see Figure 1.12)

τn (V) =
1

αn + βn
(1.12)

n∞ (V) =
αn

αn + βn
(1.13)

These quantities were experimentally fitted resulting in the following
expressions:

αn (V) =
0.01 (V + 55)

1 − e−((V+55)/10)
(1.14)

βn (V) = 0.125e−((V+40)/80) (1.15)

Similarly, the sodium conductance can be described using the same for-
malism. However, because there are two opposite gating processes, ac-
tivation and inactivation, there are two kind of gating particles. Three
independent identical m particles are involved in the activation and one h
particle is involved in the inactivation. Therefore, the probability that all
the particles are all in an open position is m3h. As for the n parameter of
the potassium conductance, m and h are assumed to undergo first-order
transitions between permissive and nonpermissive positions:

1 −m
αm
−−−−−⇀↽−−−−−

βm

m

1 − h
αh
−−−−−⇀↽−−−−−

βh

h
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with rates satisfying the differential equations

τm (V)
dm
dt

= m∞ (V) −m (1.16)

τh (V)
dh
dt

= h∞ (V) − h (1.17)

where

τm (V) =
1

αm + βm
(1.18)

τh (V) =
1

αh + βh
(1.19)

m∞ (V) =
αm

αm + βm
(1.20)

h∞ (V) =
αh

αh + βh
(1.21)

and the experimentally fitted voltage-dependent transition rates

αm (V) =
0.1 (V + 40)

1 − e−((V+40)/10)
(1.22)

αh (V) = 0.07e−((V+65)/20) (1.23)
βm (V) = 4e−((V+65)/18) (1.24)

βh (V) =
1

1 + e−((V+35)/10)
(1.25)

To summarize, the Hodgkin and Huxley model for the squid giant axon
describes the ionic current across the membrane in terms of three compo-
nents

Iion = gNam3h (V − VNa) − gKn4 (V − VK) − gL (V − VL) (1.26)

where gNa and gK are the maximal conductances for the sodium and
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Figure 1.12: Voltage-dependent time constants τm, τh and τn and
steady-state values m∞, h∞ and n∞.

potassium channels and gL is a fixed background leakage conductance.
The voltage-gated ion channels are described by the following set of
differential equations

ṁ = αm(v)(1 −m) − βm(v)m (1.27)
ḣ = αh(v)(1 − h) − βh(v)h (1.28)
ṅ = αn(v)(1 − n) − βn(v)h (1.29)

where the gating variables m(t), h(t), and n(t) represent the activation and
inactivation of the sodium channels and the activation of the potassium
channels, respectively. The experimentally fitted voltage-dependent tran-
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sition rates are

αm(V) =
0.1(V + 40)

1 − exp (−(V + 40)/10)
(1.30)

βm(V) = 4 exp (−(V + 65)/18) (1.31)

αh(V) = 0.07 exp (−(V + 65)/20) (1.32)
βh(V) = [1 + exp (−(V + 35)/10)]−1 (1.33)

αn(V) =
(V + 55)/10

1 − exp (−0.1(V + 55))
(1.34)

βn(V) = 0.125 exp (−(V + 65)/80) (1.35)

1.2.3 Reduction of the Hodgkin-Huxley model

The Hodking-Huxley model involves four dynamical variables to de-
scribe the evolution of the membrane potential. The time scale associated
with m and τm is much smaller than those associated with h and n. Thus,
m will reach its asymptotic value m(V) much faster than other changes in
the model. If we are not interested in the response of the system at very
short time scales we can assume ṁ = 0 and replace m by its asymptotic
value m(V).
On the contrary, it is not suitable to replace h and n by their asymptotic
values with respect to V because the model will lose the ability to generate
actions potential. However, since τn and τh are approximately similar for
any value of the membrane voltage and n and 1− h are rather similar, we
can approximate the two variables n and 1−h by a single effective variable
w. Using the linear transformation b − h ≈ an, with a and b constants, we
can set w = b−h = an or equivalently h = b−w and n = w/a. Because h and
n have longer time constant, these variables would reach their asymptotic
values more slowly. Thus, we can approximate for the new variable W

n ≈ n(W) (1.36)

h ≈ h(W) (1.37)
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The ionic current Iion can then be rewritten as

Iion (V,m,n, h) ≈ Iion

(
V,m(V),n(W), h(W)

)
≡ f (V,W) (1.38)

To find a equation for the new variable W, we can impose that the time
dependence of W in f must be the same time-dependence induced into
Iion (V,m,n, h) in the full model by the changing values of n and h. Thus,
the derivative of Iion and f at a constant V should be equal

∂Iion

∂n
dn(V)

dt
+
∂Iion

∂h
dh(V)

dt
=

∂ f
∂n

dn(W)
dW

+
∂ f

∂h

dh(W)
dW

 dW
dt

(1.39)

Using the original formulas for dn/dt (Eq. 1.11) and dh/dt (Eq. 1.17)
together with the approximation h ≈ h(W) and n ≈ n(W) so that

τn (V)
dn
dt
≈ n (V) − n(W) (1.40)

τh (V)
dh
dt
≈ h (V) − h(W) (1.41)

Then, Eq. (1.39) becomes

dU
dt

= g (V,W) ≡
A
B

(1.42)

with

A =

(
∂Iion

∂n

) ∣∣∣∣∣
n=n(W)

(
n (V) − n(W)

τn (V)

)
+

(
∂Iion

∂h

) ∣∣∣∣∣
h=h(W)

h (V) − h(W)
τh (V)

 (1.43)

B =

∂ f
∂n

dn(W)
dW

+
∂ f

∂h

dh(W)
dW

 (1.44)

22



1.2. NEURON MODELS

After appling this reduction, the Hodgkin-Huxley model becomes

Cm
dV
dt

= f (V,W) + I, (1.45)

dW
dt

= g (V,W) . (1.46)

Different functions f (V,W) and g (V,W) yield to different reduced models.
In the next section, a particular case of the family of models generated
after this reduction is introduced.

1.2.4 The FitzHugh-Nagumo model

The idea of Richard FitzHugh was to use a modified version of the Van der
Pol nonlinear relaxation oscillator to reproduce qualitatively the behavior
of the Hodgkin-Huxley model [5]:

ẍ + c(x2
− 1)ẋ + x = 0. (1.47)

Applying the Liénard transformation to the previous equation (for further
details see [13])

y = ẋ/c + x3/3 − x (1.48)

the following pair of equations were obtained

ẋ = c(y + x − x3/3) (1.49)
ẏ = −xc (1.50)

The FitzHug model is obtained by adding some terms to the equations
(1.49-1.50)

ẋ = c(y + x − x3/3 + z) (1.51)
ẏ = −(x − a + by)/c (1.52)

23



CHAPTER 1. INTRODUCTION

where 1 − 2b/3 < a < 1, 0 < b < 1 and b < c2. z is the stimulus in-
tensity, corresponding to the membrane current in the Hodgkin-Huxley
equations.

1.2.5 The Morris-Lecar model

The Morris-Lecar model was proposed after a study of the excitability of
the giant muscle fiber of the barnacle [6]. According to voltage-clamp ex-
periments they found two independent voltage-dependent conductances,
gK and gCa, each one having a sigmoid voltage dependence. The equa-
tions describing the membrane potential and the slow recovery variable
are

Cm
dV
dt

= I − gCaM∞ (V − VCa) − gKW (V − VK) − gL(V − VL)(1.53)

dW
dt

= φΛ(V) [W∞ −W] (1.54)

where Cm is the membrane capacitance. V represents the membrane
potential. W represents the fractions of open channels. The quantities
M∞, W∞ and Λ(V) are given by

M∞(V) =
1
2

[
1 + tanh

(V − V1

V2

)]
(1.55)

W∞(V) =
1
2

[
1 + tanh

(V − V3

V4

)]
(1.56)

Λ(V) = tanh
(V − V3

2V4

)
(1.57)

The Morris-Lecar model is a simplification of the Hodking-Huxley model
reducing the number of dynamical variables. It displays an action poten-
tial when the value of the applied current I leads a saddle-node bifurcation
to a limit cycle. The inclusion of a slow calcium-dependent potassium
channel allows the system to exhibit bursting behavior.
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1.2.6 The Integrate-and-Fire model

It was Richard Stein who introduce in 1965 a leaky integrate-and-fire
model [14]. This model describes the subthreshold membrane potential
simplifying the biophysical properties of the membrane to an equivalent
circuit consisting of a capacitor and a resistor in parallel (Figure 1.8). The
membrane potential v is determined by

τm
dv
dt

= − (v − EL) + RmI(t) (1.58)

where τm = RmCm is the membrane time constant, Rm the membrane
resistance and EL the resting potential of the neuron. This model does not
describe explicitly the form of an action potential. A spike is defined by a
threshold criterion; when the membrane potential reaches a given value,
it is reset to the value Vreset.
The main advantage of this model is that allows some theoretical analysis
and is computationally much less demanding. For example, the firing rate
in response to a constant current can be computed analytically. Equation
(1.58) can be solved when I is independent of time. The subthreshold
membrane potential is given by

V(t) = EL + RmI + (V(0) − EL − RmI) e−t/τm (1.59)

where V(0) is the value of V at time t = 0. One can chose arbitrarily
this value. For example, if we suppose that at t = 0 the neuron has
just fired a spike, thus the membrane potential is at the reset potential,
V(0) = Vreset. The next spike will occur when the membrane potential
reaches the threshold at time t = tisi

V(tisi) = Vth = EL + RmI + (Vreset − EL − RmI) e−tisi/τm (1.60)

Solving Eq. (1.60) for the time of the next spike tisi, allows to determine
the interspike-interval firing rate of the neuron,

ν =
1

tisi
=

(
τm ln

(
RmI + EL − Vreset

RmI + EL − Vth

))−1

(1.61)
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1.3

Excitability in Neurons

Excitability is a phenomenon observed in a large variety of natural sys-
tems among which are lasers, biological tissues, chemical reactions or
neurons. An excitable system is characterized by three aspects: i) a rest-
ing state, ii) a threshold behavior and iii) a refractory time needed to
recover from the excited state to the resting one. Figure 1.13 sketches the
response of an excitable system to different inputs.

Neurons are excitable systems. They are usually at rest but can spike as a
response to certain stimuli exhibiting excitable behavior.
The actual classification of neuronal excitability was proposed by Alan
Hodgkin in 1948 [17]. He was studying the response of the isolated axon
of the Carcinus maenas when applied repetitive discharges. He found
that when the applied current was weak the axon was quiet and when
the discharge was strong enough the axon fired repeatedly. Hodgkin
classified the axons according to the frequency of emerging firing,

• Class I neural excitability. When the applied current is larger than
a threshold value, the neuron fires at a frequency that increase with
the applied current.

• Class II neural excitability. For an applied current above a threshold
value, the neuron fires with a frequency that is relatively insensitive
to changes in the strength of the applied current.

Another feature that distinguishes the two classes of neural excitability is
the fact that in class I systems the action potential can be generated with
arbitrarily low frequency whereas in class II the spikes start with nonzero
frequency and this frequency is restricted to a certain frequency band (see
Figure 1.14).
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Figure 1.13: Response of an excitable system to different stimuli.
a) A small subthreshold perturbation generates a small response.
b) When the amplitude of the input exceeds the threshold it in-
duces a large amplitude response. c) Larger input amplitudes do
not change significantly the response amplitude. d) Two consec-
utive suprathreshold inputs generate excitations only if both are
applied to the system in the resting state. e) When the separation
between two consecutive inputs is smaller than the refractory time,
the system does not respond to the second input. Adapted from

[15].
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Figure 1.14: Neuronal excitability classification. Extracted from
[16].

1.3.1 Bifurcation analysis

In general, neurons are excitable because they operate near a bifurcation
from a resting to a firing state. Interestingly, the majority of neuron
models undergo only four different types of bifurcations. In the following
subsections these four types of bifurcation are described without any kind
of mathematical rigor.

Saddle-node bifurcation

In this bifurcation, as the bifurcation parameter changes, a stable node
and an unstable saddle collide and annihilate each other. Then, since
the resting state given by the stable node no longer exists, the trajectory
jumps to the coexisting limit cycle (see Fig. 1.15).
Within a more mathematical description, a k-dimensional dynamical sys-
tem ẋ = f (x, b), x ∈ Rk having an equilibrium point f (x0, b0) = 0 exhibits
a saddle-node bifurcation if the equilibrium (fix point) is non-hyperbolic
with a simple zero eigenvalue, the function f is non-degenerate, and it is
transversal with respect to b. The non-hyperbolicity implies that the Ja-
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Figure 1.15: Phase portraits before (left), at (center) and after (right)
saddle-node bifurcation. Adapted from [18].

cobian matrix has exactly one zero eigenvalue and the other eigenvalues
have nonzero real parts. The remaining two conditions have complicated
forms, however, for conductance-based model, assuming that the resting
state is giving by I(V, b), non-degeneracy implies that the second deriva-
tive of I(V, b0) with respect to V is nonzero, a = 1

2
∂2I(V,b0)
∂V2 , 0 at V = V0.

To satisfy transversality, I(V, b) must be non-degenerated with respect to
b, c =

∂I(V0,b)
∂b , 0 at b = b0.

The dynamics of a multi-dimensional neuronal system near a saddle node
bifurcation can be reduced to a topological normal form

dV
dt

= c(b − b0) + a(V − V0)2 (1.62)

This equation, with a reset after a spike is also known as the quadratic
integrate-and-fire neuron model.

Saddle-node on invariant circle bifurcation

This bifurcation is similar to the saddle-node bifurcation described previ-
ously, but the collision occurs in an invariant circle that becomes a limit
cycle after the saddle and the node annihilate each other.
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Figure 1.16: Phase portraits before (left), at (center) and after (right)
saddle-node on invariant circle bifurcation. Adapted from [18].

Subcritical Hopf bifurcation

This bifurcation occurs because a small unstable limit cycle shrinks to a
stable fix point and when they touch, the unstable limit cycle disappears
and the stable equilibrium loses its stability and become an unstable fix
point. The trajectory diverges from the unstable fix point and approaches
to a stable limit cycle.

Figure 1.17: Phase portraits before (left), at (center) and after (right)
subcritical Hopf bifurcation. Adapted from [18].

Supercritical Hopf bifurcation

A stable fix point loses stability and gives rise to a small amplitude limit
cycle. As the bifurcation parameter increases, the amplitude of the limit
cycle increases as well.
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Figure 1.18: Phase portraits before (left), at (center) and after (right)
supercritical Hopf bifurcation. Adapted from [18].

1.3.2 Bursting

A neuron has a bursting behavior when its activity changes periodically
from rest state to repetitive firing. Bursting oscillations have been observe
in many nerve and endocrine cells like thalamic neurons, hippocampal
pyramidal neurons or pancreatic β-cells. The different kind of burting are
classified in three different types according to the bifurcation mechanism
that underlies the burting oscillation [19, 20].

Square-Wave bursting

There is a coexistence of a rest state and spiking activity. The resting state
disappears via a saddle-node bifurcation and the variable of the system
is attracted to a stable limit cycle. This stable limit cycle disappears via
a saddle separatrix loop bifurcation, and the variable of the system is
attracted to the resting state again.

Figure 1.19: Square-wave burster. Adapted from [18].
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Parabolic bursting

This type of bursting is characterized by a resting state that disappears
via a saddle-node on an invariant circle bifurcation, and the limit cycle
corresponding to the firing state disappears via another saddle-node on
an invariant circle bifurcation.

Figure 1.20: Parabolic burster. Adapted from [18].

Elliptic bursting

An elliptic bursting is characterized by a situation in which the rest state
disappears via a Hopf bifurcation and becomes oscillatory with a nonzero
frequency and in some cases the amplitude of the spikes is small. The
periodic orbit can disappear via another Hopf bifurcation carrying the
system to the resting state.

Figure 1.21: Elliptic burster. Adapted from [18].

An exhaustive analysis of other bursting mechanism can be found in [16].
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1.4

Coupling and Plasticity

Alpha function

The main function of neurons is to transmit information from a neuron
to another. The transmition of information between two neurons takes
place through a synapse. In chemical synapses this process is governed
by the release of neurotransmitters in the synaptic cleft. These neuro-
transmitters diffuse across the synaptic gap and bind to the postsynaptic
receptors. This process can be modeled following a first order kinetics for
the neurotransmitter molecule T

R + T α
−−−−⇀↽−−−−

β
TR

where the bound and unbound states of the postsynaptic receptor are
represented by R and TR respectively. α and β are the forward and
backward rate constants for transmitter binding. The fraction of bound
receptors r can be described by the following rate equation

dr
dt

= α [T] (1 − r) − βr (1.63)

where [T] represent the concentration of neurotransmitters. This equation
can be solved exactly assuming that the change in the concentration of
neurotransmitters takes the form of a pulse. Thus,

1. During a pulse, t0 < t < t1, [T] = Tmax and the fraction of bound
receptors r is given by

r(t − t0) = r∞ + [r(t0) − r∞] e−(t−t0)/τr (1.64)

were r∞ = αTmaxτr and τr = (αTmax + β)−1.

2. After a pulse, t1 < t, the concentration of neurotransmitters tends to
zero and the fraction of bound receptors is given by

r(t − t1) = r(t1)e−β(t−t1) (1.65)
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Usually the binding of neurotransmitter to a postsynaptic receptor is
associated to the opening of ionic channels, thus, the total conductance
is the result of multiplying the fraction of open channels by the maximal
conductance of the synapse ḡmax. Then, the synaptic current is defined as

Isyn(t) = ḡsynr(t)
[
V(t) − Esyn

]
(1.66)

The binding process explained previously is based on the hypothesis of
a constant and sufficient concentration of neurotransmitter molecules T.
However, the neurotransmitters release probability Prel can depend on
the previous activity of the synapse leading to the facilitation or depres-
sion of the synapse associated with plasticity phenomena. In the synaptic
facilitation Prel increases with the activity of the synapse whereas dur-
ing synaptic depression Prel decreases. The release probability between
presynaptic spikes decays exponentially to P0 following

τp
dPrel

dt
= P0 − Prel (1.67)

where τp is the rate of decay. In the facilitation process, Prel changes
by Prel → Prel + fF(1 − Prel) where the factor 0 < fF < 1 controls the
degree of facilitation. In the depresion, Prel is reduced by Prel → fDPrel,
were 0 < fD < 1 controls the level of depresion. For a Poissonian spike
train with firing rate r, it is easy to demonstrate that the average release
probability 〈Prel〉 in the case of facilitation is

〈Prel〉 =
P0 + fFrτp

1 + r fFτp
(1.68)

and for depression is

〈Prel〉 =
P0

1 + (1 − fD)rτp
(1.69)

The effects of synaptic facilitation and depression are illustrated in Figure
1.22.

34



1.4. COUPLING AND PLASTICITY

1.4.1 Synaptic plasticity

Plasticity is a mechanism by which the synapses interaction strength
is modulated according to the previous synaptic activity. One of the
pioneers studying the plasticity effect was Donald Hebb that in 1949
conjectured that if an input from a neuron A often contributes to the
firing of a neuron B, then the synapse from A to B should be strengthened
[21]. Changes in the synapse are thought to be involved in learning,
memory processes, pattern recognition, etc.
Different types of plasticity have been identified. In the following sections,
a short overview of different types of plasticity is provided.

Short-term plasticity

Short-term plasticity covers synaptic processes that affect the probability
that a presynaptic impulse opens the channels of the postsynaptic neuron.
The duration of the short-term plasticity lasts from milliseconds to tens
of seconds. The modification of the synaptic transmition probability has
basically two effects, depression and facilitation. Short-term depression
is related to a decrease of the efficiency of the synapse inducing a decrease
of the postsynaptic potential amplitude. Synaptic depression provides a
mechanism to control the gain in the synapse. Short-term facilitation on
the contrary, is associated with an increase of the efficacy of the synapse
giving to an increase of the postsynaptic potential amplitude. Figure 1.22
illustrate these two processes.

Long-term plasticity

Contrary to short-term plasticity, changes in the efficiency of the synapse
during long-term plasticity can last from tens of minutes to days or even
longer. As in short-term plasticity, two contrary effects have been also
observed in long-term plasticity. Long-term potentiation is related with
the enhancement of the synapse efficiency by high-frequency stimuli and
it is considered to be related to one of the mechanisms that underlies
learning and memory. Long-term depression is the weakening of the
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Figure 1.22: Illustration of the short-term plasticity, depression and
facilitation effects. Adapted from [22].

synapse efficacy that can last form hours to days. It is believed that long-
term depression is related with motor learning or erasing of old memory
records.

Spike timing dependent plasticity

Spike Timing Dependent Plasticity (STDP) is a phenomenon related to the
change in the synaptic weights w between a pair of neurons associated
with the spiking timing between both neurons. It was studied in 1997 by
H. Markram [23] and one year later by L. Zhang and M. Poo who mapped
the entire time course relating pre- and post-synaptic activity change [24].
For a single pair of presynaptic and postsynaptic action potentials with
time difference ∆t = tpost− tpre a change in the synaptic efficacy ∆w occurs.
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This change is given by:

∆w =

−λ f−(w) × K(∆t) i f ∆t ≤ 0
λ f+(w) × K(∆t) i f ∆t > 0

The temporal filter K(∆t) = exp(− | ∆t | /τ) implements the spike-timing
dependence of the learning. The time constant τ determines the temporal
extent of the learning window. The learning rate λ scales the magnitude
of individuals weight changes. The temporal asymmetry of the learning
is represented by the opposite signs of the weight changes for positive
and negative time differences. The updating functions f+(w) = (1 − w)µ

and f−(w) = αwµ, scale the synaptic changes and implement synaptic po-
tentiation for ∆t > 0, and depression otherwise.

A generalization of this rule takes into account the axonal delay. Then, to
compute the temporal difference between pre- and postsynaptic events,
one should also consider the time needed for the presynaptic impulse to
arrive to the postsynaptic neuron.

t′pre = tpre + τ (1.70)

where τ is the axonal delay.

Figure 1.23: Critical window for STDP. From [25].
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1.5

Synchronization

Synchronization is a fundamental phenomenon in nature [26]. It has
been observed in many biological systems going from the flashes of a
population of firefly to the spiking activity of pacemaker cells in the heart
or the clapping of an audience. In neural systems, synchronization is
believed to be involved in neural coding [27] and also in some pathological
rhythmic brain activity related to epilepsy episodes or Parkinson’s disease
[28]. Synchronization appears as a multi-scale phenomenon in the brain
[29] ranging from synchrony between pairs of single neurons [30, 31],
different neuronal populations in the same area [32, 33] or distant areas
which are far appart in the brain such as areas between occipital and
frontal lobes or across hemispheres [34, 35].

1.5.1 Frequency and phase looking

In general, synchronization means an adjustment of frequencies of peri-
odic self-sustained oscillators due to a weak interaction. There are many
examples of this kind of oscillators in different fields: electronic circuits,
lasers, chemical reactions like the Belousov-Zhabotinsky or biological
pacemakers such as the sino-atrial node of the human heart. Common to
all self-sustained oscillators there are some features: (i) the self-sustained
oscillator is an active system capable of maintaining the same rhythm
until a source of energy is available, (ii) the shape of the oscillations is
determined by the internal parameters of the system and does not depend
on the transient to the steady oscillation and (iii) the oscillation is robust
against small perturbations.

One of the principal attribute of an oscillatory system is the characteristic
time needed to repeat its intrinsic event. In a periodic oscillator, this
time is determined by the period of the oscillation T. The inverse of the
period defines the cyclic frequency f = 1/T of the oscillator. The angular
frequency is defined thus as w = 2π f = 2π/T. Another important quantity
that characterize an oscillator is the phase. The signal x(t) of an oscillator
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can be written as

x(t) = A(t)ei(wt+φ) (1.71)

being A(t) the amplitude of the oscillations, w the angular frequency and
φ the phase of the oscillator. The phase of an oscillator plays an important
role in the identification of synchronization.

When two or more oscillators with different intrinsic frequencies are
weakly coupled they can adjust their rhythms and start to oscillate with
a common period. This phenomenon is known as frequency locking.
Figure 1.24 (a) illustrates a typical fingerprint of frequency locking. The
graph of the detuning of effective frequencies ∆F = F2 − F1 as a function
of the natural frequencies mismatch ∆ f = f2 − f1 exhibits a plateau where
F1 = F2 for a certain range of ∆ f . In this region the oscillators are syn-
chronized with the same frequency. Higher orders of synchronization are
also possible, usually at large detuning ∆ f , in which the ratio between
the frequencies is a natural number F1/F2 = n/m ∈ Q. The dependence
of the width of this synchronization region with the coupling strength is
characterized by the so call Arnold tongues. Figure 1.24 (b) represents
the n : m synchronization regions or Arnold tongues.

Associated to the frequency locking, the phase difference of the oscillators
Φ = φ2−φ1 also remains bounded. A general condition of phase locking is
|nφ1−mφ2| < constant. The phase difference Φ of the oscillators determines
different types of synchronization: in-phase synchrony corresponds to a
situation in which Φ ≈ 0 denoting a state in which the oscillators have the
same phase or very close; anti-phase synchronization appears between
oscillators with a phase difference Φ ≈ π corresponding to a situation
in which the oscillators are at opposite position in the cycle (like two
pendulums, one reaching the leftmost position while the other is in the
rightmost position).
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Figure 1.24: a) Frequency locking region. b) Arnold tongues.

1.5.2 Different types of synchronization

Different kinds of synchronization have been identified in dynamical
systems. In the following lines the principal types of synchronization
between two signal x1(t) and x2(t) of two interacting systems are described.

• Identical or complete synchronization: identical synchronization
implies a perfect linking of the trajectories of the two systems x1(t) =
x2(t), so they remain close to each other in time [36]. Only identical
systems can exhibit complete synchronization and any mismatch
between them prevents this kind of solution.

• Lag synchronization: lag synchronization is related with the situ-
ation in which the two systems are identically synchronized when
they are compared at different times x1(t) = x2(t − τ) [37].
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• Generalized synchronization: this kind synchronization implies a
nontrivial, and some times complex, relationship between the vari-
ables of the two systems x2(t) = F (x1(t)) [38]. It is usually easier to
demonstrate the existence of this kind of synchronization than de-
termine the relationship F between the systems. A simple method
to check the existence of generalized synchronization was proposed
in [39].

• Phase synchronization: this type of synchronization appears usu-
ally at weak coupling when the amplitudes of the systems are un-
correlated while the phase difference remains bounded [40].

An extensive review of synchronization in chaotic systems can be
found in [41].
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1.6

Noise

Noise is present in nature and contrary to intuition noise can have a
constructive role in many systems. This section is devoted to a basic
introduction to some aspects of stochastic processes. First a brief historical
overview is given, followed by the introduction to the white noise. Finally
some aspects of the noise in neuronal systems are presented.

1.6.1 Historical overview

One of the first attempt to study a fluctuating behavior was done by
the Scottish botanist Robert Brown in 1827 [42]. He observed that small
pollen particles suspended in water presented an irregular motion. The
first explanation of that erratic movement was related to a manifestation
of live, but Brown realized soon that inorganic particles like minerals or
glass also presented the same kind of movement. Figure 1.25 illustrate a
computer generated version of the motion described by Brown.

Figure 1.25: Representation of the Brownian motion.

A satisfactory explanation of the Brownian motion had to wait until Al-
bert Einstein with one of his famous series of paper of 1905 [43] and
independently by Marian Smoluchowskii one year later [44]. Einstein
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argued that the motion was caused by the frequent impacts of the mov-
ing molecules of water on the pollen grains and that motion can only be
described probabilistically in terms of statistically independent impacts.
Assuming that the displacement of a particle is independent of all the
other particles and the movements of a particle in different time intervals
are independent, Einstein derived the diffusion equation

∂ρ

∂t
= D

∂2ρ

∂x2 (1.72)

where D is know as the diffusion coefficient and ρ = ρ(x, t) is the probabil-
ity density of finding a particle at x at time t. The solution of the equation
of diffusion when ρ(x, 0) = δ(x) is determined by

ρ(x, t) =
1

√
4πDt

e−x2/(4Dt) (1.73)

and the average of the square of the displacement that a particle experi-
ences is 〈

x2
〉

= 2Dt (1.74)

Paul Langevin provided in 1908 a different approach to explain the Brow-
nian motion [45]. Langevin supposed that there were two forces acting
on a particle, one coming from the viscous drag due to the movement
of the particle in the fluid and another fluctuating force coming from the
impacts of the molecules of the liquid on the particle. Then, the equation
of motion for the position of the brownian particle was

m
d2x
dt2 = −6πηa

dx
dt

+ ξ (1.75)

where η represent the viscosity and a the radius of the assumed spherical
particle. The fluctuating force was taken into account in the last term of
Eq. 1.75 as ξ. Langevin estimated that the average of the square of the
displacement was 〈

x2
〉

=
kT

3πηa
t (1.76)
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where k is the Boltzmann’s constant and T is the temperature of the
fluid. Then, the diffusion coefficient of Einstein was related to physical
properties

D =
kT

6πηa
(1.77)

Diffusion has an important role in biological systems for example in pas-
sive displacement of substances in the cells, the transport of neurotrans-
mitters in the synaptic cleft, the transport of oxygen at alveolus, and
others.

1.6.2 Random walk

In one dimension, the formulation of the random walk problem is equiv-
alent to the situation in which a person moves along a line taking, at
random, steps of equal length λ to the left or to the right with the same
probability. Figure 1.26 shows a schematic representation of this process.
The probability of finding the person at a distace x = rλ from the origin

Figure 1.26: The random walk process in one dimension.

after a given time t = nτ follows the binomial distribution

P(x(nτ) = rλ) =

(
n

n+r
2

)
2−n (1.78)

The spectation value and the mean square deviation are 〈x〉 = 0 and〈
x2

〉
= nλ2 respectively. In the limit of large times, using the de Moivre-

Laplace theorem, the binomial distribution can be approximated by a
Gaussian one:

P(x(nτ) 6 rλ) =
1
2

+ erf
(

r
√

n

)
(1.79)
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Figure 1.27 shows a caricature of the two dimensional version of the
random walk, known as the drunkard’s walk.

Figure 1.27: Illustration of the drunkard’s walk.

1.6.3 White noise

Noise does not have a simple definition. Intuitively, noise represents
fast and irregular fluctuations that deviates from the deterministic the
behavior of a system. Historically the name was attributed to the irregular
sound heard in electronic circuits and nowadays the term is widely used.
In order to define the white noise we introduce first the so called Wiener
process, W(t), as a random walk process in the continuum limit τ → 0,
λ→ 0 but λ2/τ = 1.

P(W(t) 6 x; t) =
1
√

2πt
e−W2/(2t) (1.80)

This process is continuous but not differentiable. W(t) has a Gaussian
distribution with zero mean and variance t. The associated probability
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distribution function is

f (W; t) =
1
2

+ erf
(

x
√

t

)
(1.81)

Since W(t) is a Gaussian process, it is fully determined by its mean and
correlation function

〈W(t)〉 = 0 (1.82)
〈W(t1)W(t2)〉 = min(t1, t2) (1.83)

The withe noise random process is defined as the derivative of the Wiener
process. But, since W(t) has a Haussdorf dimension larger than the space
in which the process is defined [46], the derivative of the Wiener process
is defined in a special way, performing the derivative before taking the
continuum limit previously described. We can define a Gaussian process
ξε(t) as a linear combination of a random walk process x(t) in the following
way

ξε(t) =
x(t + ε) − x(t)

ε
(1.84)

that is completely defined by its mean and correlation functions

〈ξε(t)〉 = 0 (1.85)

〈ξε(t1)ξε(t2)〉 =

{
0 i f |t1 − t2| ≥ ε

λ2/(τε)(1 − |t1 − t2|/ε) i f |t1 − t2| < ε
(1.86)

Then, the white noise is obtained in the limit ξ(t) ≡ limε→0 ξε(t) which is
characterized by the mean value and correlation

〈ξ(t)〉 = 0 (1.87)
〈ξ(t1)ξ(t2)〉 = δ(t1 − t2) (1.88)

The white noise can be understood as an ideal physical stochastic process
with delta correlation. In nature however, any physical process has a finite
correlation time. To describe these situations, the Ornstein-Uhlenbeck
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noise ξOU is used. This noise is defined as a Gaussina Markov process
characterized by

〈ξ(t)〉 = 0 (1.89)

〈ξ(t1)ξ(t2)〉 =
1

2τ
e−|t1−t2|/τ (1.90)

The Ornstein-Uhlenbeck noise has a non zero correlation time, i.e. the
value of the noise at different times are not independent variables. The
white noise is recovered in the limit ξ(t) = limτ→0 ξOU. The Ornstein-
Uhlenbeck is usually know as colored noise.

1.6.4 Langevin equation

Langevin was a pioneer studying the effect of a stochastic term in a
differential equation. When the stochastic process appears linearly, the
stochastic differential equation is called Langevin equation. The general
formulation of the Langevin equation reads

dx
dt

= f (x, t) + g(x, t)ξ(t) (1.91)

The situation in which the function g(x, t) is constant is referred as addi-
tive noise case. On the contrary, when g(x, t) is a non-constant function,
the noise is called multiplicative. During this thesis both colored and
white noises will be used in the additive form. Numerical integration of
stochastic differential equation were done using the Heun method [47].
A review of the stochastic effects in physical systems can be found in [48].

1.6.5 Noise in neurons

Experimental recordings of neuronal activity present a high irregularity.
Even in the situation in which it is assumed that neurons spike periodi-
cally, fluctuations of the firing period are observed. There are two kind of
noise, an intrinsic noise coming from internal fluctuations at the level of
the neuronal dynamics, and an extrinsic noise coming from the network
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and connections with other neurons. At an intrinsic level, there exist basi-
cally two mechanisms that contribute as a sources of noise. One is thermal
noise, where the membrane potential fluctuates with temperature due to
the limited amount of electric carriers (Johnson noise). However, this con-
tribution is small compared with other noise sources in neurons. Another
intrinsic source of noise comes from the fluctuations in the conductance
due to the finite number of ionic channels present in the membrane. At
a constant membrane potential, the number of open channels fluctuates
around nP(V) where n is the total number of ion channels and P(V) is the
fraction of open channels. These fluctuations can be critical for the gen-
eration of action potentials when the membrane potential is close to the
threshold. This type of noise is known as channel noise. At an extrinsic
level, a source of noise is the fluctuations in the arrival times of inputs
coming from thousands of other neurons. Another source of noise is the
synaptic transmission failures.

Poisson process

In general, the probability that a neuron fires at a given time could depend
on the entire history of the preceding spikes. When the intervals between
successive spikes are independent and the firing probability extends only
to the preceding spike, the process that generates the sequence of spikes is
call renewal process. When the firing sequence of a neuron do not depend
on the preceding events, so that the spikes are statistically independent, a
good approximation to describe the firing sequence is given by the Poisson
process. When the firing rate is time independent r(t) = r, homogeneous
Poisson process, the probability P[t1, t2, ..., tn] that a sequence of n spikes
occurs can be expressed as

P[t1, t2, ..., tn] = n!PT[n]
(
∆t
T

)n
(1.92)

where it is assumed that the spike times are ordered t1 ≤ t2 ≤ ... ≤
tn ≤ T and PT[n] is the probability that an arbitrary sequence of n spikes
occurs within a time interval T. This probability is the product of three
factors: the probability of generating n spikes in the interval [0, t′], the
probability of not generating spikes in the remaining interval [t′,T] and
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the combinatorial factor equal to the number of ways of putting n spikes
into M bins (M = T/∆t).

PT[n] = lim
∆t→0

M!
(M − n)!n!

(r∆t)n(1 − r∆t)M−n (1.93)

We can take this limit by considering that M grows as ∆t tends to zero
and thus, M − n ≈M. Defining ε = −r∆t

lim
∆t→0

(1 − r∆t)M−n = lim
ε→0

(
(1 + ε)

1
ε

)−rT
= e−rT (1.94)

For a large M, M!/(M − n)! ≈Mn, then,

PT[n] =
(rT)n

n!
e−rT (1.95)

This is called the Poisson distribution. The average number of spikes
generated by a Poisson process is

〈n〉 =

∞∑
n=0

nPT[n] (1.96)

and the variance

σ2
n =

∞∑
n=0

n2PT[n] − 〈n〉2 (1.97)

To compute these quantities we can use the moment-generating function
and its kth derivative

g(α) =

∞∑
n=0

(rT)neαn

n!
e−rT (1.98)

dkg
dαk

=

∞∑
n=0

nk(rT)neαn

n!
e−rT (1.99)

We need the first and second derivatives evaluated at α = 0 to obtain 〈n〉
and σ2. Rewriting Eq. 1.98

g(α) = e−rT
∞∑

n=0

(rTeα)n

n!
= e−rTerTeα (1.100)
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Then, the first and second derivatives are given by

dg
dα

= (rT)eαe−rTerTeα (1.101)

d2g
dα2 = ((rT)eα)2 e−rTerTeα + (rT)eαe−rTerTeα (1.102)

Evaluating these expressions at α = 0 give 〈n〉 = rT and σ2 = rT.
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Noise, diversity and signal
propagation
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Chapter 2

Stochastic Resonance in
neuronal systems

Noise, when acting on excitable systems, not always has a degrading
effect. In fact, when it affects a system that is driven by a periodic force,
it may occur that the noise enhances the responce of the system to the
modulation. The effect of the noise is more evident when the amplitude of
the modulation is small enough to not to induce a responce of the system in
the absence of noise. This phenomenon is known as Stochastic Resonance.
Stochastic resonance is commonly understood as the enhancement, by
noise, of the response of a non-linear system to a weak input signal.
Thus, the minimal ingredients required for the occurrence of stochastic
resonance are: i) a source of noise, ii) a weak input signal and iii) a non-
linear system. Stochastic resonance has been observed in many biological
systems going from mechanoreceptor hair cells of the cryfish [49], the
cercal system of the cricket [50] or sensory neurons [51], to cite some
of them. Stochastic resonace has been shown in electrophysiological
experiments of muscle spindles [52] demonstrating that the sensitivity of
the muscle spindle receptors to a weak movement signal is enhanced by
introducing a particular level of noise through the tendon of the parent
muscle. However, it is not clear from these experiments whether the

This chapter is based on the paper: L. Martínez, T. Pérez, C.R. Mirasso, and E.
Manjarrez, J. Neurophysiol. 97, 4007 (2006)
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electrical activity of the spinal motoneurones also exhibits the stochastic
resonance behavior.

In this chapter we study the role of noise acting on neurons belonging to
the motor system. The phenomenon of stochastic resonance is observed
and characterized at the level of both the spinal cord and the gastronemial
nerve. In the first part of the chapter we introduce and describe the model
while in the second part the numerical results are presented and compared
with the experimental observations.

2.1

Stochastic resonance in motoneurons

In sensory systems, the presence of a particular nonzero level of noise may
significantly enhance the ability of an individual to detect weak sensory
stimuli through the phenomenon of stochastic resonance. However, in
the motor system it is not clear whether the electrical activity of motoneu-
rons exhibits the stochastic resonance effect. The aim of this study is to
demonstrate that such phenomenon is also exhibited by motoneurons.

2.1.1 The system

With the aim of demonstrating that the Stochastic Resonance phenomenon
is also present in the motor system, we study an ensemble of heteroge-
neous independent motoneurons. The dynamic of each motoneuron is
described by the Morris-Lecar model [6]

Cm
dVi

dt
= Iapp + Iion

i − Iext
i +

√

DξOU (2.1)

dWi

dt
= φΛ(Vi) [W∞(Vi) −Wi] . (2.2)

Cm is the membrane capacitance. Vi and Wi represent the membrane
potential and the fractions of open channels of neuron i, respectively. Iapp

is the external applied bias current. φ is the decay rate of Wi. The ionic

54



2.1. STOCHASTIC RESONANCE IN MOTONEURONS

current Iion is defined as follows

Iion
i = −gCaM∞(Vi) (Vi − VCa) − gKWi (Vi − VK) − gL(Vi − VL) (2.3)

where ga and Va, being a = {Ca,K,L}, represent the conductance and the
resting potential of the calcium, potassium and leakage channels respec-
tively. The gatering functions are taken into account as the quantities
M∞(V), W∞(V) and Λ(V) defined by

M∞(V) =
1
2

[
1 + tanh

(V − V1

V2

)]
(2.4)

W∞(V) =
1
2

[
1 + tanh

(V − V3

V4

)]
(2.5)

Λ(V) = tanh
(V − V3

2V4

)
(2.6)

where VM1, VM2, VW1 and VW2 are constant values. The external applied
current is defined as [53]

Iext
i = gext

i r(t) (Vi − Es) (2.7)

where gext
i is the conductance of the synaptic channel and r represent the

fraction of bound receptors described as

r(t) =
(
1 − e−αt

)
f or t ≤ ton (2.8)

r(t) =
(
1 − e−αton

)
e−βt f or t > ton (2.9)

where α and β are rise and decay time constants, respectively. Here ton
represents the time at which the synaptic connection is activated. Es is
the the synaptic reversal potential and determines the character of the
synapse. An excitatory synapse is defined by a value of Es larger than the
membrane resting potential. On the contrary, a value of Es smaller than
the membrane resting potential is attributed to an inhibitory synapse. In
this work, we consider only excitatory synapses coming from the applied
external signal.

In nature, heterogeneity is intrinsic to the majority of the systems. Re-
cently, it has been shown that diversity might play an important role in
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forced excitatory systems [54]. The response of an excitable system to
an external weak periodic signal can be optimized when an intermediate
level of diversity in the elements composing the system is considered. In
order to account for the natural heterogeneity existing in motoneurons,
we include diversity in our system. To take into account this diversity,
we allow the conductance channel parameter ga to fluctuates around a
mean value: ga = (σ ·wa +1)ḡa where wa is a Gaussian distributed random
number of zero mean and unit variance. σ = 0.1 is the percentage of
heterogeneity that we consider.

There is experimental evidence that the size of a pool of motoneurons re-
ceiving the same afferent input is of the order of 300 alpha-motoneurons
[55]. To take into account this experimental evidence we consider a pool of
N = 300 motoneurons. Furthermore, because the proportion of possible
direct excitatory connections between motoneurons is low [56], we limit
our study to the situation where the neurons are uncoupled. A periodic
weak modulation that corresponds to the electrical excitation of the gas-
tronecmious nerve (see below) is applied to the system. Each neuron in
the ensemble receives an external periodic synaptic input. The amplitude
of the signal is selected weak enough in order to not to evoke spikes in
the absence of noise. In our simulations, Iext

i is a periodic synaptic pulse
with a period Tm = 400 ms (i.e., 2.5 Hz), ton = 3 ms and amplitude gext

acording to the experimental conditions. We also allow the amplitude of
the external signal to fluctuates around a mean value gext = (σ ·we + 1)ḡext
being we a Gaussian distributed random number of zero mean and unit
variance. The rest of parameters are shown in Table 2.1. Figure 2.1 shows
a schematic representation of the system.

Figure 2.1: Schematic representation of the system under study.

56
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Table 2.1: Parameters of the Morris-Lecar model.

Parameter Value Units
Cm 5 µF/cm2

Iapp 65 µA/cm2

ḡK 8 µS/cm2

ḡCa 4.4 µS/cm2

ḡL 2 µS/cm2

VK −80 mV
VCa 120 mV
VL −60 mV
VM1 −1.2 mV
VM2 18 mV
VW1 2 mV
VW2 30 mV
φ 0.04 ms−1

α 0.33 ms−1 mM−1

β 0.2 ms−1

ḡext (specified in each case)
τsyn 3 ms
Es 0 mV

2.1.2 Synaptic noise

Recently it was shown that the total conductance resulting from a sum
of thousands of synaptic inputs has a power spectrum that approximates
a Lorentzian shape, i.e., which decays as e−t/τ. This was demonstrated
in a detailed physiological model of cortical neurons subject to stochas-
tic synaptic inputs [57]. The Gaussian nature of the Ornstein-Uhlenbeck
process and its Lorentzian spectrum qualitatively matches the conduc-
tance underlying the synaptic noise, thus providing an effective stochas-
tic representation that captures the amplitude of the conductances, their
standard deviation and spectral structure. This motivates the use of the
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Ornstein-Uhlenbeck process as a valid description of the synaptic noise.
The Ornstein-Uhlenbeck process can be obtained from the solution of the
following stochastic differential equation

dξOU

dt
=

1
τ

(ξw − ξOU) (2.10)

with the initial condition ξOU(0) being a Gaussian random variable of
zero mean and variance (2τ)−1 and ξw a white-noise process.

Following this idea, for the case of motoneurons, we assume that the ex-
ternal noise

√
DξOU that enters the pool of neurons through the synaptic

connections is modeled as an Ornstein-Uhlenbeck process, i.e. as a col-
ored noise source, with a correlation time of 0.5 ms. Integration of Eq.
(2.1)-(2.2) was done by using a stochastic Runge-Kutta method known as
the Heun method for colored noise following [48]. Figure 2.2 shows the
typical power spectra of the colored noise used in the numerical simula-
tions.

Figure 2.2: Power spectra of the colored noise used in the simula-
tions.
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2.2

Results

In this section we present the main results obtained from the numerical
simulations of the system described in previous sections. To character-
ize the stochastic resonance we compute the signal to noise ratio (SNR)
defined as

SNR =
P(ω)

PN(ω)
(2.11)

where P(ω) =
1

2πT
|

∫ T
0 x(t)e−iωtdt|2 is the power spectrum of the signal and

PN(ω) is the power spectrum of the background noise. We characterize
the behavior of our system by the collective response x(t) = N−1 ∑N

i=1 Vi(t).

First, we determine the response of the system as a function of the ex-
ternal modulation amplitude in the absence of noise. We normalize the
amplitude of the external modulation gext to the minimal amplitude nec-
essary to obtain some response T (threshold amplitude). Figure 2.3 shows
the response amplitude x(t) as a function of the modulation amplitude
gext. The response amplitude of the system increases linearly for small
amplitudes of the modulation. On the other hand, values of gext & 1.4T
produce saturation of the response amplitude.

The next step is to consider a colored noise acting on the system and
study the effect of increasing the noise amplitude. Figure 2.4 shows the
signal-to-noise ratio for different amplitudes of the applied external signal
as a function of the noise level. When the amplitude of the modulation
is small enough (green filled squares), practically the system does not
respond to the signal. For a value of the amplitude close to the thresh-
old T (blue filled circles), the response of the system is maximized at an
intermediate value of the noise intensity. If the amplitude of the mod-
ulation is even larger (gray filled triangles), the system does not exhibit
the resonant effect and its response degrades when increasing the noise
intensity. Our results are consistent with the well established fingerprints
of stochastic resonance: the effect of the noise is maximized when the
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Figure 2.3: Amplitude of the respose of the system as a function of
the external applied modulation amplitude gext.

system is close to its threshold; the resonant behavior appears only for
subthreshold, or close to threshold, values of the modulation amplitude
while suprathreshold amplitudes give a degradation of the response of
the system. Figure 2.5 displays the time trace of one neuron for differents
noise strength D. When the noise is small, the neurons slightly respond
to the modulation. For an intermediate value of the noise strength, the
system responds optimally to the modulation, while at higher values of
the noise amplitude, the firing rate of the neurons increases deteriorating
the capacity of the system to respond to the external modulation.

60



2.2. RESULTS

Figure 2.4: Signal-to-Noise ratio for different external modulation
amplitude ḡext = A as a function of the noise strength D.

2.2.1 Experimental Results

In collaboration with the Integrative Neurophysiology Lab of the Insti-
tute of Physiology of the Benemérita Universidad Autónoma de Puebla,
Mexico, we experimentally corroborated the numerical results. In the
experiment, we studied the effects of continuous noisy stretches (input
noise) to the lateral gastrocnemius-soleus (LGS) muscle on the amplitude
of monosynaptic reflexes elicited by periodic electrical stimulation of the
medial gastrocnemius (MG) nerve in the leg of the cat (further experi-
mental details can be found in the publication associated to this chapter).
Figure 2.6 A shows a schematic representation of the experimental setup.
The amplitude of the monosynaptic reflex as a function of the external
stimuli amplitude in the absence of noise is shown in Figure 2.6 B. The
power spectra of the elicited response and the applied random stretches
are displayed in Figure 2.6 C and D respectively.
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Figure 2.5: Temporal trace of one neuron as a function of the
noise strength D. The external modulation amplitude is set to

A = 1.0 mS/cm2. (a) D = 0.1, (b) D = 0.6 and (b) D = 3.0.
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Figure 2.6: A: scheme of the experimental arrangement. B: am-
plitude of the monosynaptic reflexes versus the intensity of the
electrical stimulation applied to the medial gastrocnemius nerve.
C: power spectra of the elicited response. D: power spectra of the

random stretches. Inset: amplitude distribution around 500 µm.

The main results of the experiment are synthetized in Figure 2.7. The
response amplitude of successive monosynaptic reflexes for three levels
of noise (low, intermediate, and high) is represented with open circles.
The amplitude in control conditions is indicated with black filled circles.
Note that the amplitude of the monosynaptic reflex significantly increases
when an intermediate level of noise is applied to the LGS muscle. On the
contrary, for a high level of noise, the amplitude significantly decreases.
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Figure 2.7: Amplitude of the successive monosynaptic reflexes for
different noise strength.

In order to quantify this observation, we computed the signal to noise ratio
(Eq. (2.11)) for different noise strengths, see Figure 2.8. The response of
the system clearly exhibits a resonant behavior for intermediates values
of the noise strength.

Figure 2.8: Computed signal to noise ratio from experimental data
(green dots). Red line stands for the best fit SNR ∝ (a/D)2e−b/D

obtained. Both panels correspond to two different realizations of
the experiment.

Despite the variability from experiment to experiment, we can conclude
that the numerical results qualitatively match the experimental observa-
tions.
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2.3

Conclusions

In this chapter we have studied the effect of noise when it acts over a
population of motoneurons. In the first part of the chapter, we have
simulated an ensemble of heterogeneous motoneurons described by the
Morris-Lecar model. We have considered the situation in which the mo-
toneurons receive convergent synaptic inputs from sources generating
the noise and the periodic external signal. The stochastic resonance phe-
nomena has been observed and quantified in our simulations.

In the second part of the chapter, we have presented the experimental
study where we have found a qualitatively agreement with the numerical
results providing a verification that stochastic resonance occurs also in
the motor system at the level of the spinal cord.

In summary, we have demonstrated that noise can have a constructive role
when acting over motoneurons located in the spinal cord. In particular,
the enhancement of the response of an ensemble of motoneurons to a
weak modulation is obtained for an intermediated level of noise.
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Chapter 3

Signal propagation during a
motor activity

In this chapter we study the signal propagation during a motor activity.
In particular, we center our study in the scratching activity. Scratching
is a motor task in which one hind limb performs rhythmic movements
to relieve irritating sensations from the skin on the neck, face and pinna.
During scratching episodes the spinal cord exhibits sinusoidal-like cord
dorsum potentials (CDPs), i.e., sinusoidal electrical waves [58]. Recently,
it was demonstrated the rostrocaudal propagation of these waves along
the spinal cord during fictive scratching in the cat [59]. It is well known
that the neuronal circuitry controlling scratching in the cat is located
in the hind limb enlargement of the spinal cord [60–62]. This circuitry,
called central pattern generator (CPG), produces the flexor and extensor
movements during scratching. However, the detail of the architecture
conforming the CPG that allows for the persistence of such sinusoidal
waves even in the presence of local failures or absences of activity is still
unclear. Here we address this problem both theoretically and experi-
mentally. The aim of this work is to propose a theoretical circuit that
reproduces the sinusoidal electrical propagating activity of the CDPs.

This chapter is based on the paper: T. Pérez, J. Tapia, C.R. Mirasso, J. García-Ojalvo,
J. Quevedo, C. Cuellar and E. Manjarrez, An intersegmental neuronal architecture for spinal
wave propagation under deletions, J. Neurosci., 29, 10254 (2009)
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The chapter is divided as follows: first, a briefly introduction to the dif-
ferent neuronal circuits related to the generation of the motor activity is
provided. The proposed neural network involved in the generation of
scratching activity and a detailed description of the neuron dynamics is
presented in section 3.2. In the last part, we present the obtained numeri-
cal results and compared with the experimental observations. Finally, the
conclusions are drawn.

3.1

Central pattern generator

The basic rhythms of neural activity related to locomotor activity are
generated by neurons of the spinal cord. These neurons are organized
in circuits that produce the basic rhythmic movements. These circuits
are known as central pattern generators (CPG). The first description of a
CPG was provided by Graham Brown in 1911 [63] based on the concept
of half-centre. According to this idea, the rhythm related to a locomotor
activity is generated by the balance between mutual excitation and the
reciprocal inhibition of two population of neurons. In this situation, a
simple circuit as the one displayed in Figure 3.1 controls the rhythm and
the generated pattern of neuron activity. One of the disadvantages of this
kind of scheme is the fact that a failure in the balance of the connection
between the population leads the system in one of the phases or states.
Another limitation of the half-centre architecture is that it can settle only
a unique pattern of neuronal activity.

Figure 3.1: Basic representation of a CPG.
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3.1.1 Two-level architecture

To overcome some of the limitations of the single half-centre network,
different configurations have been suggested. An architecture based on
multiple unit burst generators (UBG) [64] or others based on a bipar-
tite half-centre organization [65], all of them organized in a single layer
configuration were proposed. Eventhough these schemes afford to repro-
duce some complex pattern of locomotor activity, there are still some other
aspects in which a single level architecture fails, for example, in the expla-
nation of the deletions. A deletion is an absence of the expected activity
of the neurons observed during fictive locomotion and scratching [66, 67].
When a non-resetting deletion occurs, the phase of the alternated activ-
ity, usually flexion-extension, is maintained after the deletion, suggesting
that this kind of deletions are related with a change in the excitability
of a part of the circuit involved in the generation of that locomotor ac-
tivity. A single-level CPG cannot maintain the phase of the locomotor
rhythm during the deletion because a single network is responsible of
the generation of both the rhythm and the activity pattern of the neurons.
Then, a perturbation in the network affects both the phase and the pattern
of the locomotor activity. This is in contradiction with the observation
that during a non-resetting deletion the phase of the activity is not altered.

Based on this experimental evidence, a two-level architecture has been
recently proposed. It consists in a half-center generating the rhythm
and a pattern formation network responsible of the activity pattern of
the neurons [68]. The rhythm generator (RG) defines the rhythm and
the duration of the different phases of the locomotor activity. The pattern
formation network (PF) produces the specific synchronized activity of the
neurons depending on the input received from the RG and the interaction
between neurons within the same PF. This two-level based CPG has the
advantage of a separated control of the locomotor rhythm at the RG layer
and the pattern of activity at the PF level. Thus, a perturbation may affect
the locomotor rhythm if it acts at the RG level or only the activity pattern
if it acts at the PF level. A schematic representation of the two-level CPG
is shown in Figure 3.2
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Figure 3.2: Two levels central pattern generator. Adapted from
[69].

3.1.2 Spontaneous failures of activity: deletions

As it was mentioned before, a deletion is a spontaneous lack of activity
during a locomotor activity. It has been observed in different motor tasks
and different animals [70, 71]. Deletions can be classified as resetting or
non-resetting, depending on whether the oscillation phase is altered or
not during the deletion [69]. A resetting deletion is characterized by a
phase shift of the post-deletion rhythm with respect to the pre-deletion
oscillations. In contrast, after a non-resetting deletion the phase of the
pre-deletion rhythm is not shifted after the deletion.

In this thesis we propose a theoretical neuronal circuit based on an ex-
tension of this two-level architecture with an asymmetrical connection
between the two layers. The description of this circuit and the detailed
neuronal dynamics is provided in the next section.
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3.2

Modeling a neuronal network involved in the fictive
scratching

The fictive scratching is a motor task in which one limb performs rhythmic
movements to mitigates an irritating sensation from the skin. During
the fictive scratching, a rostrocaudal propagation of sinusoidal electrical
waves have been observed [59]. Previous attempt to model the CPG
involved in the fictive scratching were based on an single segment and
did not consider the propagation [69]. We are interested in modeling
the activity of the fictive scratching by considering also the rostrocaudal
observed signal propagation.

We model the rhythm generation and the signal propagation along the
spinal cord by means of a network composed of eight CPG units (or
nodes [72]). These CPGs are connected via excitatory synapses with their
nearest neighbors along the rostrocaudal-caudal direction. We consider
the CPG network as consisting of a two-level architecture containing a
half-center rhythm generator (RG) and a pattern formation (PF) network
[69]. The RG, is formed of two populations of excitatory neurons that
mutually project on each other via inhibitory interneuron populations
and is the responsible for the duration of the flexor and extensor phases
defining the scratching rhythm. It is also responsible for controlling the
activity of the PF network by exciting the flexor and inhibiting the exten-
sor half-center of the PF network. The flexor and extensor half-centers
of the PF network consist of excitatory neuron populations that form
reciprocal connections with one another through inhibitory interneuron
populations. Based on the experimental evidence that rhythmic bursting
activity in flexor motoneurons can continue in the absence of extensor
burst [73] we connect the RG layer and the PF network through an asym-
metric direct excitatory synapse on flexor PF neurons population and
through an interposed inhibitory interneuron population on extensor PF
neuron population [74]. Figure 3.3 shows a schematic representation of
the proposed circuitry. To keep the model simple, but still realistic, we
assume each population to be composed of twenty neurons described by
a modified Morris-Lecar model [75]. We include heterogeneity within
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each neuron populations by a random distribution of the leakage current
reversal potential VL. Connections between populations are set such that
individual neurons of each population receive 15% of randomly chosen
connections from the other population. Excitatory synaptic connections
from populations within the PF layer directly excite the motoneuron pop-
ulations (see for example connections from gray populations to extensor
and flexor motoneuron populations, respectively, in Figure 3.3 (a)). In ad-
dition, reciprocal inhibitory synaptic connections via inhibitory interneu-
ron populations between the excitatory neuron populations, and flexor
and extensor motoneuron populations are also considered. Excitatory
synaptic connections are assumed between adjacent rostrocaudal-caudal
elements along the propagation axis represented by light gray arrows in
Figure 3.3 (b).
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(a)

(b)

Figure 3.3: Representation of the neuronal circuit proposed. (a)
Single node detail. (b) Scheme of the global network.

73



CHAPTER 3. SIGNAL PROPAGATION DURING A MOTOR
ACTIVITY

3.2.1 Neuron dynamic

In this section we describe in more detail the model that we use to study
the rhythm generation and signal propagation along the spinal cord. To
model the neuronal activity within the CPG we use a square-bursting
version of the Morris-Lecar model [75]. The equations read

Cm
dVi

dt
= Iapp

i − gCaM∞(Vi) (Vi − VCa) − gKWi (Vi − VK)

− gL(Vi − VL) − gKCaz(yi)(Vi − VK) − Isyn
i (3.1)

dWi

dt
= φΛ(Vi) [W∞(Vi) −Wi] (3.2)

dyi

dt
= ε

(
−µgCaM∞(Vi)(Vi − VCa) − yi

)
(3.3)

These equations describe the rate of change of the membrane poten-
tial V(t), the slow recovering variable W(t) and the calcium concentra-
tion y(t). C represents the membrane capacitance per unit of area. This
conductance-based model describes the dynamical behavior of the mem-
brane potential V(t) taking into account four ionic currents for the calcium,
potassium, leakage and calcium-dependent potassium channels with con-
ductivities given by gCa, gK, gL and gKCa respectively. The inclusion of the
calcium-dependent potassium channel to the model allows to reproduce
the bursting behavior observed experimentally in motoneurons. The
dynamics of that channel is governed by the parameters µ and ε. The
parameter µ is determined by the ratio between the surface cell’s area
and the calcium volume. The parameter ε is the product of the calcium
degradation rate and the ratio of free to total calcium. Since calcium is
usually neutralized, ε is small and y has a slow dynamics. The nonlinear
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functions governing the dynamics of the ionic currents are given by

M∞(V) =
1
2

[
1 + tanh

(V + V1

V2

)]
(3.4)

W∞(V) =
1
2

[
1 + tanh

(V − V3

V4

)]
(3.5)

Λ(V) = tanh
(V − V3

2V4

)
(3.6)

z(y) =
y

1 + y
(3.7)

where VM1, VM2, VW1 and VW2 are constant values. The value of the
parameters used in the simulation can be found in Table 5.4 of Appendix
A.

Numerical integration of the system of nonlinear differential equations
(3.1-3.3) is done using a fourth order Runge-Kutta algorithm with a time
step of ∆t = 0.001 ms. An interval of time of 3 s is considered in order
to allow the dynamic of the network to relax to a steady state before
performing any measurement on the system.

3.2.2 Network Coupling

In the proposed network, we interconnect the neurons via chemical
synapses. Then, the synaptic current of the neuron i is defined as [53]

Isyn
i = gsyn

ij r j (Vi − Es) (3.8)

where gsyn
ij is the maximum conductance of the synaptic channel between

neuron i and j. Es is the the synaptic reversal potential and determines
the character of the synapse: when it is larger than the neuron’s resting
potential the synapse is excitatory, and when it is smaller, the synapse is
inhibitory. r j represent the fraction of bound receptors described as

r j =
(
1 − e−αt

)
f or t ≤ ton (3.9)

r j =
(
1 − e−αton

)
e−βt f or t > ton (3.10)
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where α and β are rise and decay time constants, respectively. Here ton
represents the time at which the synaptic connection is activated. The
value of the connectivities used in the simulation can be found in Table
3.2 of Appendix A.

3.3

Propagation of electrical waves

We start the activity of our network by increasing in ∆I = 0.5 mA the
applied current of the neuron populations belonging to the RG layer of
all the CPGs, and also of neuron populations 3 and 4, belonging to the PF
layer, in the first CPG. The remaining neurons are subject to a constant
bias current of I = 43.8 mA which kept them just below the spiking thresh-
old. In order to adjust the measured duration of the flexor and extensor
phases, different burst durations are considered by varying the value of
the parameter µ in the Equation (3.3). For example, neurons within pop-
ulations 1, 3 and extensor motoneurons of the first CPG in Figure 3.3 (b),
and the equivalent ones in the other CPG units, have a value of µ = 0.015,
which leads to an extensor phase of about 70 ms, while neurons within
populations 2, 4 and flexor motoneurons, and the equivalent ones in the
other CPG units, have a slightly larger value of µ = 0.017 for which the
flexor phase lasts about 140 ms. The proposed network generates an
alternating rhythm that propagates in the rostrocaudal-caudal direction,
illustrated in Figure 3.4.
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Figure 3.4: Illustration of the activity propagation. Black traces
correspond to the meanfield potentials recorded at the eight RG
layers. Blue (red) line represent the activity of one flexor (extensor)

motoneuron.

Figure 3.4 shows the mean field potential of the neurons belonging to the
RG layer after a low-pass filter of cut-off frequency of 100 Hz. The tempo-
ral time traces of one of the flexor (blue) and extensor (red) motoneurons
are also displayed. As it can be seen, the mean field potential propa-
gates across the eight nodes. An alternating activity of the flexor-extensor
phases is also obtained.

3.4

Different kind of deletions

The observation of spontaneous failures in the activity of some groups of
motoneurons during a motor task provides important clues concerning
to the organization of the circuit involved in the generation of the rhythm
and pattern of such activity.
With the aim of reproducing different kind of experimentally observed
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deletions, we induce in our network a temporally change in the excitation
of part of the network.

3.4.1 Resetting deletion

In order to induce a resetting deletion, we apply a temporal reduction
of the current in the RG and PF populations of all the nodes. We bias
50% of the neurons of the RG and PF population at I = 43.7 mA during
∆t = 400 ms while the other 50% remain at I = 44.3 mA. After this
perturbation, the current of all the perturbed neurons is returned to its
original values of I = 44.3 mA. Figure 3.5 shows an example of resetting
deletion. A temporary lack of electrical activity of the eight CPGs (black
lines) and of the extensor motoneurons (red lines) can be clearly seen.
On the contrary, in flexor motoneurons (blue lines) the bursting period
increases due to the lack of inhibition induced by the extensor group of
the PF layer. Evenly spaced arrowheads indicate the averaged period of
the flexor-extensor cycle before the deletion. After the resetting deletion,
a clear phase shift of the post-deletion rhythm is induced, as it is shown
by the green arrowhead in Figure 3.5.
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Figure 3.5: Example of resetting deletion. Black traces correspond
to the meanfield potentials recorded at the eight RG layers. A clear
perturbation of the electrical activity of the eight CPGs is observed.
Blue (red) line represents the activity of one flexor (extensor) mo-
toneuron. Flexor motoneuron exhibit an increase of the bursting
duration while extensor motoneuron shows a lack of burting activ-

ity during the deletion.

3.4.2 Non-resetting deletion

To induce a non-resetting deletion in our network we suddenly diminish
the bias current of the neuron populations within the PF block of the CPGs.
This sudden change is enough to generate a deletion that propagates along
the segment. For example, when we diminish the applied current of 50%
of the neurons of populations 3 and 4 to 43.7 mA during 100 ms (the other
50% remains unaltered at 44.3 mA), we observe that neurons belonging to
population 3 are silent, while the neurons of population 4 continue their
bursting activity, due to the asymmetric connection between RG and PF
layers. This lack of activity also affects the extensor motoneuron pool of
the same CPG, while the activity of the flexor motoneuron pool remains
unaffected as it is shown in Figure 3.6. This evoked deletion propagates
across the longitudinal CPG modules, under the same current reduction
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of the subsequent PF nodes, as displayed in Figure 3.6. The two bottom
traces of this figure clearly show that the deletion affects the extensor
motoneuron of the last CPG.

Figure 3.6: Example of non-resetting deletion. Black traces corre-
spond to the meanfield potentials recorded at the eight RG layers.
The electrical activity of the eight CPGs remains unaltered during
the deletion. Blue (red) line represents the activity of one flexor (ex-
tensor) motoneuron. The flexor motoneuron bursting activity is not
affected by the deletion. On the contrary, the extensor motoneuron

activity presents a burting absence during the deletion.

Combining information provided by these two types of deletions, some
features of the CPG architecture involved in the generation of the fictive
scratching can be unveil. For example, the fact that after a non-resetting
deletion the phase of the activity is not altered, suggests that the CPG
has to have a rhythm generator that is not affected by the perturbations
originating the non-resetting deletions. And the fact that the mean field
potential is not affected during non-resetting deletions supports the hy-
pothesis of a CPG based in a two-level architecture.
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3.4.3 Recovering deletion

The generality of our model allows us to observe, under certain condi-
tions, new behaviors that, although we did not find experimentally yet,
might be observed in other cases. For instance, if a local failure occurs
in the RG layer, a resetting deletion that recovers during the propagation
can occur. We numerically find that when reducing the applied current
in only one CPG, a local deletion similar to those shown in Figure 3.5 is
observed, although the wave recovers after traveling through few nodes.
We illustrate this kind of delition in Figure 3.7.

Figure 3.7: Example of a predicted recovering deletion. Black lines
represent the meanfield potentials recorded at the first four RG
layers. A failure of the activity that it recovers after the propagation

throught a few nodes is observed.
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3.5

Experimental observations

As in the work presented in chapter 2, we carried out experimental stud-
ies in collaboration with the Integrative Neurophysiology Laboratory of
the Institute of Physiology of the Benemérita Universidad Autónoma de
Puebla, Mexico.

In a previous study performed in this Laboratory, the phenomenon of
propagation of electrical waves (sinusoidal CDPs) on the cat spinal cord
during scratching was analyzed in detail [59]. They observed, as our
model shows, a propagation of the electrical activity in a rostrocaudal
direction. Figure 3.8 illustrates this propagation and the alternating cycle
of flexor and extensor activity. This figure shows the recordings of the
cord dorsum potentials and electroneurograms of flexor tibialis anterior
(blue line) and extensor gastrocnemius (red line) nerves during a typical
fictive scratching episode. The magenta lines represent the phase gradient
associated with the travelling CDPs for each sctratching cycle. As it can
be seen, this propagation is reproduced numerically with our model, see
Figure 3.4. The duration of the exensor and flexor phases are also obtained
after a suitable internal parameter selection.

3.5.1 Deletions

Both types of deletions described in previous sections have also been
observed experimentally. Figure 3.9 shows an example of this two kind
of deletions. In the upper panel of Figure 3.9 the recordings of spinal
traveling waves and electroneurograms during scratching are shown.
The traces illustrate a resetting deletion of the extensor muscle motoneural
activity. The magenta lines indicate the rostrocaudal phase gradient of the
traveling waves. Flex and Ext indicate the recorded activity of the flexor
tibialis anterior and extensor gastrocnemius nerves respectively. During
this kind of deletion there is an absence of sinusoidal CDPs activity and a
change in the nerve activity phase after the deletion. In the bottom panel
an example of a non-resetting deletion is displayed. In contrast to the
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Figure 3.8: Propagation of the experimentally recorded cord dor-
sum potentials (CDPs).

previous case, during a non-resetting deletion the traveling waves and
the phase of the extensor muscle activity are unaltered.
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Figure 3.9: Illustration of the experimentally observed deltions.
Upper panel: a resetting deletion is clearly shown. Bottom panel:

Illustration of a non-resetting deletion.

84



3.6. CONCLUSIONS

3.6

Conclusions

In this work we have demonstrated that the propagation of activity dur-
ing the scratching motor task can be explained in terms of an asymmetric
architecture formed by a Rythm Generator and a Pattern Formation lay-
ers. Populations of motoneurons described by a modified version of the
Morris-Lecar model and specifically connected via interneurons account
for the experimentally observed phenomena.

We have found that an alteration in the excitability of part of the net-
work leads to the absence of activity during the scratching, i.e., the phe-
nomenon of deletions was reproduced. Furthermore, both resetting and
non-resetting deletions observed experimentally were obtained numeri-
cally. We have found that non-resetting deletions in extensor activity are
not associated with disturbances of the traveling spinal wave. On the
contrary, we found that resetting deletions are always associated with a
failure in the traveling spinal wave.

A new kind of deletion, not observed experimentally yet, is predicted by
our model. Further experimental corroboration of this predicted deletion
is essential to elucidate the validity of the assumptions of our model.

Our results support the hypothesis that within the spinal cord there is a
group of interneurons longitudinally organized similarly to the network
proposed, that are capable of maintaining the CPG rhythm even during
deletions in the extensor motoneuron activity. We suggest that the trav-
eling electrical waves in the spinal cord during scratching are produced
by the sequential activation of those circuits.
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Appendix A

Table 3.1: Parameters of the modified Morris-Lecar model.

Parameter Value Units
Cm 5 µF/cm2

Iapp 43.8 µA/cm2

gK 8 µS/cm2

gCa 4 µS/cm2

gL 2 µS/cm2

gKCa 0.25 µS/cm2

VK −84 mV
VCa 120 mV
VL −60 ± 0.6 mV
VM1 1.2 mV
VM2 18 mV
VW1 12 mV
VW2 1.4 mV
φ 4.6 s−1

ε 0.0175 s−1

µ 0.015 − 0.017 s−1

α 0.33 ms−1 mM−1

β 0.2 ms−1

τsyn 3 ms
Es 0,−80 mV

(Ex,In)
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Table 3.2: Synaptic connectivities.

Connectivity Value Units
gex,int 0.3 nS
gin,int 0.1 − 0.6 nS
g2,4 2.0 nS
g4, f lex 2.0 nS
g3,ext 1.75 nS
gint, f lex 1.5 nS
gint,ext 2.0 nS
gexc,exc 0.1 nS
gCPG,CPG 0.1 nS
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Chapter 4

Role of diversity in neurons

Synchronized behavior arising among the constituents of an ensemble is
common in Nature. A few examples include the synchronized flashing
of fireflies, cardiac cells of the sinoatrial node of the heart and the elec-
trical pulses of neurons. This global behavior can originate from a com-
mon response to an external stimulus or might appear in autonomous,
non-forced, systems. The theoretical basis for the understanding of syn-
chronization in non-forced systems was put forward by Winfree [76] who
showed that the interaction –i.e. coupling– between the constituents is
an essential ingredient for the existence of a synchronized output. The
seminal work on coupled oscillators by Kuramoto [77] offered a model
case whose solution confirms the basic hypothesis of Winfree: while in-
teraction helps towards the achievement of a common behavior, a perfect
order can be achieved only in the absence of diversity –heterogeneity–
among the components of an ensemble. In the Kuramoto model, diver-
sity appears when the oscillators have different natural frequencies, those
that they display when they are uncoupled from each other. While this
result holds for systems that can be described by coupled oscillators, re-
cent studies indicate that in other cases diversity among the constituents
might actually have a positive role in setting a common behavior [54].

In this chapter we focus on the role of diversity in different neuron mod-
els. The dynamical features of many biological systems, such as neurons,
can be described in terms of models of excitable systems. In the fist part
of the chapter we consider the Fitzhugh-Nagumo (FHN) model [5] in-

89



CHAPTER 4. ROLE OF DIVERSITY IN NEURONS

troduced in the introductory chapter. The FHN model can be extended
by coupling the individual elements and provides an interesting model
of coupled neuron populations. In the initial studies of the dynamics of
this and similar models, the individual units (e.g. neurons) were treated
as identical. However, in reality individual units of such coupled sys-
tems are not identical; that is, there is a diversity in the population of
these biological units. It is natural to ask what role diversity plays in the
dynamical behavior of these systems. In general, it has been found that
diversity can in fact be an important parameter in controlling the dynam-
ics. In particular, it has been shown recently that a system has a better
response to an external stimulus if there is some degree of diversity in
the constituent units [54]. In the second part we deal with another model
of an excitable system, the Morris-Lecar (ML) model [6]. This model
can also be extended by coupling the individual elements and provides
a second example in which one can explore the effects of diversity. Fi-
nally a theoretical approximation of the electrically coupled FHN system
is presented.

4.1

FitzHugh-Nagumo model

4.1.1 The system

We consider an ensemble of N = 103 excitable neurons, whose dynamical
behavior is described by the FitzHugh-Nagumo model and is subject to
an external sinusoidal forcing. The equations describing our system read:

εẋi = xi(1 − xi)(xi − b) − yi + d − Isyn
i (4.1)

ẏi = xi − cyi + ai + A sin (Ωt) (4.2)

where xi represents the membrane potential and yi the slow potassium
gating variable of neuron i, respectively. The time scale of these vari-
ables are separated by ε = 0.01. The rest of parameters are set to
b = 0.5, c = 4.6, d = 0.1, A = 0.05 [78]. To take into account the nat-
ural diversity of the units, we allow the parameter ai to follow a Gaussian
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distribution with mean 〈ai〉 = a and correlations
〈
(ai − a)(a j − a)

〉
= δi jσ2.

We use σ as a measure of the heterogeneity of the system and, in the
following, we refer to σ as the diversity.

The dynamics of a single neuron described by Eqs. (4.1)-(4.2) in the
absence of the last right-hand side terms, the coupling and the modulation
terms respectively, has a strong dependence on the diversity parameter ai.
Three different operating regimes are present: for ai . −0.09 the system
has a stable focus in the left branch of the cubic nullcline leading the
system to an excitable regime, for −0.09 . ai . 0.01 a limit cycle around
an unstable focus appears (oscillatory regime) and for 0.01 . ai a stable
focus appears again, now at the right side of the cubic nullcline (excitable
regime). Figure 4.1 (a) shows the nullclines f (x) and g(x, ai) of the system
in the three operating regimes described above, ai = −0.1, 0.0 and ai = 0.06.
As shown in Figure 4.1 (b), in the oscillatory regime, the intrinsic firing
frequency does not change drastically with respect to changes of ai.

Figure 4.1: (a) Nullclines of the FHN system for different values of
ai. (b) Dependence of the firing frequency on ai.

To illustrate the behavior of xi and yi, we show in figure 6.3 the phase-
portrait for different values of a = −0.1, 0.0 and 0.06 corresponding to the
three cases represented in figure 4.1 (a).
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Figure 4.2: Phase-space portrait of the FHN system for different
values of a. (a) a = −0.1, (b) a = 0.0 and (c) a = 0.06.

4.1.2 Coupling scenarios: electrical and chemical interactions

As it was mentioned in the Introduction, the most common way of com-
munication between neurons is the chemical synapses were the transmis-
sion is carried out by an agent called neurotransmitter. In these synapses,
neurons are separated by a synaptic cleft and the neurotransmitter has
to diffuse to reach the postsynaptic receptors. There is another kind of
synapse where the membrane of the neurons are in contact and thus, the
transmission of the signal is achieved directly (electrical synapses). In
this work we consider both electrical and chemical coupling between the
neurons. In the electrical interactions, also known as diffusive coupling,
the synaptic current is proportional to the membrane potential difference
between a neuron and its neighbors:

Isyn
i =

K
N

N∑
j=1

(
xi − x j

)
(4.3)

In the chemical coupling the synaptic current is described by:

Isyn
i =

K
N

N∑
j=1

gi jr j(t) (xi − Es) (4.4)

where gi j is the maximum conductance between neuron i and j. We center
our study in the homogeneous coupling configuration, where gi j = g. The
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character of the synapse is determined by the synaptic reversal potential
Es. An excitatory synapse is defined by a value of Es larger than the
membrane resting potential. On the contrary, a value of Es smaller than
the membrane resting potential is attributed to an inhibitory synapse. r j
represents the fraction of bound receptors described as

r j(t) =
(
1 − e−αt

)
f or t ≤ ton (4.5)

r j(t) =
(
1 − e−αton

)
e−β(t−ton) f or t > ton (4.6)

where α = 2.5 ms and β = 3.5 ms are the rise and decay time constans,
respectively. Here ton represents the time at which the synaptic connection
remains active.

4.1.3 Results

It is our aim to demonstrate that the diversity may play a constructive
role in this kind of coupled excitable systems. To account for that, we
center our study in the response of an ensemble of neurons subjected
to an external weak periodic modulation. We expect that, similarly to
the stochastic resonance phenomenon, there will be an optimal range of
diversity in which the response of the system is maximized. In order to
quantify the resonant effect with respect to the diversity, we compute the
spectral amplification factor defined as

η =
4

A2 | 〈e
−iΩtX̄ (t)〉 |2 . (4.7)

where X̄(t) =
∑N

i=1 xi(t) and 〈 · 〉 denotes a time average.

Electrical coupling

In this section we concentrate in the situation in which the units are dif-
fusively coupled. The mean value of the parameter distribution is fixed
to a = 0.06 and the coupling strength to K = 0.6. Figure 4.3 shows the
spectral amplification factor as a function of σ for fixed values of the am-
plitude A = 0.05 and two different values of the period T of the external
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Figure 4.3: Spectral amplification factor η as a function of σ for
an increasing percentage of connected neurons Nc. Parameters:

a = 0.06, K = 0.6 and A = 0.05. (a) T = 1.6 and (b) T = 1.11.

modulation when the percentage of connected neurons Nc increases.
When the neurons are uncoupled, there is a moderate enhancement of
the response of the system to the external modulation for low diversity
values. On the other hand, when the neurons are coupled, the diversity
induces a clear enhancement of the responce of the system to the weak
external modulation for a certain range of diverity values present in the
system. This enhancement is much larger than the one occurring when
the neurons are uncoupled. Periods of modulation closer to the intrinsic
firing period of the neurons yield an increasing value of η (see Figure 4.1
(b)).

To illustrate the response of the system to the external sinusoidal modula-
tion when the diversity is present, we show in Figure 4.4 the time traces of
ten randomly chosen neurons and the rasterplots of the ensemble for dif-
ferent values of the diversity parameter. When the diversity is small, each
neuron responds to the external modulation with subthreshold oscilations
and the system remains under threshold. The right amount of diversity
between the neurons leads to an improvement of their responses. In this
situation, the neurons fire with the periodicity of the external modula-
tion. Finally, for higher diversity values, the response of each neuron is
completely different from each other and the firing frequency is much
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higher than the period of the external modulation. Also the individual
amplitudes are different to each other.

Figure 4.4: Time traces of ten randomly chosen neurons and raster-
plot of the fully connected ensemble for three different values of the
diversity: (a) σ = 0.1, (b) σ = 0.4 and (c) σ = 0.9. Other parameters:

a = 0.06, K = 0.6, A = 0.05 and T = 1.6.

Chemical coupling

We consider in this section the case in which the neurons are chemically
coupled. In particular, for the FHN model we consider Es = 0.7 for the ex-
citatory synapses and Es = −2.0 for the inhibitory ones. Figure 4.5 shows
the spectral amplification factor as a function of the diversity σ for a fixed
value of the amplitude A = 0.05 and different periods T of the external
modulation when the percentage of connected Nc neurons increases. The
coupling strength is fixed to K = 1.5. In Figure 4.5 it can be seen that
diversity also enhances the responce of the system when the neurons
interact throught the chemical synapses. In this coupling configuration,
increasing the percentage of connected neurons Nc above the 2% does
not have a significant effect in the response of the system to the external
signal as in the electrical coupling case. Since the chemical synapses can
be excitatory or inhibitory depending on the value of the parameter Es, we
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Figure 4.5: Spectral amplification factor η as a function of σ for an
increasing Nc. The ratio of excitatory to inhibitory connections was
fixed to 4. Other parameters: a = 0.06, K = 1.5 and A = 0.05. (a)

T = 1.6 and (b) T = 1.11.

explore the effect of changing the ratio of excitatory/inhibitory synapses
in our system. Figure 4.6 shows the spectral amplification factor when
the fraction of excitatory neurons Ne increases in the situation in which
the neurons are globally coupled. In contrast with the previous situation,
now the fraction of excitatory synapses presents in the system have a sig-
nificant effect. When all the connections between neurons are excitatory,
the response of the system is maximized. Then, when Ne decreases, the
maximum of the response also decreases. In the limit in which all the
synapses are inhibitory, the diversity does not enhance the respose of the
system to the external weak modulation.
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Figure 4.6: Spectral amplification factor η as a function of σ for
an increasing number of excitatory synapses. The elements were

gobally coupled. Other parameters as in Figure 4.5 (a).

4.2

Morris-Lecar model

4.2.1 The system

As a second example of neuronal system we consider an ensemble of
N = 103 neurons with a dynamics described by the Morris-Lecar model,

dVi

dt
=

1
Cm

(
Iapp
− Iion

i − Isyn
i − Iext

)
(4.8)

dWi

dt
= φΛ (Vi) [W∞ (Vi) −Wi] (4.9)

where Vi and Wi represent the membrane potential and the fraction of
open potassium channels, respectively. Iapp is the external applied current,
Isyn
i is the synaptic current, and the ionic current is given by

Iion
i = gCaM∞ (Vi)

(
Vi − VCa

0

)
+ gKWi

(
Vi − VK

0

)
+ gL

i

(
Vi − VL

0

)
(4.10)

where ga and Va
0 (a = Ca,K,L) are the conductance and the resting poten-

tials of the calcium, potassium and leakage channels, respectively. We
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define the following functions of the membrane potential:

M∞ (V) =
1
2

[
1 + tanh

(
V − VM1

VM2

)]
(4.11)

W∞ (V) =
1
2

[
1 + tanh

(
V − VW1

VW2

)]
(4.12)

Λ (V) = cosh
(

V − VW1

2VW2

)
(4.13)

where VM1 , VM2 , VW1 and VW2 are constants. To take into account diversity
in this model, the leakage conductance parameter is distributed around
its mean value gL

0 following a log-normal distribution in order to avoid
negative values. We use the standard deviation of the distribution as a
measure of the heterogeneity in the ensemble. A single neuron described
by the ML model exhibits a bifurcation to a limit cycle when increasing the
applied current Iapp. This bifurcation can be saddle-node, involving type I
excitability, or a subcritical Hopf bifurcation leading to excitability type II.
We select the parameters to fulfill this last option. Table 5.4 summarizes
the parameter values of the model that we use in our simulations.

Both chemical and electrical coupling schemes are also considered for this
model. In the following sections we present the results concerning the
chemical and electrical coupling configurations.

4.2.2 Results

Chemical coupling

In the chemical mediated interaction, when a neuron fires it sends a pre-
defined pulse to all other neurons in the pool and the postsynaptic current
has a predefined form as it was introduced in section 4.1.2. Interactions
can be excitatory or inhibitory depending on the synaptic reversal po-
tential. For the ML model we consider Es = 0.0 mV for the excitatory
synapses and Es = −80.0 mV for the inhibitory ones. Figure 4.7 (a) shows
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Table 4.1: Parameters of the Morris-Lecar model.

Parameter Value Units
Cm 5 µF/cm2

Iapp 144 µA/cm2

gK
0 8 µS/cm2

gCa
0 4.4 µS/cm2

gL
0 2 µS/cm2

VK −80 mV
VCa 120 mV
VL −60 mV
VM1 −1.2 mV
VM2 18 mV
VW1 2 mV
VW2 30 mV
φ 0.04 ms−1

α 0.33 ms−1 mM−1

β 0.2 ms−1

gsyn
0 0.4 µS
τsyn 3 ms
Es (specified in each case)

the spectral amplification factor as a function of the diversity for different
fractions of coupled neurons Nc. There is an optimal range of values of
the diversity of the neurons for which the system response is optimized.
An interesting feature to analyze is the role played by the balance between
excitatory and inhibitory synapses in the response of the system to the
weak external signal. We show in Figure 4.7 (b) the spectral amplification
factor as a function of the diversity when the percentage of excitatory
connections Ne in the network decreases. In this case, the response of the
system is maximized when the ratio between excitatory and inhibitory
connections is balanced.
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Figure 4.7: (a) Spectral amplification factor η as a function of σwhen
the fraction of connected neurons Nc decrease. (b) η as a function
of σ for an decreasing number of excitatory synapses Ne. Other

parameters: gL
0 = 2.0, A = 0.25 and T = 400 ms.

Electrical coupling

In this section we concentrate in the situation where the neurons are
diffusively coupled. Figure 4.8 shows the spectral amplification factor as
a function of the diversity for different fraction of connected neurons Nc.
In this situation, when the neurons are diffusively coupled, the percentage
of connected neurons Nc has a significant effect. For Nc . 10, the response
of the system improves with the number of coupled neurons. Beyond
Nc ≈ 10, increasing the number of connected neurons does not improve
the response of the system. With the aim of illustrating the response of
the system in this coupling configuration, Figure 4.9 shows time traces
of ten randomly chosen neurons and the raster plots of the ensemble for
different values of the diversity parameter. The phenomenon is clearly
illustrated in this figure. When the neurons are almost identical, the
system slightly reacts to the external signal. Only few neurons spike with
the periodicity of the modulation being not enough to induce the rest
of the neurons to fire. On the contrary, the right amount of diversity
leads the fraction of neurons that follows the modulation to increase and,
due to the coupling, pull the others entailing a collective response. If
the neurons are too different to each other, there is a high resistance to
be dragged and the system is not able to react to the signal because the
neurons fire incoherently.
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Figure 4.8: Spectral amplification factor η as a function of the di-
versity σwhen the percentage of connected neighbors Nc increases.

Other parameters: gL
0 = 2.0, A = 0.25 and T = 400 ms.

Figure 4.9: Time traces of ten randomly chosen neurons and raster-
plot of the ensemble for three different values of the diversity: (a)
σ = 0.05, (b) σ = 0.2 and (c) σ = 0.8. Other paremeters: gL

0 = 2.0,
A = 0.25 and T = 400 ms.
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4.3

Order Parameter Expansion

To gain insight into the obtained results we perform some theoretical
analysis of the FHN model under the presence of diffusive coupling.
To this end we follow the order parameter expansion developed in [79,
80]. This is simply an expansion of the dynamical variables around their
mean-field values x j(t) = X(t) + εx

j (t), y j(t) = Y(t) + ε
y
j (t) and the diversity

parameter around its mean value a j = a+εa
j . The validity of this expansion

relies on the existence of a coherent behavior by which the individual units
x j deviate in a small amount εx

j from the global behavior characterized
by the mean-field variable X(t). It also assumes that the deviations εa

j are
small. For this particular model, there is no need to expand the equation
for ẏi, since it is linear in all the variables, although we write the equation
initially for a more general nonlinear dependence. We also expand the
equation for ẋi up to second order, with the resulting equations being

εẋi = f (X,Y) + fx (X,Y) εx
i + fy (X,Y) εy

i +
1
2

fxx (X,Y)
(
εx

i

)2
(4.14)

ẏi = g (X,Y, a) + gx (X,Y, a) εx
i + ga (X,Y, a) εa

i . (4.15)

Here
f (x, y) = x(1 − x)(x − b) − y + d − Kx (4.16)

and
g(x, y, a) = x − cy + a. (4.17)

If we average Eqs. (4.14)-(4.15) using 〈 · 〉 = 1
N

∑
i · we obtain:

εẊ = f (X,Y) +
1
2

fxx (X,Y) Ωx (4.18)

Ẏ = g (X,Y, a) (4.19)

where we have used 〈εx
j 〉 = 〈ε

y
j 〉 = 〈εa

j〉 = 0 and defined the second

moments Ωx = 〈(εx
j )

2
〉, Ωy = 〈(εy

j )2
〉 and σ2 = 〈(εa

j)
2
〉; and the shape factors

Σxy = 〈εx
jε

y
j 〉, Σxa = 〈εx

jε
a
j〉 and Σya = 〈ε

y
j ε

a
j〉. One can find the evolution
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equations for the second moments, which follows simply from the first-
order expansion ε̇x

j = ẋ j − Ẋ, so that Ω̇x = 2〈εx
j ε̇

x
j 〉 and Σ̇xy = 〈ε̇x

jε
y
j + εx

j ε̇
y
j 〉.

εε̇x
i = fxεx

i + fyε
y
i +

1
2

fxx

[(
εx

i

)2
−Ωx

]
(4.20)

ε̇
y
i = gxε

x
i + gyε

y
i + gaε

a
i (4.21)

Ω̇x =
2
ε

[
fxΩx + fyΣxy

]
(4.22)

Ω̇y = 2
[
gxΣxy + gyΩy + gaΣ

ya
]

(4.23)

Σ̇xy =
1
ε

[
fxΣxy + fyΩy

]
+ gxΩx + gyΣxy + gaΣ

xa (4.24)

Σ̇xa =
1
ε

[
fxΣxa + fyΣya

]
(4.25)

Σ̇ya = gxΣxa + gyΣya + gaσ
2 (4.26)

The system of Eqs. (4.18)-(4.19) together with Eqs. (4.22)-(4.26) form a
close set of differential equations for the mean-field variables X(t) and
Y(t)

εẊ = −X3 + (1 + b)X2
− (b + 3Ωx)X + (1 + b)Ωx + d − Y (4.27)

Ẏ = X − cY + a (4.28)
εΩ̇x = 2(−3X2 + 2(1 + b)X − b − K)Ωx

− 2Σxy (4.29)
Ω̇y = 2 [Σxy

− cΩy + Σya] (4.30)

Σ̇xy =
1
ε

[
(−3X2 + 2(1 + b)X − b − K)Σxy

−Ωy
]

+ Ωx
− cΣxy + Σxa (4.31)

εΣ̇xa = (−3X2 + 2(1 + b)X − b − K)Σxa
− Σya (4.32)

Σ̇ya = Σxa
− cΣya + σ2 (4.33)

Numerical integration of this system allows us to compute the spectral
amplification factor (Eq. (4.7)) using the theoretical prediction of X(t).
Figure 4.10 shows this analytic result together with the numerical inte-
gration of the full system.
It can be seen that the order parameter expansion developed here fits
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Figure 4.10: Order parameter expansion versus numerical integra-
tion of the fullsystem. An adiabatic approximation is also included
(see text below). (a) T = 1.6 and (b) T = 1.11. Other parameter as in

Figure 4.3.

quite well with the numerical integration of the full system.

We can also use (4.29)-(4.33) to obtain the value of Ωx. An adiabatic
elimination of these variables, i.e., Ω̇x = Ω̇y = Σ̇xy = Σ̇xa = Σ̇ya = 0, yields:

Σxa
ad =

σ2

cH(x) − 1
(4.34)

Σ
ya
ad =

H(x)σ2

cH(x) − 1
(4.35)

Σ
xy
ad =

H(x)σ2

(cH(x) − 1)2 (4.36)

Ωx
ad =

σ2

(cH(x) − 1)2 (4.37)

Ω
y
ad =

H2(x)σ2

(cH(x) − 1)2 (4.38)

with H(x) = −3x2 + 2(1 + b)x − b − K. Substituting Ωx
ad in (4.27)-(4.28), we

can find a closed form for the equations describing the evolution of the
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mean-field X(t) and Y(t):

εẊ = −X3 + (1 + b)X2
−

[
b +

3σ2

(cH(X) − 1)2

]
X

+
(1 + b)σ2

(cH(X) − 1)2 + d − Y (4.39)

Ẏ = X − cY + a (4.40)

With the mean-field variable X(t) obtained from the adiabatic elimination
we can estimate the spectral amplification factor η. Figure 4.10 displays
η obtained from the adiabatic elimination together with the numerical
simulation and the order parameter expansion. To illustrate the influence
of the diversity, Figure 4.11 shows the nullclines Y1(X, σ) and Y2(X, a) of
Eq. (4.39)-(4.40) for a = 0.06 and different values of the diversity σ = 0.0,
0.5, 0.8, 1.0, 1.2 and 1.4. The diversity changes the shape of the cubic
nullcline Y1 leading to a lose of stability of the fix point of the system that,
for a certain range of σ, become a limit cycle.

Figure 4.11: Nullclines of Eq. (4.39)-(4.40).

To schematize the behavior of the mean-field variables X and Y when the
diversity changes, we show in Figure 4.12 the phase-portrait for different
values of σ = 0.0, 0.5, 0.8, 1.0, 1.2 and 1.4 (corresponding to the values
represented in Figure 4.11). It can be seen that there is a range of σ for
which the system exhibits a collective oscillatory behavior even in the
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absence of the weak external modulation.

Figure 4.12: Phase-space portrait for different values of σ =
0.0, 0.5, 0.8, 1.0, 1.2 and 1.4.
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4.4

Conclusions

In this chapter we have studied the effect of the diversity in an ensemble of
neurons described by two different neuronal models. We have observed
that under certain conditions diversity can enhance the response of the
system to an external periodic modulation. We have also developed an
order parameter expansion obtaining a good fit with the results obtained
numerically for the diffusively coupled FHN system. The mechanism
leading the system to a resonant behavior with the external signal is as
follows: in the homogeneous situation, where all the units are identical,
the weak external modulation cannot induce any spike in the system.
When the diversity increases, a fraction of the neurons enters in the oscil-
latory regime and, due to the interactions, pull the other neurons leading
the system to an oscillatory collective behavior following the external sig-
nal. For larger values of the diversity, the fraction of neurons inside the
oscillatory regime decreases and the rest of neurons offer some resistance
to be pulled by the oscillatory ones, thus, the system cannot respond to
the external signal. We have also found that the number of coupled units
become fundamental in the enhancement of the response of the system.
These results suggest that the diversity present in biological systems may
have an important role in order to enhance the response of the system to
(or the detection of) weak signals.
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Topology, delay, and
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Chapter 5

Effect of the topology and
delay in neuronal networks

As important as the intrinsic properties of an individual nervous cell
stands the network of neurons in which it is embedded and by virtue
of which it acquires much of its responsiveness and functionality. Syn-
chronization on complex networks is an important topic under study in
neuroscience [81, 82] due to its role in the processing and transmission
of information across the nervous system [27, 83]. Also delays are in-
trinsic of neuronal systems due to the finite propagation speed in the
transmission along the axons and due to the time lapses occurring in the
synaptic processing [84]. These time delays can change the properties of
the dynamics: delays can induce or destroy stable oscillations, enhance
or suppress synchronization or generate complex spatiotemporal patterns
[85, 86].

In this chapter we explore how the topological properties and conduction
delays of several classes of neural networks affect the capacity of their
constituent cells to establish well-defined temporal relations among the
firing of their action potentials. This ability of a population of neurons
to produce and maintain a millisecond-precise coordinated firing (either

This chapter is based on the paper: T. Pérez, R. Vicente, V. Eguíluz, C. Mirasso and
G. Pipa, Effect of the topology and delay connections in neuronal networks, submitted to PLoS
Computational Biology.
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evoked by external stimuli or internally generated) is central to neural
codes exploiting precise spike timing for the representation and commu-
nication of information.

The chapter is organized as follows: in the first part the description of
the system, the mathematical details of the neuronal model and the order
parameter used together with the description of the studied topologies are
provided. We consider two main situations: one in which all the axonal
delays take the same value (homogeneous delays) and the situation in
which the delays are different (heterogeneous delays). In section 5.2 we
present the result for the homogeneous delays and identical neurons.
Section 5.3 concerns to the situation in which the natural frequencies
of the neurons are different. An anatomical experimentally determined
network is considered in section 5.4. Afterwards, section 5.5 deals with
the situation in which the axonal delays are heterogeneous. Finally, in the
last section, the conclusions are presented.

5.1

Description of the system

Our aim is to study the interplay between the conduction delays and the
topology of the network in an ensamble of delay interconnected neurons.
In order to understand the role played by the pathways in which the
neurons interact with each other, we consider different interconnection
topologies, ranging from a regular one-dimensional lattice to scale-free
networks. Figure 5.1 shows a schematic representation of the system.
We consider an ensemble of one thousand excitable neurons, whose dy-
namical behavior is described by the Hodgkin and Huxley model [4]

Cmv̇i = Ii − gNam3h(vi − VNa) − gKn4(vi − VK) − gL(vi − VL) − Isyn
i (5.1)

where vi represents the membrane potential of neuron i; Cm = 1 µF/cm2 is
the membrane capacitance per unit area; Ii is the external current; Isyn

i is the
synaptic current; gNa = 120 mS/cm2, gK = 36 mS/cm2 and gL = 0.3 mS/cm2

are the maximum conductance of the sodium, potassium and leakage
channels and VNa = 50 mV, VK = −77 mV and VL = −54.5 mV stand for
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Figure 5.1: Schematic representation of the neuronal network con-
sidered.

the corresponding reversal potentials. The voltage dependent activating
and inactivating variables are h, m and n respectively. According to
Hodgkin and Huxley formulation these voltage-gated ion channels are
described by the following set of differential equations

ṁ = αm(v)(1 −m) − βm(v)m, (5.2)
ḣ = αh(v)(1 − h) − βh(v)h, (5.3)
ṅ = αn(v)(1 − n) − βn(v)h, (5.4)

where the gating variables m, h, and n represent the activation and inacti-
vation of the sodium channels and the activation of the potassium chan-
nels, respectively. The experimentally fitted voltage-dependent transition
rates are
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αm(V) =
0.1(V + 40)

1 − exp (−(V + 40)/10)
, (5.5)

βm(V) = 4 exp (−(V + 65)/18) , (5.6)

αh(V) = 0.07 exp (−(V + 65)/20) , (5.7)
βh(V) = [1 + exp (−(V + 35)/10)]−1 , (5.8)

αn(V) =
0.01(V + 55)

1 − exp (−0.1(V + 55))
, (5.9)

βn(V) = 0.125 exp (−(V + 65)/80) . (5.10)

The synaptic transmission between neurons is modeled, following [53],
by a postsynaptic conductance change with the form of an alpha-function.
The synaptic current is defined as

Isyn
i =

gmax

N

∑
spikes∈ν(i)

α
(
t − tspike − τi j

) (
V(t) − Esyn

)
, (5.11)

where gmax describes the maximum synaptic conductance and the sum is
extended over the train of presynaptic spikes occurring at tspike produced
by the neighbors connected to of the neuron i. For simplicity we assume
only excitatory connections and take a value of Esyn = 0 mV for all the
neurons. The alpha-function is defined as

α(t) =
1

τd − τr

(
exp (−t/τd) − exp (−t/τr)

)
, (5.12)

where the parameters τd and τr stand for the decay and rise times and
determine the duration of the response. Synaptic rise and decay times
are set to τr = 0.1 ms and τd = 3 ms, respectively. The delay arising
from the finite conduction velocity of axons is taken into account through
the latency time τi j. The first order differential equation describing the
dynamic of the membrane potential of the neurons (Eq. (6.1)) are solved
using a fourth order Runge-Kutta algorithm with time step ∆t = 0.02 ms.
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In order to avoid trivial spiking solutions, the initial conditions are chosen
as follows: the membrane potential of each neurons are uniformly dis-
tributed in the range [−65, 25] mV. During the first 250 ms of simulation
we randomly switch on the applied current of each neuron. Then, we
leave the system to evolve over 250 ms. After this, we interconnect the
neurons and leave the system to evolve for 1 s before collecting any data.

5.1.1 Interconnection topologies

The synchronization of neurons may depend on the network in which
they are embedded. To study the role played by the different synaptic
pathways in the synchronization of our ensemble of neurons, we con-
sider five different topologies: regular, small-world, random, scale-free
and globally coupled networks.
In the regular lattice, neurons are connected with the four nearest-neighbors
using periodic boundary conditions. To construct a small-world network
we use the algorithm proposed by Watts and Strogatz [87]. The basic idea
behind this algorithm is to start with a regular lattice, and with a certain
probability p that each link is rewired to another node randomly chosen
from all possible nodes that avoid self-loops and link duplications. In
the limit in which the rewaring probability is one, the random network is
obtained.

The scale-free network was introduced by Barabási and Albert [88] and
is based on a preferential attachment mechanism. The main feature of
this network is that it does not have a characteristic defined scale. Most
of the nodes are connected with few elements and only a few nodes are
connected with many elements.

We also consider the situation where each neuron is connected with all
others neurons conforming the network, we refer to this case as the all-
to-all or mean-field configuration.
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5.1.2 Data analysis

To characterize the synchronization in our network of neurons, we define
the phase of neuron i as [89]:

φi(t) = 2π
t − τk

τk+1 − τk
, (5.13)

where τk is the time of the kth firing of the neuron i. The idea behind this
phase definition is that the phase of a neuron experiments a change of 2π
between spikes. To measure the phase synchronization of neuron i with
its neighbors, we define the quantity:

si(t) =
1
ni

∑
j∈ν(i)

sin2
(
φi(t) − φ j(t)

2

)
, (5.14)

with ni being the degree of neuron i, i.e., the number of connected neigh-
bors of the neuron i. Averaging over elements and integrating in time,
we obtain

Sloc = lim
T→∞

1
T

∫ T

0

 1
N

N∑
i=1

si

 dt, (5.15)

that gives a measure of the average of the local phase synchronization
in the coupled system. To measure the global synchronization over the
network we extend the sum over neighbors in Eq. (6.7) to all the neurons.
Then, the global phase synchronization of neuron i is obtained

s′i (t) =
1
N

N∑
j=1

sin2
(
φi(t) − φ j(t)

2

)
, (5.16)

Following the previous definition of the local synchronization index, we
average over elements and time to obtain a global order parameter,

Sglob = lim
T→∞

1
T

∫ T

0

 1
N

N∑
i=1

s′i

 dt, (5.17)

This order parameter is zero if the phases of all the neurons are equal and
one if they differ by π. When the phases of the neurons are randomly
distributed, the order parameter takes the value one-half.
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5.2

Homogeneous ensemble

First we analyze the ideal case of identical neurons and all the τi j equal to
each other. We quantify the local and global synchronization by means
of the indices defined in section 5.1.2. We investigate the effect of the ran-
domness of the interconnections as well as the effect that the number of
connected neighbors has in the synchronization of the system. The final
firing frequency distribution of our ensamble in different situations is also
presented. Then, we consider the situation in which the natural frequen-
cies of the neurons are distributed around a mean value according to a
Gaussian distribution. Finally, we particularize our study to an anatomi-
cal network determined experimentally from the macaque cortico-cortical
network [90].

5.2.1 Axonal delays defines local and global synchronization
properties

As we said before, we start our study by considering the situation in
which the delays in the connection between neurons are all identical.
Figure 5.2 shows the contour plot of the local and global synchronization
indices, Sloc and Sglob respectively, when the coupling strength between
the neurons and the delay along the connections are varied.
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Figure 5.2: Upper panel: Contour plots of Sloc (top row) and Sglob

(bottom row) in the coupling-delay phase space. Columns, from left
to right, correspond to simulations with different topologies: reg-
ular, small-world, random and scale-free. Bottom panel: Contour

plot of Sglob for the globally coupled network.

The variation of the delay reveals a resonant-like effect in the synchro-
nization even in the mean-field topology. Synchronization (white regions
in Figure 5.2) appears for a delay close to (or multiple of) the natural
period of the isolated neurons, which corresponds to T0 = 14.65 ms for an
injected current of I = 10 mA. While synchronized firing activity between
one neuron and its neighbors (local synchronization) is achieved in all the
networks that we have considered, a high randomness in the connections
is required for a global synchronized activity to occur.

In order to illustrate the activity of the network, we show in Figure 5.3
raster plots for a fixed coupling strength and three delay values, for dif-
ferent topologies. It can be seen that for τ = 0.82 T0 the neurons spike
synchronously. In this situation, the neurons are locally and globally syn-
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chronized except for the regular lattice. At a delay close to the natural
period τ = 0.96 T0, a variety of behaviors appears. In the regular lattice
for example, the neurons are spiking consecutively and the activity se-
quentially propagates forming a v-shape pattern. Other topologies like
the random or the scale-free networks show an out of phase firing state.
Interestingly, for τ = 1.1 T0 some of the topologies exhibit an anti-phase
state. An example of this state is shown by the random network where
neurons fire with a phase difference closed to π. This is corroborated by a
value of Sloc, represented as a green square in the right y-axis (blue square
stands for Sglob), closed to one.
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Figure 5.3: Raster plots for different values of the delay: τ/T0 = 0.82
(upper row), τ/T0 = 0.96 (middle row) and τ/T0 = 1.1 (bottom row).
The coupling strength is fixed to gmax = 0.8 mS cm−2 Columns, from
left to right, correspond to simulations with different topologies:
regular, random and scale-free. Green and blue squares plotted at
the right y-axis represent the values of Sloc and Sglob respectively.
Only the fist one hundred neurons are shown. Panels on top of
each figure refer to firing histogram of the whole network in the

corresponding situation.

To illustrate better this scenario, Figure 5.4 shows the membrane voltage
time trace of one randonly chosen neuron and its neighbors in the random
network. Three different states clearly emerge. Neurons spike in-phase
when the network is locally and globally synchronized (τ = 0.82 T0).
Then, an increase of the delay in the connections (τ = 0.96 T0) leads to a
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degradation of the synchronization due to an out-of-phase firing of the
neurons. Further increasing the delay, for τ = 1.1 T0, makes the neurons
start to fire in anti-phase. Two clusters formed by neurons spiking with
the same phase but with a phase difference close to π with respect to the
other group are observed.

Figure 5.4: Time traces of the membrane potential of one neuron and
its neighbors for different values of the delay in a random network.
Upper row: τ/T0 = 0.82. Middle row: τ/T0 = 0.96. Bottom row:
τ/T0 = 1.1. The coupling strength is fixed to gmax = 0.8 mS cm−2.
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5.2.2 Role of the long-range connectivities and
interaction strength in the synchronization

In order to understand the role played by large-range interconnections,
we randomize the regular one-dimensional lattice. Figure 5.5 shows the
global and local order parameter as a function of the rewiring probability,
i.e., the number of long-range connections, in the network. For a value
of the delay of τ/T0 = 0.82 and a small coupling gmax = 0.2 mS cm−2 the
activity of the network is locally synchronized but not globally. While
increasing the rewiring probability the activity of the network becomes
globally more synchronized while locally the state remains unchanged.

Figure 5.5: Rewiring dependence of Sloc (green open squares) and
Sglob (blue circles) for a coupling value of gmax = 0.2 mS cm−2 and

delay time of τ = 12 ms.

We also investigate the effect of increasing the number of connected neu-
rons in the regular lattice. We observe a gradual transition from a global
desynchronized state to a synchronized one for a fraction of neighbors
around the 10% (see Figure 5.6). Afterwards, for these particular values of
the coupling and delay, the synchronization quality slightly degrades as
the number of connected neighbors increases. However, local and global
measures remain identical above the mentioned percentage indicating
that any local dynamic is reflected in the global behavior.
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Figure 5.6: Dependence on the number of neighbors of Sloc (green
open squares) and Sglob (blue circles) for a fixed coupling value of

gmax = 0.2 mS cm−2 and delay time of τ = 12 ms.

5.2.3 Order parameter clustering

Despite the fact that all networks display the same local synchronization
behavior, the way in which they reach it is different. To illustrate this we
plot in Figure 5.7 the individual order parameter si of each neuron versus
the average value of its connected neighbors 〈si〉nn.
In Figure 5.7 we show the results for a regular network. A transition of the
local order parameter from a clustering in the complete desynchronized
stated to a highly packed cloud of points around small values of si in the
locally synchronized state is observed. This transition is reached through
an intermediate state of partial synchronization shown in the middle col-
umn. Other topologies show different transitions from desynchronized to
synchronized states. The random network, for instance, does not exhibit
the clustering of si for the desynchronized state and the dispersion in the
completely synchronized one is much larger than for the regular lattice.
The mean-field topology, i.e., when all the neurons are connected with all
other neurons in the network, exhibits a similar scenario than the random
network.
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Figure 5.7: Plot of the individual local order parameter si versus
the averaged value of its neighbors for three different situations.
Left column: gmax = 0.2 mS cm−2, τ = 4 ms. Middle column:
gmax = 0.2 mS cm−2, τ = 10 ms. Right column: gmax = 0.2 mS cm−2,
τ = 14 ms. Rows from top to bottom represent, simulations with
different topologies: regular, random and scale-free respectively.
Green square and blue dot represent the values of Sloc and Sglob,

respectively.

5.2.4 Effective fire frequency

An important issue to be consider in the model is the frequency at which
the neurons, after a transient, fire due to the interaction with the other
elements of the network. To study this, we compute the density plot of
the histogram of the effective firing frequencies. Figure 5.8 shows the
evolution of the distribution of firing frequencies for different coupling
and delays.
In the left columns of Figure 5.8 it can be seen how, for a small coupling
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Figure 5.8: Density plot of the histogram of the effective firing
frequencies. Columns, from left to right: gmax = 0.2 mS cm−2,
gmax = 0.8 mS cm−2, τ = 4.0 ms and τ = 14.0 ms. Rows, from top to
bottom, simulations with different topologies: regular, small-world,
random, scale-free and all-to-all respectively. Blue line correspond
to the isoline 1

τ , green line to 2
τ , yellow line to 3

τ and the orange line
indicated the value of the natural frequency of the neurons.

intensity, the frequencies tend to remain close together meanwhile for
higher values of the coupling strength, the firing frequencies have a more
irregular behavior exhibiting jumps from one value to anothers. Despite
the apparent irregular behavior, the discrete jumps of the firing frequency
follow the isolines corresponding to the harmonics 1

τ , 2
τ , etc. (see the

colored lines in Figure 5.8). The two columns at the right side, which
correspond to different values of the delay, show that the frequency tends
to increase as the coupling strength becomes larger. On the other hand, for
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a delay close to the intrinsic period, (τ = 14 ms), the frequency remains
locked to a fix value. This is a clear signature that the system is in a
synchronous state.

5.3

Distribution of natural frequencies

The situation in which the natural frequency of all neurons are identical
is a simplification and is far from a realistic situation. For this reason, we
consider in this section a Gaussian distribution of the natural frequencies
of the neurons around a central frequency f0 = 70 Hz with a dispersion
of σ f0 = 9 Hz.

Figure 5.9: Upper panel: Contour plots of Sloc (top row) and Sglob

(bottom row) in the coupling-delay phase space. Columns, from left
to right, correspond to simulations with different topologies: reg-
ular, small-world, random and scale-free. Bottom panel: Contour

plot of Sglob for the globally connected network.
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Basically, the effect of the distribution of the natural frequencies requires
an increase of the coupling strength needed to achieve the synchronous
state, as it can be seen in Figure 5.9. As expected, global synchronization
is more difficult to achieve in this case. In the mean-field situation, the
synchronization regions grow and they almost merges in a single region
at high coupling values, losing the resonant character of the delay. As in
the homogeneous situation, three different states appear. Regions where
the neurons are spiking in-phase occur at delays different than the multi-
ples of the intrinsic period, in contrast with the single frequency situation.
These regions are indicated by white-red areas in Figure 5.9. There are
other regions, corresponding to the blue areas in Figure 5.9, where the
neurons spike in anti-phase. These regions are more pronounced in the
random and scale-free networks. Separating the regions of in-phase and
anti-phase dynamics, it exists an out-of-phase state where the neurons
fire with random phases (green areas in Figure 5.9). In contrast with
the homogeneous situation, this regime is predominant at low coupling
intensities gmax . 0.2 nS/cm−2 for all the considered delays. Concerning
the global synchronization, in-phase synchronization is more difficult to
achieve and only the random and scale-free networks exhibit this state at
high coupling intensities but only for some particular values of the delay
time. The predominant state is the one in which the neurons spike with-
out a well defined phase relationship corresponding to the out-of-phase
state indicated by green areas in Figure 5.9.

In order to illustrate the different dynamics that appear in our system,
Figure 5.10 shows the raster plots of the firing activity of the neurons for
the regular lattice, the random and the scale-free networks. Three different
operation conditions corresponding to in-phase, out-of-phase and anti-
phase synchronization states for a high coupling intensity are illustrated.
For a delay smaller that the intrinsic period, it can be seen how, due to the
distribution of frequencies, the in-phase state develops small deviations,
more pronounced in the regular lattice. On the contrary, for a delay larger
than the natural period, that in the homogeneous ensemble is an anti-
phase state, the synchronized state is not well defined and the system
operates close to the out-of-phase state. At delays close to the intrinsic
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period the neurons fire out-of-phase. The regular lattice exhibits fronts of
propagating activity where the neurons spike consecutively.

Figure 5.10: Raster plot for different values of the delay: τ/T0 = 0.68
(upper row), τ/T0 = 0.96 (middle row) and τ/T0 = 1.23 (bottom
row). The coupling strength is gmax = 0.8 mS cm−2 Columns, from
left to right, correspond to simulations with different topologies:
regular, random and scale-free. Green square and blue dot plotted
at the right y-axis represent for each case the values of Sloc and Sglob

respectively. Only the first one hundred neurons are shown. The
panel on top of each figure corresponds to the firing histogram of

the whole network in the corresponding situation.
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5.3.1 Role of the connectivity properties in the locking
phenomena

When the natural frequencies are distributed, at low coupling strength,
the effective firing frequency behavior changes significantly with respect
to the homogeneous case. Figure 5.11 shows the density plot of the his-
tograms of the effective firing frequencies for different coupling and delay
values for our heterogeneous ensamble.

Figure 5.11: Density plot of the histogram of the effective firing
frequencies. Columns, from left to right are: gmax = 0.2 mS cm−2,
gmax = 0.8 mS cm−2, τ = 4.0 ms and τ = 14.0 ms. Rows, from top
to bottom represent simulations with different topologies: regular,
small-world, random, scale-free and all-to-all respectively. Blue
line correspond to the isoline 1

τ , green line to 2
τ , yellow line to 3

τ and
the orange line corresponds to the value of the natural frequency of

the neurons.
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From left columns in Figure 5.11 it can be seen that for small values of
coupling intensity the firing frequency of the neurons remains disperse
while for higher values exhibits a saw-shape tendency going from higher
values of the firing frequency from desynchronized states to lower values
in the synchronized state. The right columns of Figure 5.11 show that,
for two different fixed values of the delay, a certain minimun coupling
intensity is needed for a well defined firing frequency to occur. For the
desynchronized state, delay of τ = 4 ms, the firing frequency increases
as the coupling strength becomes larger. On the other hand, in the syn-
chronized state, for a delay of τ = 14 ms and beyond a certain coupling
strength, the frequency remains locked to a fixed value close to the natural
mean frequency of the initial distribution.

We can still obtain more information about the distribution of the final
firing frequencies in the case of distributed natural frequencies. Figure
5.12 and 5.13 show the effective firing frequencies versus the natural
frequencies for different networks. In Figure 5.12, corresponding to the
regular lattice, for a fixed coupling strength gmax = 0.2 mS cm−2 and the
two delay values that we have considered (top row), it can be seen a
linear response of the system, except for low frequencies, where a high
dispersion is obtained. When we increase the coupling to gmax = 0.8
mS cm−2 (bottom row of Figure 5.12) we observe how the effective firing
frequency is locked around a certain value even in the desynchronized
case (τ = 4 ms). In Figure 5.12 it can be clearly seen how different delays
induce different firing frequencies.
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Figure 5.12: Effective firing frequencies versus the natural firing
frequencies for the regular latice. Top row: fixed coupling of gmax =
0.2 mS cm−2 and delay of τ = 4 ms (left panel) and τ = 14 ms (right
panel). Bottom row: fixed coupling of gmax = 0.8 mS cm−2 and

delay of τ = 4 ms (left panel) and τ = 14 ms (right panel).

In the all-to-all network, the dispersion of the effective firing frequencies
is drastically reduced, as it can be seen in Figure 5.13. For small coupling
strength, a clear linear response is obtained. At high couplings, for a
delay of 4 ms (desynchronized state), we can observe a cluster of neurons
firing with the same frequency, but, due to the dispersion at low frequen-
cies and the different response at high frequencies, this state is globally
desynchronized. The synchronous state at high coupling and delay of 14
ms is characterized by a horizontal plateau, indicating that practically all
neurons fire, after a transient, with the same frequency independently of
its initial natural frequency value.
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Figure 5.13: Effective firing frequencies versus the natural firing
frequencies for the globally coupled network. Top row, fixed cou-
pling of gmax = 0.2 mS cm−2 and delay of τ = 4 ms (left panel) and
τ = 14 ms (right panel). Bottom row, fixed coupling of gmax = 0.8
mS cm−2 and delay of τ = 4 ms (left panel) and τ = 14 ms (right

panel).

5.4

Anatomical network case

As an example of a real anatomical network we investigate the synchro-
nization state in the macaque cortico-cortical network [90]. The network
is composed by 71 nodes representing different cortical areas with 746
links between them. Figure 5.14 shows an organic layout of the cortical
connectivity data set. We consider each node of the network following
the same dynamic as described in section 5.1. We estimate the local and
global degree of synchronization in the network using Eqs. (5.15) and
(5.17) respectively. Figure 5.15 shows Sloc and Sglob when the coupling
between the neurons and the delay time of the connections are varied.
We compared the results with a randomized version of the network pre-
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Figure 5.14: Macaque cortical connectivity in a organic layout view.

serving the degree distribution. It can be first noticed that Sloc and Sglob

are practically identical. A reason for this is that the macaque cortical
network is densely connected, about 15% of the possible links. This re-
sult is in agreement with that obtained in section 5.2.2, where the global
synchronization converges to the local one for a percentage of connected
neurons above the 10%. The second remarkable feature is the coinci-
dence between the macaque network and the randomized version of the
network. A reason for that is that the macaque cortical network has a
mean shortest path very similar to the randomized network (see Table
5.4). Another interesting feature is the absence of anti-phase states. Based
only on the macaque network we cannot conclude if this fact is a general
feature of live brains, but it raises the interesting question if this could
happend in other anatomical networks. As it can be seen in Figure 5.15,
there are practically no difference between both networks. The reason
for this result might be that the original macaque cortico-cortical network
has similar properties than a random network with the same degree dis-
tribution, as we said before.
Figure 5.16 illustrates the two different states observed in the system.
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Figure 5.15: Top line: Contour plots of Sloc (top panel) and Sglob

(bottom line) in the coupling-delay phase space for the macaque
anatomical network. Left column: original macaque 71 cortico-
cortical network. Right column: randomized version of macaque

71 cortico-cortical network preserving in and out node degree.

The raster plot of the network corresponding to a coupling intensity of
gmax = 0.8 mS cm−2 and delay of τ/T0 = 0.96 reveals an in-phase syn-
chronous firing of the entire network. On the other hand, increasing the
value of the delay to τ/T0 = 1.36, the firing activity becomes more out-
of-phase. This is corroborated by a value of Sloc (green square) and Sglob

(blue square) close to 0.5, represented in the right y-axis.

Table 5.1: Macaque Cortical Network properties

Metric Clustering Average degree Mean shortest path
Macaque Network 0.46 10.5 2.33

Randomized version 0.24 10.5 2.06
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Figure 5.16: Rasterplots for different values of the delay: τ/T0 =
0.96 (left panel) and τ/T0 = 1.36 (right panel). The coupling strength
is gmax = 0.8 mS cm−2. Green and blue square at the right y-axis

represent for each case the values of Sloc and Sglob respectively.

5.5

Heterogeneous delay

In this section we consider the situation in which the interconnection
delays are heterogeneous. This effect is modeled by a gamma distribution
for the delays with a probability density given by

f (τi j) = τk−1
i j

e−τi j/θ

θkΓ(k)
, (5.18)

where k and θ are shape and scale parameters of the gamma distribution
respectively. The mean time delay is given by

〈
τi j

〉
= kθ and the variance

of the distribution is σ2 = kθ2. We limit our study to distributions with a
constant varianceσ2 = 1 ms and we vary the mean value of the distribution
in order to scan different conductance delays. As in the previous sections,
we compute the local Sloc and global Sglob order parameters following
Eqs. (5.15) and (5.17), respectively. The results are shown in Figure 5.17.
As it can be seen, a distribution of the delays with such variance does
not have a significant effect in the synchronization regions determined by
Sloc and Sglob. At a local scale, the effect that a distribution of delays has
in the dynamics of the neurons is illustrated in Figure 5.18. This figure
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Figure 5.17: Upper panel: Contour plots of Sloc (top row) and Sglob

(bottom row) in the coupling-delay phase space for heterogeneous
delay. Columns, from left to right, correspond to simulations with
different topologies: regular, small-world, random and scale-free.
Bottom panel: Contour plot of Sglob for the fully connected network.

shows the raster plots for three different topologies: regular, random
and scale-free in different operating regimes. Comparing with the single
delay situation (Figure 5.3), the distribution of delays induces a small
dispersion in the phases of the neurons, but still the same three states (in-
phase, out-of-phase and anti-phase) are present. Interestingly, the regular
network maintain the sequential propagation of activity conforming the
characteristic v-shape patterns. This robust mechanism, that persists even
in the presence of heterogeneous delay, could play an important role in
signal transmittion in anatomical networks.
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Figure 5.18: Raster plots for different values of the delay: τ/T0 =
0.82 (upper row), τ/T0 = 0.96 (middle row) and τ/T0 = 1.1 (bottom
row). The coupling strength is gmax = 0.8 mS cm−2 Columns, from
left to right, correspond to simulations with different topologies:
regular, random and scale-free. Green and blue squares plotted at
the right y-axis represent the values of Sloc and Sglob respectively.
Only the fist one hundred neurons are shown. Panel on top of each
figure correspond to firing histogram of the entire network in each

situation.
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5.6

Conclusions

Our results, based on extensive simulations of Hodgkin-Huxley type
of neurons in an oscillatory regime, indicate that only certain network
topologies allow for a coordinated firing at a local and long-range scale
simultaneously. At a local level, we have found that all the topologies
considered present three different operating regimes defining different
relationships between the phases of the neurons. Besides network ar-
chitecture, axonal conduction delays are also observed to be another
important factor in the generation of coherent spiking. We report that
such communication latencies not only set the phase difference between
the oscillatory activity of remote neural populations but also determine
whether the interconnected cells can set in any coherent firing at all. In this
context, we have also investigated how the balance between the network
synchronizing effects and the dispersive drift caused by inhomogeneities
in natural firing frequencies across cells is resolved. The presence of in-
homogeneities in the natural firing frequency difficults the occurrence of
coordinated firing states and a strong interaction between the neurons is
needed to appear. We have also shown that the observed role of con-
duction delays is not particular to canonical networks but experimentally
measured anatomical networks, such as the macaque cortical network,
can display the same type of behavior. Interestingly, the macaque cortical
network does not exhibit an anti-phase operating regime, leading open
the interesting question if this behavior is particular of the macaque cor-
tex topology or is a general feature of any anatomical network. Finally,
we have observed that heterogeneous delays do not have a significant
impact in the synchronization regions of the system, resulting in the same
features than in the single delay situation, for a low variance of their
distribution.
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Chapter 6

Consistency in a neuronal
network

Consistency is defined as the ability of a nonlinear system to generate
the same response every time a complex input is used as driving signal,
while the system starts from different initial conditions [91]. Any complex
waveform such as deterministic chaos or stochastic noise can be used as
driving signal. This signal, that is sent repeatedly to the nonlinear dy-
namical system which starts from arbitrary initial conditions, generates
an output. If the correlation between two of these outputs is high, it is
said that the system responds consistently. If this does not happen it is
said to be inconsistent. Figure 6.1 illustrates the concept of consistency of
a nonlinear dynamical system.

Figure 6.1: Concept of consistency.
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Study the consistency of dynamical systems is essential for information
transmission in biological, and neuronal systems in particular, and for re-
production of spatiotemporal patterns in nature. Previously, consistency
has been studied in lasers systems and electronic circuits [91, 92]. In bio-
logical system, the reliability of the firing sequence of a neuron has also
been studied demonstrating that a neuron that is repeatedly driven by a
random drive signal can fire a consistent spike train with a high temporal
precision [93].

In this chapter we study the consistency of a neuronal network com-
posed of neurons described by the integrate-and-fire model, presented
in chapter 1. The role of the synaptic plasticity in the consistency and
synchronization of the network is also considered.

6.1

Model

The system is composed of one thousand integrate-and-fire (IF) neurons
coupled through a chemical synapses modeled by an alpha function. To
take into account a more realistic situation, we consider our network
composed of 80% excitatory neurons and 20% inhibitory neurons. We
interconnect them conforming a sparse network, with 10% randomly
chosen connections between the neurons. To keep balanced the network,
we consider the ratio 1/4 in the strength of the excitatory to inhibitory
connections, i.e. the inhibitory synapses are four times stronger than the
excitatory ones. We assume an independent poissonian spike train acting
over each neuron as an external signal with amplitude Dn.
The membrane potential vi(t) of neuron i (i = 1, ...,N) at its soma obeys
the following equation

v̇i(t) = −
1
τm

vi(t) +
1

Cm
Ii(t), (6.1)

where τm = 10 ms is the membrane time constant, Cm = 250 pF is the
capacitance of the membrane and Ii(t) is the synaptic current arriving at
the soma. This synaptic current is the sum of the contributions of spikes
arriving at different synapses coming from recurrent connections or from
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the external drive input. These spikes contributions are modeled as delta
functions in our basic IF model:

Ii(t) =
1

Nc

∑
j

wi j

∑
k

f (t − tk
j −D), (6.2)

where the first summation is over different synapses with postsynaptic
potential (PSP) amplitude wi j, while the second one represents the differ-
ent spikes arriving at synapse j, at time t = tk

j +D, where tk
j is the emission

time of kth-spike at neuron j, and D = 10 ms is the transmission delay.
The function f (t) stands for the contribution of the incoming spikes and
is represented as an α-function:

f (t) =
e
τα

te−t/τα , (6.3)

where τα is the rise time. We consider in this study the situation of ho-
mogeneous interaction between the neurons, i.e., wi j = w, ∀ i, j.

Simulation were done using the neuronal simulator package NEST [94].
This program is optimized for large networks of spiking neurons and can
represent spikes in continuous time because it uses a precise time-driven
algorithm to avoid integration errors occurring if spikes are constrained
to times that are integral multiples of the simulation step.

6.2

STDP synaptic rule

As it was introduced in chapter 1, Spike Timing Dependent Plasticity
(STDP) is a phenomenon related to the change in the synaptic weights w
between a pair of neurons. For a single pair of presynaptic and postsy-
naptic action potentials with time difference ∆t = tpost − tpre it induces a
change in the synaptic efficacy ∆w given by [95]

∆w =

−λ f−(w) × K(∆t) i f ∆t ≤ 0
λ f+(w) × K(∆t) i f ∆t > 0
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The temporal filter K(∆t) = exp(− | ∆t | /τ) implements the spike-timing
dependence of the learning. The time constant τ determines the temporal
extent of the learning window. The learning rate λ scales the magnitude
of individuals weight changes. The temporal asymmetry of the learning
is represented by the opposite signs of the weight changes for positive
and negative time differences. The updating functions f+(w) = (1 − w)µ

and f−(w) = αwµ, scale the synaptic changes and implement synaptic
potentiation for ∆t > 0, and depression otherwise. NEST has already
implemented this synaptic plasticity rule and in our simulations we used
the typical parameter values: τ = 20 ms, µ = 0.4, α = 1.05 and λ = 0.005.

6.3

Measurement

To characterize both consistency and synchronization in the activity of
our network, we consider the phase of each neuron defined as [96]:

φi(t) = 2π
t − τk

τk+1 − τk
(6.4)

where τk is the time of the kth firing of the neuron i. To measure the
consistency of the responce of the network in different realizations, we
define the quantity:

ci(t) =
1
n

n∑
k=1

sin2

φi(t) − φk
i (t)

2

 (6.5)

where φk
i (t) is the phase of the neuron i obtained in the kth realization

starting from different initial conditions. The summation runs over n
different realizations. A spatiotemporal average of ci,

C = lim
T→∞

1
T

∫ T

0

 1
N

N∑
i=1

ci

 dt (6.6)

measures the degree of consistency of the response of the system. The idea
of this measure is to quantify the phase difference between the response
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patterns of the system when it start form different initial conditions when
it is subject to the same driving signal. For a consistent response of the
system, the phase difference between the patterns is zero, giving a value
of C = 0. On the other hand, any inconsistent response of the system
gives a phase difference larger than zero, resulting in values of C > 0.

To measure synchronization between the neurons, we use a similar index,

si(t) =
1

nc(i)

∑
j∈neigh(i)

sin2
(
φi(t) − φ j(t)

2

)
(6.7)

where φ j(t) is the phase of the neuron j and the summation runs now over
the nc(i) connected neighbors of neuron i. Averaging over the neurons
and in time, we obtain a measure of the synchronization of the network
in a particular realization

S = lim
T→∞

1
T

∫ T

0

 1
N

N∑
i=1

si

 dt (6.8)

When the network has a pattern response where the neurons fire in syn-
chrony, this measure gives S = 0. On the contrary, for a desynchronous
patterns we get S > 0.

6.4

Consistency region

Our first goal is to determine if our neuronal network responds consis-
tently when an external drive is applied. As a external drive signal we
consider an independent Poisson spike train for each neuron. To illus-
trate the scenario, Figure 6.2 shows the raster plot of the activity of the
network for different coupling strengths and a fixed value of the external
drive amplitude. As it can be seen, the consistent responce of the network
diminishes when the interaction between the neurons increases.
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Figure 6.2: Raster plot for two simulation starting from different
initial conditions (red circles and black dots). The parameters are:
top: w = 0.0 pA, middle: w = 1.0 pA and bottom: w = 1.9 pA.

Dn = 2.15 pA.
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We compute the index C for different coupling intensities and drive signal
strengths. The region where the system responds consistently is indicated
by the black area in Figure 6.3. The upper panel stands for the usual
homogeneous static connections, i.e., wi j = w. The middle panel shows
the consistency regions determined by C when STDP synaptic plasticity
rule is applied to the excitatory-excitatory connections. As it can be seen in
the bottom panel, representing the difference between the two previous
results, the inclusion of the STDP synaptic plasticity rule increases the
region of consistency (red area) at moderate coupling strengths and at
high drive amplitudes.
In order to illustrate what is the effect of the plasticity, Figure 6.4 shows

the raster plot of the network for the same coupling intensity and drive
amplitude in both cases: without learning rule (upper panel) and when
STDP rule is applied to excitatory synapses (lower panel). It can be seen
that the inclusion of plasticity has two main effects. On one hand, there
is an increase of the activity of the network due to the reinforcement of
the excitatory weights. On the other hand, this increase of the activity
leads to an enhancement of the consistency of the system. The neurons
are now capable of reproducing the same pattern of activity even when
the system starts from different initial conditions.
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Figure 6.3: Consistency region determined by C. Perfect consistency
is indicated by C = 0 (black areas) while an inconsistent response of
the network correspond to C > 0. Upper panel: no STDP is applied
to the network. Middle panel: nonlinear STDP is applied between
excitatory connections. Bottom panel: difference between the two
previous regions. An increase (decrease) of consistency is codified

by red (blue) color.
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Figure 6.4: Raster plot for two simulation starting from different
initial conditions. Top panel corresponds to a simulation without
learning synaptic rule. Bottom panel: the same simulation with
STDP synaptic rule. The parameters are: w = 1.1 pA and Dn =

2.375 pA.
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6.5

Synchronization region

We also compute the synchronization region determined by the quantity
S. Figure 6.5 shows, codified in colors, the values of the parameter S. The
upper panel corresponds to the case of static conventional synapses while
the middle row stands for simulations where the STDP synaptic rule is
applied to the excitatory synapses. Perfect synchronization is codified
by a value of S = 0 (black color) while any other state differing from
perfect synchrony has a value S > 0. The bottom panel corresponds to
the difference between the two regions. An increase (decrease) of the
synchronization in the system is codified by a red (blue) color. As it can
be seen, we do not observe perfect synchronization in our simulations,
and for static synapses, desynchronization is predominant (yellow area).
Only at high drive amplitudes a region where the parameter S is close
to zero appears. On the contrary, the inclusion of STDP synaptic rule
dramatically changes the scenario. At intermediates drive amplitudes
and high coupling intensities, a large area of values of S close to zero
appears indicating a region where the neurons fire more synchronously.
To illustrate these results, Figure 6.6 displays the raster plot of the net-
work for different coupling strengths and drive amplitudes. The upper
row corresponds to simulations with static conventional synapses and the
bottom row stands for simulations where the STDP synaptic rule is ap-
plied to the excitatory synapses. This figure corroborates the effect of the
STDP synaptic rule. The reinforcement of the excitatory synapses leads
to an increase of the activity of the network, and make the neurons to fire
more synchronously as it can be seen in the left panel of Figure 6.6. But
plasticity can have the opposite effect as well. At high drive amplitudes
and moderates coupling strengths STDP diminishes drastically the syn-
chrony of the network. Theses results suggest that synaptic plasticity can
have a crucial role in the control of the pattern response of the network,
modulating also the synchronous response of the neurons to an external
stimulus.
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Figure 6.5: Synchronization region determined by S. Perfect syn-
chronization is indicated by S = 0 while an asynchronous response
of the network correspond to S > 0. Upper panel: no STDP is
applied to the network. Middle panel: nonlinear STDP is applied
between excitatory connections. Bottom panel: difference between
the two previous regions. An increase (decrease) of synchronization

is codified by red (blue) color.
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Figure 6.6: Raster plots for two simulation starting from two differ-
ent initial conditions. Top row correspond to a simulation without
learning synaptic rule. Bottom row: the same simulation with
STDP synaptic rule. Parameters used: left column, w = 3.0 pA and

Dn = 2.35 pA; right column, w = 1.0 pA and Dn = 2.6 pA.

6.6

Conclusions

In summary, we have studied the consistency and synchronization of a
network of interacting neurons described by the integrate-and-fire model.
We have found that the system can respond consistently to an external
driving stimulus and we have quantified the regions where consistency
occurs by means of an order parameter based on the phase differences of
the different pattern responses. Interestingly, we have found that synchro-
nization appears in different region of the phase space than consistency,
indicating that consistency and synchronization can be considered, in this
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case, as different features of the system.

We have also studied the effect induced by STDP rule between excitatory
connections. We have found that STDP has a modulatory effect in both the
consistency and synchronization of the system, increasing or decreasing
the regions where consistency or synchronization appear. This result
suggests that synaptic plasticity has a crucial role in shaping the response
of the network to an external stimulus.
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Chapter 7

Concluding Remarks

In this thesis we have explored the dynamics and synchronization of
different neuronal systems. The results we have presented were mainly
based on numerical simulations of nonlinear differential equations de-
scribing the dynamics of interacting neurons. The most important results
and conclusions extracted from the work presented in this thesis are sum-
marized as follow.

In Part I we have studied the effect of different sources of disorder such as
external noise acting on neurons or the presence of heterogeneity in the
constituents of a neuronal network. In particular, in Chapter 2, we stud-
ied the effect of the synaptic noise, modeled as colored noise, when it acts
over a population of motoneurons subject to an external weak modula-
tion. We have demonstrated that noise can have a constructive role when
acting over a group of motorneurons belonging to the spinal cord. The
enhancement of the response of an ensemble of motoneurons to a weak
modulation was reported as a stochastic resonance phenomenon. Our
numerical results were supported with the first experimental measure-
ments confirming that stochastic resonance occurs at the spinal cord level.

In chapter 3 we proposed a neuronal architecture involved in the gen-
eration of a motor activity such as the scratching. We reported both
numerically and experimentally a rostro-caudal signal propagation oc-
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curring during this motor activity. Our model allowed us to reproduce
the observed spontaneous failures or absences of electrical activity in the
motoneurons of the spinal cord by means of changes in the excitability
of part of the network. We have also predicted a new kind of deletion,
not observed experimentally yet, that recovers during the propagation.
Study and understanding the mechanisms of deletions become essen-
tial to unveil the neuronal circuits involved in the generation of specific
motor activities. Further experimental measurements are needed to elu-
cidate the validity of the assumptions of our model and to corroborate our
predictions. In our study, we have neither taken into account the sponta-
neous or background activity of the surrounding neurons nor the afferent
feedback coming from the muscles and sensory neurons. It is well known
that these features play an important role affecting the motor activities
and it is consequently essential to include them in future versions of the
model.

The role of the diversity present in an ensemble of interacting neurons
was explored in chapter 4. We have studied different neuronal models
under different coupling configurations observing an enhancement of the
response of the system to an external weak modulation produced by the
diversity of the units. In our study we have considered the variation of
the ratio between excitatory and inhibitory connections obtaining an in-
crease in the response of the system when this ratio is balanced. It would
be of interest to explore the situation in which the synaptic weights of
excitatory and inhibitory synapses are also balanced and the effect that
plasticity plays into this novel behaviour.

In Part II we have studied the effect of the topology and delay in the
connections in the synchronization properties of neuronal networks. In
Chapter 5 we explored how the topological properties and conduction
delays of several classes of neural networks affect the capacity of their
constituent cells to establish well-defined temporal relations among the
firing of their action potentials. We have found that only certain networks
topologies allow for a coordinated firing at a local and long-range scale
simultaneously. We have reported that the existence of latency delays
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in the communication not only establish the phase difference between
the oscillatory activity of remote neural populations but also determine
whether the interconnected cells can respond in a coherent firing. We
have shown that the role played by the delay is not particular to canon-
ical networks. Experimentally measured anatomical networks, such as
the macaque cortical network, can display the same type of behavior. Fur-
ther studies exploring different delays distribution are needed in order to
determine the robustness of the synchronized state.

Finally, in Chapter 6, we have studied the consistency and synchroniza-
tion of a neuronal network of integrate-and-fire neurons subject to an
external drive. We have quantified the regions where consistency and
synchronization occur. We have found that synchronization occurs at dif-
ferent values of the coupling strength and drive amplitude than consis-
tency, suggesting that consistency and synchronization can be considered
as different features of the system. We have reported the modulatory
effects induced by the synaptic plasticity in the excitatory connections
observing both an increasing and decreasing of the regions where consis-
tency and synchronization appear. This result confirms the crucial role
played by synaptic plasticity in the response of the network to an external
stimulus. The design of experiments devoted to determine consistency
in different systems becomes essential for a deeper understanding of the
phenomena.

We expect that the work presented in this thesis opens new perspectives
into the experimental research in the central nervous system.
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