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The scientist does not study nature because it is useful; he studies it because he delights
in it, and he delights in it because it is beautiful. If nature were not beautiful, it wouldn’t

be worth knowing, and if nature were not worth knowing, life wouldn’t be worth living.

Henry Poincaré

to Life..





Abstract

The theoretical tools of Statistical Physics offer powerful techniques to analyse prob-
lems in which chance and probabilities play a role. One of such subjects is the
understanding of the rules of macroevolution, i.e., evolutionary development and
diversification of species, which remains a not well developed part of evolutionary
biology.

Phylogenetic trees, describing the estimated evolutionary relationships be-
tween biological species, are obtained directly from molecular data and are an im-
portant indirect evidence for diversification patterns in macroevolution. Therefore,
analysing the structures of such estimated trees and comparing to those obtained
from branching models is an interesting approach to capture the rules of macroevo-
lution.

In this thesis, we analyze the phylogenetic trees in the TREEBASE and PAN-
DIT databases and characterize their topology (in particular their balance degree)
via the mean depth, i.e. the average number of ancestor nodes from the tips to the
root. A non-logarithmic scaling with tree size is found, which is not easy to get
with branching models existing in the literature. With this motivation, we analyze
analytically and numerically three simple branching models, two of which are pro-
posed by us, and try to find their biological meaning if possible. The first is Ford’s
alpha model; although a power law scaling of the mean depth with tree size was
established analytically, our numerical results illustrate that the asymptotic regime
is approached only at very large tree sizes. For the second model, named as activity
model, we show analytically and numerically that it also displays a power law scaling
of the mean depth with tree size at a critical parameter. Finally, we propose the
so called age model in which the probability of branching depends on the age of the
tips with a power parameter. The results of this model at a critical parameter value,
which we are capable to express analytically, display a scaling behavior similar to
the one obtained from databases analysed. In addition it is potentially open to
biological interpretation.
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Part I

Introduction





1
Background

1.1 Biological Evolution

After centuries of human performance on the domestication of animals and the culti-
vation of plants, and after many decades of very detailed scientific observations and
documentations of the shapes and the behaviors of living organisms, it was started
to be discussed that the forms of living matter do not persist unchanged but, on
the contrary, they are in evolutionary process at time scales much longer than indi-
viduals’ lifetime. The theorizing work of this biological evolution took place around
150 years ago and was due to Darwin and Wallace by asserting that the evolution is
governed by the variations of the characters and their relative selection (or equiva-
lently election) by a complex dynamical system of both living and nonliving matters,
namely by Nature, due to any advantage they gained over the others (Darwin, 1859).

This theory of evolution, especially during the first decades of the last century,
was combined with genetics shaping the classical paradigm of biological evolution
until present (Huxley, 1942). In recent years, mainly due to rapid increase of the
genetical data and their interpretations, the new theoretical and experimental per-
spectives in science relating to biological evolution have begun to emerge. To give
some recent examples, Roughgarden et al. (2006) have brought a new argument for
the sexual selection which is opposing to Darwin’s sexual selection. Some groups
like Goldenfeld and Woese (2007), Vetsigian et al. (2006), Frigaard et al. (2006) have
studied, from new points of view, the lateral gene transfers and their impact on evo-
lution (Syvanen, 1985). Balcan et al. (2007) proposed an informational theoretic
model, which mimics with high accuracy the global structural properties of the net-
work of transcriptional regulatory interactions found in yeast organism, which can
infer the informational (or entropic) aspects of the biological evolution (Volkenstein,
1994) in the gene coding.

In short, new ideas and studies might be apt to improve our knowledge about
biological evolution and even may change today’s paradigm in the near future, pos-
sibly with the approaches from other disciplines, but especially from physics.

3



4 Chapter 1.

1.2 Physics & Evolution

Until recently improvements in physics and biology have occurred quite indepen-
dently. Therefore, dissimilar modus operandi have been developed which hardened
the communication between two disciplines. However, today with increasing inter-
est in biological knowledge, it is expected that such dissimilarity decreases and the
experience of physics contributes to gain insight into the biological problems. Here,
we try to explain how these contributions from physics to biological evolution can
be and give some examples from the literature.

First of all, in some cases, the forms of the living organisms might be dictated
only by the nonliving part of nature. For example, Barrio et al. (1997) and Aragon
et al. (2002) have studied the organisms whose form is pentagonally (five-fold) sym-
metric, such as sea urchin. They brought a physical explanation to this five-foldness
by investigating the nonlinear Turing equations, which are studied in pattern for-
mation. Another example, that fits here well though very recent, is regarding the
distinct number of nucleic acids in DNA and of amino acids in proteins, which are
4 and 20, respectively. Note that each amino acid is coded by codon (the code
consists of three nucleic acids). Common biologist’s explanation to these numbers
is by means of frozen accident during the earlier epoch of the evolution. However,
Patel (2003) argues that Grover’s algorithm discussed in quantum physics gives the
optimum solution which coincides in 1 and 3 quantum queries (Pusuluk, 2009). See
also Ref. (Lloyd, 2009) for a review about other studies relating Quantum Physics
and Evolution.

Secondly, an analogy between the evolutionary system and a well understood
physical system can be considered. If enough completeness is obtained at the anal-
ogy, the tools developed in physical system can be applied to evolutionary system.
For example, Sella and Hirsh (2005) discuss the formal resemblance of the popula-
tion genetics and statistical physics. In Table 1.1, we give their analogy between
evolutionary dynamics and statistical physics. In the same line, one can also see
Refs (Dietz, 2005; Kowald and Demetrius, 2004) for an attempt to construct the
evolutionary entropy.

Lastly and also as the main philosophy behind this thesis research, the usual
approach of physics to the problems, which is the construction of complexity from
basic proposed units/interactions and a thorough investigation/comparison at each
constructed level, can be applied to evolutionary system. In other words, at first the
lower level laws of evolutionary dynamics might be proposed despite the complexity
of system. Later, the system is brought to higher levels with the help of mathematics
and/or computers. At the end, the system is subjected to comparison with evidences
from the real system. For example, Pigolotti et al. (2007) have studied some patterns
of evolutionary ecological system by assuming that the populations are localized in
an abstract niche space and using a Lotka-Voltera type interaction dynamics. Similar
examples for building the complexity in the context of evolution by physicists can
be found in Refs (Higgs and Derrida, 1992; Powell and McKane, 2008).
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Table 1.1. The analogy between evolutionary dynamics and statistical physics given in
Ref. (Sella and Hirsh, 2005). Ei for energy of the state i, N for population size; kB for
Boltzmann constant; T for temperature; ν for analogous term for β; P i probability of the
state i; G for free energy; fi for fitness; x for additive fitness.

Object Evolutionary Dynamics Statistical Physics
State variable ~g = (A,C, T..G,A) ~s = {(~qk, ~pk)}
Additive fitness and
energy

x = ln(f(~g)) E = Ĥ(~s)

Population size νMoran = N − 1 β = 1/kBT
and temperature νhWF = 2(N − 1)

νdWF = 2N − 1
Boltzmann factor P i

s.s. ∼ e−ν(−xi) P i
eq ∼ e−βEi

Invariance fi → Cfi Ei → Ei + C
Free fitness and free
energy

G = 〈x〉+ 1
ν
H −G = −(〈E〉 − 1

β
H)

Equilibrium scale ν(xj − xi) = 1 β(Ej − Ei) = 1

1.3 Macro- versus Micro-Evolution

Since the evolutionary process of living beings can be thought in different time/space
scales and organization levels, one can speak about the evolution of biomolecules
such as proteins, of cells, of organs such as eyes, of populations, of species, of genera,
etc., therefore, the field of biological evolution can be separated into many subfields.
However, we see that traditionally the research field of biological evolution has been
divided into two main subfields in the literature: micro- and macro-evolution (See
Ref. (Erwin, 2000) for details of the history).

Microevolution, at one hand, deals with the changes occurring within a species
or population in comparably short time and often refers to population genetics
or evolutionary genetics. It should be noted that many extensive and systematic
microevolutionary research have been done mainly due to the availability of empirical
studies and some mathematical improvements have been already supplied such as
the neutral theory of molecular evolution (Kimura, 1983).

On the other hand, macroevolution is the long-term development and dynamics
of the formation (speciation) or the extinction of species and higher classification
units. Not only due to the problems of a universal definition of species (Hendry,
2009) but also due to the difficulty (generally speaking: impossibility) of doing
experiments, this part of evolutionary studies did not improve as much. It had
depended on the fossil records which are at best limited to a small portion of the
living classifications. Accordingly, accepted mathematical theories are still missing
in literature.

The recent technological improvements in the last decades have formed a new
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branch of biology: Molecular Phylogeny. It supplies us evidences of macroevolution-
ary relationships of species obtained from molecular analysis. It is expected to that
these phylogenetic studies result in a better elucidation of the macroevolution.

1.4 Thinking Macroevolution as Tree-like and Phy-

logenetic Trees

The real history of the speciation on Earth was considered by Darwin (1859) (see
Figure 1.1), or even in earlier times by Lamarck (Gregory, 2008), to be branching
tree-like where the tips are extant species and the internal nodes are the ancestor
species. Today, this hypothesis of tree-like macroevolution is still highly used and
we follow this consideration in our research. However, the reader should be warned
that there exist phenomena such as the hybridization of species (Hendry, 2009) and
lateral gene transfer (Syvanen, 1985) which make the true representation of the
macroevolution like a network1 rather than a tree.

Figure 1.1. An evolutionary tree sketched by Darwin (∼ 1837) found in one of his note
books. It might be noted that the unique illustration included in On the Origins of Order
was again an evolutionary tree.

Therefore, we seek this tree-like structure of the evolutionary relationships of
species. As mentioned above the phylogeny reconstructs trees of the evolutionary
relationship of a number of existing species, named as phylogenetic trees, by using
their molecular data, i.e., DNA sequences. There are different types of phylogenetic
trees, two of which are cladograms and phylograms. A cladogram is simply a repre-
sentation of the order of the evolutionary closeness of different taxa (a taxonomic
group of any rank, such as a species, family, or class.). Let me explain some impor-
tant information it carries by using the example cladogram shown in Figure 1.2. The
taxa A and B are more closely related in the set of taxa {A, B, C}. Left and right

1Generally, the word web is used in the evolutionary biology literature.
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edge ordering does not make a difference (Aldous, 1996). Tips are extant species
whereas internal nodes are inferred speciation events. For the sake of simplicity, one
can read them as the ancestor species. Therefore, the most common ancestor of A
and B is the internal node with one asterisk, whereas the one with two asterisk is
of A, B and C; F is the most distantly related one and named as outgroup. Most
of the time, the outgroup is necessary to root the tree (Gregory, 2008). Actually,
there are also unrooted evolutionary trees but in this research we are not taking
them into account and the databases we use include only rooted trees.

Phylograms differ from cladograms by having branching lengths, usually indi-
cating the real time or the amount of change in the sequences. In this research, we
only use the cladogram representation although some of our studies can be related
to phylograms and can be studied further in this context.

Figure 1.2: Basic terms of phylogenetic trees are displayed (Gregory, 2008).

There are many databases of reconstructed (estimated) evolutionary clado-
gram trees available today. In this research, we use the TREEBASE2 and PANDIT3

databases which are public repositories. Figure 1.3 shows one example from TREE-
BASE. It should be emphasized that due to resolution in reconstruction techniques
there might appear polytomies (spliting to more than 2 branches) in estimated trees,
however, in our modeling we concentrate on only binary trees as other studies in
the literature.

It is important to note that there are discussions of the possible non-biological
effects to reconstruction results such as artifacts of estimation techniques, the incom-
pleteness of the trees, the decisions of phylogeneticists, etc. (See References (Barra-
clough and Nee, 2001; Mooers and Heard, 1997) for a detailed discussion). However,
we leave these discussions out of our research and see the phylogenetic trees as an
important indirect evidence of diversification structure throughout the evolutionary
history on Earth. It is believed that scrutinizing the structure of phylogenetic trees
might be very useful to elucidate the nature of macroevolution (Barraclough and

2http://www.treebase.org/
3http://www.ebi.ac.uk/goldman-srv/pandit/
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Figure 1.3: An example tree (Aldous, 2001a) from TREEBASE.

Nee, 2001; Reznick and Ricklefs, 2009; Ricklefs, 2007). This brings us to discuss the
necessary tools to study the structure of the trees.

1.5 Tree Balance: Mean Depth

From the mathematical point of view, a tree is a graph (network) without cycles.
By this property many of the topological measurements available from graph theory,
e.g. clustering and degree distributions, give no information here. One of the notions
which we can relate to the topology of the tree is its balance, i.e., left-right symmetry
for branching. For a graphical explanation of the balance, see Figure 1.4 for the most
extreme two cases in binary trees: most balanced (namely symmetric or cayley) and
the most unbalanced (namely comb) trees.

A B A B

Figure 1.4: The most balanced (at left) and imbalanced trees (at right) with 16 tips.

From the biological point of view, the balance shape might give us some hints
regarding how the diversity of life propagates through evolutionary time. In other



1.5. Tree Balance: Mean Depth 9

words, the question: Does speciation tend to be more in one part of hypothetical tree
of life than in other parts? can be answered by investigating the balance structure.

Several indices have been proposed and used in the literature for a quanti-
tive way to present the imbalance of a tree. References (Agapow and Purvis, 2002;
Matsen, 2006; Mooers and Heard, 1997) discuss the comparison of them in de-
tail. However, the main problem of finding a homogeneously distributed index (See
Figure 1.5) remains still problematic and to our knowledge, there is no generally
accepted one yet (Matsen, 2006).

Figure 1.5. A good index of measuring the balance is expected, at least intuitively, more
orderly and homogenously distributed on the index line. In this sense index a can be said to
better than b (Matsen, 2006)

In this research, considering 1) the reported comparison of the indices by
Matsen (2006) and Agapow and Purvis (2002), 2) the possibility of using them also
in polytomies, 3) possibility of analytical derivations from models and 4) the most
importantly, for the sake of a clear biological meaning, we use the mean depth of a
tree: 〈d〉n (Sackin, 1972) being the average number of ancestor nodes from the tips
to the root, i.e.,

(1.1) 〈d〉n = (
n∑
i=1

di)/n

where di is the depth of the tip i, i.e., its number of ancestors till to the root
(inclusive), and n is the total number of tips in the tree.

It should be stressed that the mean depth can not be a direct comparison of
balance among any group of trees since it is a quantity related to the shape of tree
in longitudinal direction whilst balance is regarding the shape at crossing direction.
However, if a set of given size binary (or more in general, k-ary) trees are considered
then one can use it for balance measurement. Indeed, we are interested to know
how the mean depth of the tree scales with system size n (which is the number of
tips). We use the behavior of the scaling to compare the models (producing binary
tree) and estimated trees in our research.

Thus, it is important to note here that the mean depth scaling of TREEBASE
trees is reported as 〈d〉 ∼ log2 n in Ref. (Blum and François, 2006) in context to
its comparison with AB model (will be discussed in the following section) and our
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results will not falsify this peculiar scaling as can be seen in the Original Research
part.

Now let us see the exact scaling of the extreme cases for the binary trees, i.e.,
the most imbalanced and balanced trees, which we need for referencing to trees at
the investigation.

1.5.1 Mean Depth Scaling of the Most Imbalanced (Comb)
Tree

Note that a binary tree of size n is a comb tree if and only the set of the tip’s depth
is 1, 2, 3, ...(n− 3), (n− 2), (n− 1), (n− 1). Therefore,

(1.2) n〈d〉n = 1 + 2 + 3 + ...+ (n− 2) + (n− 1) + (n− 1)

so dividing each side by n, the exact mean depth is obtained

(1.3) 〈d〉n =
n

2
+

1

2
− 1

n

from which the scaling with n is

(1.4) 〈d〉n ∼ n

1.5.2 Mean Depth Scaling of the Most Balanced (Symmet-
ric) Tree

Note that a binary tree is the symmetric (cayley) tree if and only if its size is n = 2i

where i = 1, 2, 3... is the label of the tree levels, and each depth from tips are the
same. Therefore, realizing that the mean depth of each level is precisely 〈d〉n = i
and using the definition,

(1.5) 〈d〉n = log2 n =
log n

log 2
= (1.44...) log n

which is said to be scaling with n as

(1.6) 〈d〉n ∼ log n

1.6 Macroevolution Modeling with Branching Pro-

cesses

Surprisingly, the modeling of macroevolution was slow to appear in the literature
and generally was about the maintenance of genetic variation rather than speciation
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events (Gavrilets, 2003). The reader might see Refs (Gavrilets, 2003; Powell and
McKane, 2008) for some modern examples of modeling macroevolution in contexts
other than branching processes discussed here.

Branching processes out of the evolutionary context were also studied exten-
sively and some mathematical foundations were attained in earlier time (Harris,
1963). For examples of non-macroevolutionary branching processes, one can see
the following references; (Stevens, 1974) for real trees; (West et al., 1997) for blood
vessels; (Rodriguez-Iturbe and Rinaldo, 1997) for river networks; (Klemm et al.,
2005, 2006) for computer file systems; (Jain and Dubes, 1988) for classification al-
gorithms; (Kingman, 1982, 2000) for the coalescent theory in population genetics;
(Harris, 1963) for particle physics.

In the macroevolutionary context, the first branching model that must be
mentioned is the Yule model (1924) or equivalently the Equal Rate Markov (ERM)
model (Aldous, 2001a). In this model, starting from a trivial tree (a single tip: the
root), a tip is chosen randomly for branching. This process is repeated until the
desired number of tips attained. It is very well known that this model has a scaling
〈d〉n ∼ log n, like the symmetric tree with a difference in coefficient. This scaling of
ERM model trees is calculated at the end of this section. Also, another model with
the similar scaling of ERM is added at the end. Indeed, it had been well known for
long time that estimated trees’ scaling is faster than log n which makes this model
inappropriate in this context for the balance structure.

Other than the ERM model, there existed some earlier use of branching pro-
cesses in macroevolutionary literature, like Ref (Cavalli-Sforza and Edwards, 1967).
However, the approach from stochastic branching modeling of macroevolution, i.e.,
production of trees and studying the shape of trees, can be traced back to a group
of paleontologists and population biologist at Wood Hole in the early 1970s (Mooers
and Heard, 1997). Current studies (Blum and François, 2006; Brunet et al., 2008;
Pinelis, 2003), including ours, of stochastic production of trees and their comparison
to phylogenetic trees can be seen the modern descendants of Wood Hole school. As
mentioned in other references such as (Blum and François, 2006), it is believed that
the comparison of stochastic branching models to data would help to understand
underlying macroevolutionary process.

To our knowledge, the only relatively successful model catching the observed
balance shape is the AB model which is a subfamily of Beta-Splitting Model in-
troduced by Davis Aldous in Ref. (Aldous, 1996). The motivation behind Aldous’
1996 study is to find a one-parameter mechanism on cladograms which can result
in trees similar to the published reconstructed phylogenetic trees. The model can
be described as follows: Place n species randomly on the interval (0, 1). Choose
a random number x from probability density function f(x) and divide the interval
into two parts such that i species stay in the subinterval (0, x) and n − i species
stay in the subinterval (x, 1). Having renormalized each subinterval into (0, 1) and
rearranged the places of species, keep going on the procedure unless a subinterval
contains only one species (See Figure 1.6 for a graphical explanation). The name
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of “Beta” was chosen because f(x) is related to a special beta function, xβ(1− x)β.
Aldous gives an outline of the proof of the mean depth scaling 〈d〉n ∼ log2 n of the
AB model (Beta Splitting model, β = −1) in Ref. (Aldous, 1996). Ref (Blum and
François, 2006) gives a detailed report regarding the resemblance of TREEBASE and
AB Model trees. However, a biological interpretation of the model is still missing.

Figure 1.6: Explanation of the AB Model (Beta-Splitting Model with β = −1)(Aldous, 2001a)

Thus, we seek for stochastic branching models whose mean depth scaling is
similar to the reconstructed phylogenetic trees. We should emphasize that in all our
models, we build our system such that the species are basic units of dynamics. In
other words, we ignore the dynamics occurring below the species level, which is the
subject of microevolution. This tenet of modeling of macroevolution independent of
microevolution is becoming common in the literature and according to Reznick and
Ricklefs (2009) it is in parallel to Darwin’s ideas on the subject.

1.6.1 Mean Depth Scaling of the ERM Model Trees

In a mean field description, the sum of depths is increased by mean depth plus 2.
Let us write this,

(1.7) n〈d〉n = (n− 1)〈d〉n−1 + 〈d〉n−1 + 2

which rearranging leads us to

(1.8) 〈d〉n − 〈d〉n−1 =
2

n

the L.H.S is like d/dn when n >> 1, so

(1.9)
d〈d〉n
dn

=
2

n
,

which can be solved as

(1.10) 〈d〉n = 2 log n+ const.
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One can force the n = 2 and 〈d〉n = 1 as the initial condition and get const =
1− 2 log 2 and finally

(1.11) 〈d〉n = 2 log n+ 1− 2 log 2

which is said to be scaling as

(1.12) 〈d〉n ∼ log n

Note that it is a same scaling behavior as the symmetric tree with differing in
coefficient.

1.6.2 Mean Depth Scaling of Continuous time Independent
Branching Model with Exponential Lifetime Distribu-
tion

Here we present other type of branching model, developed in continuous time, which
could be used to model macroevolution: a continuous-time independent branching
model. It turns out to give a scaling coincident with the ERM model at least when
an exponential lifetime distribution, the one that will be considered here, is used.

In this model, starting at t = 0, a species is created and a lifetime τ is assigned
to it from a probability distribution function (pdf) f(τ). This is the function such
that the probability of having a lifetime between τ and τ + dτ is f(τ)dτ . After τ
time passes a binary branching occurs from this species and the same procedure is
repeated for each newly created species. This process will proceed until the desired
number of existing species n or total time t is reached in the growing model.

Let us introduce F (τ), cumulative pdf of f(τ), i.e.
∫ τ

0
f(τ ′)dτ ′. It refers to the

probability to assign a life time smaller than τ . In our model, both f and F are 0
for τ = 0; Q(τ) is the probability to assign a life time bigger than τ . It is simply
1 − F (τ) or

∫∞
τ
f(τ ′)dτ ′; r(τ) is another way of describing the probability that a

branching occurs in the interval τ and τ + dτ can be expressed by a rate r(τ)dτ
where not branching becomes 1− r(τ)dτ . We can relate the r(τ) to f(τ) as follows:
Consider n→∞, ∆τ → 0 and N∆τ = τ , then we can immediately write

(1.13) Q(τ) = lim
∆τ→0

n∏
i=0

(1− r(τi)∆τ).

Remembering e−x = 1− x+ ... for small x’s we can write that

(1.14) Q(τ) = e−
R τ
0 r(τ ′

i)dτ
′
.

Taking logarithm of both sides and differentiating with respect to τ gives

(1.15)
d

dt
logQ(τ) = −r(τ),
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and equivalently we write r(τ) in terms of Q(τ) as

(1.16) r(τ) = −Q̇(τ)

Q(τ)
.

Now, it is easy to find f(τ) in terms of r(τ) by remembering that there is no event
occurred until that moment AND exactly one event occurred at that moment:

(1.17) f(τ) = Q(τ)r(τ)

(1.18) f(τ) = r(τ)e−
R τ
0 r(τ ′

i)dτ
′

Using above expression (1.18) it easy to see that an equal (constant, say r(t) =
λ) rate would yield an exponential decreasing life time distribution, i.e. f(τ) =
λe−λτ .

For a given f(τ), what is the scaling of the mean depth with number of species?
In order to seek an analytical answer to this question at first we will do followings.
Firstly, we will derive time dependence of the number of existing species n(t) and
the sum of depths D(t). Then, assuming 〈d〉 = 〈D/n〉 = 〈D〉/〈n〉, we will obtain
the mean depth scaling with respect to n.

For n(t), let us consider a root species with a lifetime τ and its branching into
2 subtrees. Since the model does not have any memory and no interaction between
any nodes we are able to write the following convolution:

(1.19) N(t) = Q(t) + 2

∫ t

0

N(t− τ)f(τ)dτ,

where N is the total number of nodes in tree (remember again N = 2n−1). Writing
in terms of n(t),

(1.20) 2n(t)− 1 = Q(t) + 4

∫ t

0

n(t− τ)f(τ)dτ − 2F (t).

For D(t) we consider two statistically the identical and uncorrelated trees and
unite them by creation of a root species with τ lifetime similar to the above case.
Then one can write

(1.21) D(t) = 2

∫ t

0

[D(t− τ) + n(t− τ)]f(τ)dτ

One strategy to solve the above convolution expressions is to transform them
into Laplace space. Therefore, Eq.(1.20) becomes

(1.22) 2ñ(s)− 1/s = Q̃(s) + 4ñ(s)f̃(s)− 2F̃ (s)
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Remembering the relations between Q and F with f , we arrive at equation

(1.23) ñ(s) =
1

s

2− 3f̃(s)

2− 4f̃(s)

Similarly dealing with Eq.(1.21), we write the following equation,

(1.24) D̃(s) =
2ñ(s)f̃(s)

1− 2f̃(s)
,

and substituting Eq.(1.23) we arrive at equation,

(1.25) D̃(s) =
1

s

f̃(s)(2− 3f̃(s))

(1− 2f̃(s))2
.

Therefore, for given f(τ) (and so f̃(s)) we might try to seek for inverse Laplace
transfroms of ñ(s) in Eq.(1.23) and D̃(s) in Eq.(1.25) and obtain mean depth as
〈d〉(t) = D(t)/n(t).

Suppose we have f(τ) = λe−λτ and so f̃(s) = λ/(s + λ), then according to
Eq.(1.23),

(1.26) ñ(s) =
1

s

s− 5λ/2

s− 3λ

that can be written as

(1.27) ñ(s) =
1

s
+

1

s

(
λ/2

s− 3λ

)
the inverse Laplace transform of the above equation can be found by recalling the
theorem L−1(f̃(s)/s) =

∫ t
0
f(u)du (Spigel, 1970). Therefore,

(1.28) n(t) = 5/6 + λ/6e3λt.

Similar treatment for solving the Eq.(1.25)

(1.29) D̃(s) =
1

s
2λ
{ 1

s− 3λ
+

1/2λ

(s− 3λ)2

}
,

(1.30) D(t) =

∫ t

0

2λ

{
e3λt′ + λ/2e3λt′t′

}
dt′,

which result in

(1.31) D(t) = 2λ

{
e3λt − 1

3λ
+ λ/2

{te3λt

3λ
+

1− e3λt

(3λ)2

}}
,
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and putting in a clearer way:

(1.32) D(t) = 3λte3λt + 5e3λt − 5,

dividing D(t) with n(t) we have expected mean depth d(t):

(1.33) 〈d〉(t) = 3t+ 5/λ+ ....

For big λt values we have t ∼ log(n), from Eq.(1.28). Therefore, if we put this
into the last expression we have, we get logarithmic scaling behavior for the mean
depth, i.e.,

(1.34) 〈d〉n ∼ log(n).



2
Summary of the Original Research

Our general motivation in this thesis research is the elucidation of the underlying
laws governing macroevolution. Particularly, we are interested in understanding how
speciation occurs and what diversification patterns result from it. In other words,
we are questioning how the structure of branching events in the hypothetical tree
of life is. At present, the phylogenetic trees, objects of evolutionary relationships of
extant species, serve as estimated diversification patterns of macroevolution which
we intend to appreciate.

One approach to understanding the particular shape of these speciation branch-
ings is via comparing them with the ones produced by well-known (proposed)
branching mechanisms. Whenever a satisfying similarity at the structure is ob-
served, the rules producing the tree might be interpreted biologically. This can lead
to theories of macroevolution, such as a neutral theory of macroevolution which is
sought after the success of the neutral theory of molecular evolution. To our knowl-
edge, there does not exist yet any particular branching model which both captures
the structure of the phylogenetic trees and is interpreted as meaningful in biological
sense.

Therefore, as the main aim of our research, we seek biologically inspired mod-
els of growing trees that exhibit similar topology with estimated trees found in
databases.

Here, we present Chapters 3 and 4, which are the contents of two research
articles, and which include three simple branching models, named as Ford’s Alpha,
Activity and Age models. We use the balance notion, i.e., left-right symmetry, for
topological characterization of the trees. We quantify it by using the mean depth
defined as

〈d〉n = (
n∑
i=1

di)/n,

where di is the number of ancestors of tip i and n is the total number of tips in tree.
We are particularly interested in the behavior of the mean depth scaling in order
to compare the ensembles of trees from models and/or databases. After the mean

17
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depth scaling analysis of the TREEBASE (species phylogeny) which takes place in
both of the articles and of the PANDIT (protein phylogeny) which takes place in
the second article, we conclude the following reference scaling information,

〈d〉n ∼


n for the most imbalanced tree

log n for the most balanced, ERM model trees
(log n)q for TREEBASE, PANDIT trees

where q is clearly greater than 1, with the best fit to q ∼ 2 in good agreement with
some other reports claiming q = 2.

The first model presented in Chapter 3 is the Ford’s Alpha Model which
was proposed by D. J. Ford. It is a one-parameter (α) family tree growing model
where 0 < α < 1. At each branching event, which does not necessarily happens at
the tips in this model, an edge is chosen for adding a new edge and a new tip, where
beforehand a branching probability proportional to 1− α and α is assigned to each
leaf and internal edge, respectively. The mean depth scaling property was studied
and expressed analytically by Ford as

〈d〉n ∼
{

nα 0 < α ≤ 1
log n α = 0

Our numerical studies have verified these results if n is large enough. Although this
model gives a simple mechanism for scaling with one parameter, its interpretation
in evolutionary sense is hard to justify unless one comments it in the context of the
error arising of phylogenetic methods.

The second model presented in Chapter 3 is the Activity Model. It is a one-
parameter (p) family tree growing model proposed by us where 0 < p < 1. Starting
from a trivial tree, at each step, one active tip is chosen to branch into two new tips.
Each new tip is assigned to be active or inactive with a probability proportional to
p and 1 − p, respectively. We show both analytically and numerically mean depth
scaling as

〈d〉n ∼
{

n1/2 p = 1/2
log n otherwise.

The activity model again does not have very clear biological meaning. However,
it has the mechanism of the birth-death critical branching within a framework of
transitions between node internal states which can help identify the proper biological
meaning with an additional study.

The last model we hold here is presented in Chapter 4 and named as Age
Model. It is one-parameter (α) family tree growing model proposed by us where
−∞ < α < ∞. It is a discrete time incremented model where discrete step ∆t
is considered to be 1 and 1/n as two different versions. At a given time, each tip
i possesses an age τi(t) which is the time passed from the birth of the tip, ti, to
present time t, i.e. τi = t− ti. Two new tips, are added to the tip i after each time
increment ∆t with a probability proportional to τ−αi .
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Numerically, we show that for α = 1, both cases show a mean depth scaling
〈d〉n ∼ (log n)2 which is claimed that database trees display, too. Also, we observed
that the mean depth scaling goes rapidly to that of the comb tree (∼ n) and of the
symmetric tree (∼ log n) for α > 1 and α < 1, respectively. Analytically investigat-
ing the ∆t = 1 case, we conclude the following mean depth scaling behavior:

〈d〉n ∼


log n if α < 1
(log n)2 if α = 1
nα−1 if 1 < α < 2∫
dn/ log n if α = 2

n if α > 2

Thus, at a critical parameter, α = 1, the Age model produces similar trees to
the reconstructed evolutionary trees. It matches the well known observation that the
species which are coming from evolutionary lines of many diversification, did (will)
tend to diversify more than those do not. If an age property for species is found,
then it might be used as a null model (theory) for macroevolution. Our research on
this model and its interpretation are still continuing.
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Part II

Original Research





3
Simple models for scaling in
phylogenetic trees

Abstract1: Many processes and models –in biological, physical, social, and other
contexts– produce trees whose depth scales logarithmically with the number of
leaves. Phylogenetic trees, describing the evolutionary relationships between biolog-
ical species, are examples of trees for which such scaling is not observed. With this
motivation, we analyze numerically two branching models leading to non-logarithmic
scaling of the depth with the number of leaves. For Ford’s alpha model, although
a power-law scaling of the depth with tree size was established analytically, our nu-
merical results illustrate that the asymptotic regime is approached only at very large
tree sizes. We introduce here a new model, the activity model, showing analytically
and numerically that it also displays a power-law scaling of the depth with tree size
at a critical parameter value.

3.1 Phylogenetic branching and models

Although most modern studies on complex networks (Albert and Barabási, 2002;
Boccaletti et al., 2006) consider situations in which nodes are connected by multiple
paths, the case of trees, i.e. graphs without closed cycles, is relevant to describe
many natural and artificial systems. Branching in real trees (Stevens, 1974), in blood
vessels (West et al., 1997), in river networks (Rodriguez-Iturbe and Rinaldo, 1997) or
in computer file systems (Klemm et al., 2005, 2006) produce complex tree patterns
worth to be described and understood. Trees are the outcome of classifications
algorithms (Jain and Dubes, 1988) and of branching processes (Harris, 1963) and
they also arise when computing community structure (Guimerà et al., 2003) or as
a backbone (for example a minimum spanning tree) for more connected networks
(Garlaschelli et al., 2003; Hernández-Garćıa et al., 2007; Rozenfeld et al., 2008).

1Emilio Hernández-Garćıa, Murat Tuğrul, E. Alejandro Herrada, Vı́ctor M. Egúıluz and
Konstantin Klemm, (2009), accepted to International Journal of Bifurcation and Chaos.
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Evolutionary processes leading to speciation are also summarized in phyloge-
netic trees (Cracraft and Donoghue, 2004). In these trees the leaves represent living
species and each internal node represents a branching event in which an ancestral
species diversified into daughter species. Every internal node is thus the root of
its associated subtree which consists of all its descendant nodes. Phylogenetic tree
topology encodes information on evolutionary mechanisms which is beginning to be
scrutinized (Blum and François, 2006; Burlando, 1990, 1993; Ford, 2006; Hernández-
Garćıa et al., 2007; Herrada et al., 2008).
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Figure 3.1. Mean depth 〈d〉 of trees in TreeBASE (circles) as a function of number of
leaves n. Squares are obtained from computer simulations of the ERM model, behaving as
Eq. (3.1) for large n. At large sizes, the depth in the real phylogenetic trees scales with the
number of leaves faster than the ERM behavior. For both real phylogenies and model, depth
values for each tree size are obtained by logarithmic binning of the depth of all trees and
subtrees with that size.

The earliest mathematical model of evolutionary branching was proposed by
Yule (1925). Apart from the distinction he introduced between genera and species
diversification, the model is equivalent to the Equal Rates Markov (ERM) model
(Cavalli-Sforza and Edwards, 1967; Harding, 1971): starting from a single ancestral
species, one among the tree leaves existing at the present time is chosen at random,
bifurcating into two new leaves. Then this operation is repeated for a number of time
steps or, equivalently, until the tree reaches a desired size. The topological charac-
teristics of the constructed trees are surprisingly robust, being shared by apparently
different models such as the coalescent and others (Aldous, 2001b). Essentially what
is needed is that different branches at a given time branch independently and with
the same probabilities. When extinction is taken into account, the same topology is
recovered when considering only the lineages surviving at the final time. One of the
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a) b)

c) d)

Figure 3.2. Examples of trees with 32 leaves, generated from several models. a) Tree
generated with the ERM model, which is equivalent to the alpha model with α = 0. b) The
completely unbalanced tree, which is equivalent to the alpha model with α = 1. c) A tree
generated with the alpha model for α = 0.5. d) A tree generated with the activity model for
p = 0.5. The trees in c) and d) display an imbalance intermediate between a) and b).

characteristics of this type of branching is a distribution of subtree sizes A scaling
at large sizes as A−2, an outcome robustly observed in many natural and artificial
systems and in classification schemes, including taxonomies (Burlando, 1990; Cal-
darelli et al., 2004; Capocci et al., 2008). Another important characteristic is that
the mean depth of the tree 〈d〉 (i.e. the average distance, measured in number of
links, from the leaves to the root) scales logarithmically with the number of leaves
n:

(3.1) 〈d〉 ∼ log n .

It is worth noting that these results apply not only to many random branching
models, but also to the simple deterministic Cayley tree, in which all internal nodes
at a given level split in a fixed number of daughter nodes.

In view of this generality it was surprising to find that the topology of observed
phylogenies does not agree with any of these predictions (Herrada et al., 2008). In
fact, it was known since some time ago that real phylogenies are substantially more
unbalanced than predicted by the ERM and similar models (Aldous, 2001b; Blum
and François, 2006). This means that some lineages diversify much more than oth-
ers, in a way that is statistically incompatible with the ERM predictions. Figure
3.1 compares data (Herrada et al., 2008) compiled from TreeBASE, a public repos-
itory containing several thousands of empirical phylogenetic trees corresponding to
virtually all kinds of organisms in Earth, with the predictions of the ERM model.
For the phylogenetic trees at large sizes the mean depth scales with the number of
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leaves faster than the ERM behavior in Eq.(3.1).

The breakdown of the ERM behavior indicates that evolutionary branching
should present correlations either in time or between the different branches. Mech-
anisms producing trees with non-ERM scaling for the depth have been identified,
as for example the situation of critical branching (De Los Rios, 2001; Harris, 1963)
or optimization of transport processes (Banavar et al., 1999). In the phylogenetic
context models of this type have been proposed (Aldous, 2001b; Blum and François,
2006; Ford, 2006; Pinelis, 2003), although most of them lack a clear interpretation
in biological terms.

In the following we present results for two branching models showing asymp-
totically non-ERM, i.e. non-logarithmic, scaling for the depth. Their study is moti-
vated, on the one hand, by the empirical results above from real phylogenetic trees.
On the other, they pertain to the small set of available models with non-ERM scal-
ing which are defined dynamically (i.e. by a set of rules that are applied to the
present state of a growing tree to find the state at the next time step) rather than
being characterized globally by statistical or optimization prescriptions. The first
model we present, Ford’s alpha model, is a simple example for which the non-trivial
asymptotic scaling (of the power law type) has been analytically identified. We
analyze it numerically to confirm this prediction and to display the behavior at fi-
nite sizes. We introduce later a new model, the activity model, which also leads to
non-logarithmic depth scaling at a critical parameter value.

3.2 Ford’s alpha model

Ford (2006) introduced a model for recursive tree formation: At a given step in
the process the tree is a set of leaves connected by terminal links to internal nodes,
which are themselves connected by internal edges until reaching the root (the root
itself is considered to have a single edge, which we count as internal, joining to the
first bifurcating internal node; with this convention a tree of n leaves has n − 1
internal edges). Then, a probability of branching proportional to 1 − α is assigned
to each leaf, and proportional to α to each internal edge. By normalization these
probabilities are, respectively, (1−α)/(n−α), and α/(n−α). When a leaf is selected
for branching, it gives birth to a couple of new ones, as in the ERM model. But
when choosing an internal edge, a new leaf branches from it by the insertion in the
edge of a new internal node. For α = 0 we have the standard ERM model. For α = 1
the completely unbalanced comb tree, in which all leaves branch successively from
a main branch, is generated. Intermediate topologies are obtained for α ∈ (0, 1).
Figure 3.2 shows examples of trees generated for different values of α.

By considering the effect of the addition of new leaves on the distances between
root and other nodes, Ford (2006) derived exact recurrence relationships which, when
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Figure 3.3. Depth statistics vs tree size for the alpha model. Symbols indicate the
mean depth of leaves from root, averaged over the 100 trees generated for each size (2k,
k = 3, 4, ..., 15), and the error bars are the corresponding standard deviations. The points
in the rugged lines come from each subtree of all trees generated. The dashed segments
indicate the analytic predictions (Ford, 2006) for the scaling at large n. The inset highlights
the logarithmic scaling of the α = 0 case.

written in terms of the average depth, lead to:

(3.2) 〈d〉n+1 =
n

n− α
〈d〉n +

2n(1− 2α)

(n+ 1)(n− α)
.

〈d〉n is the mean depth of the leaves of a tree with n leaves. By assuming a behavior
〈d〉n ∼ nν at large n, and expanding Eq. (3.2) in powers of 1/n, we get ν = α, so
that

(3.3) 〈d〉n ∼ nα , if 0 < α ≤ 1 .

If α = 0 the standard ERM behavior, Eq. (3.1), is recovered.

Figure 3.3 shows numerical results for the depth of trees generated with this
model. Note that the predicted asymptotic behavior is attained but only at very
large tree sizes, in general sizes much larger than the tree sizes of the examples shown
in Fig. 3.2 and of the available empirical phylogenies. As analytically demonstrated
(Ford, 2006) depth statistics of subtrees of given size extracted from a large tree
behave as data from trees of that size directly generated by the alpha model algo-
rithm.

While the Ford model gives a simple mechanism for scaling in trees with a
tunable exponent, the dynamical rule of posterior insertion of inner nodes is hard
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to justify in the context of evolution (although one can think on the modelling of
errors arising in phylogenetic reconstruction methods when incorrectly assigning a
splitting to a non-existing ancestral species). This motivates the introduction of a
new model described in the next section.

3.3 Activity model
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Figure 3.4. Average depth versus size for the activity model for various values of the
activation probability p. Data points displayed by symbols give the average distance of
leaves with respect to the root. Error bars give the standard deviation taken over different
realizations (1000 trees per data point). Data in the rugged curves are for all subtrees of
trees with size 221 = 2097152. The dashed line represents a power law scaling with exponent
1/2, corresponding to the scaling of the p = 0.5 curve, as discussed in the text.

In this section we show that tree shapes distinct from the ERM model may also
result from a memory in terms of internal states of the nodes. The activity model
proposed here is conceptually similar to the class of models suggested by (Pinelis,
2003). However, the present model distinguishes only between active and inactive
nodes and has a single parameter controlling the spread of activity.

Starting from a single node (the root), a binary tree is generated as follows.
At each step, a leaf i of the tree is chosen and branched into two new leaves. Each
of the two new leaves, independently of the other, is set active with probability p or
inactive with probability 1−p. The branching leaf i is chosen at random from the set
of active leaves if this set is non-empty. Otherwise, i is chosen at random from the
set of all leaves. Figure 3.4 shows that for p = 1/2 the model generates trees with
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mean depth growing as the square root of tree size (note the log-log scale). Figure
3.2 displays a small-size example of such trees. For values of p below or above 1/2,
〈d〉 seems to increase logarithmically with n.

Here we give a simplified argument to understand the observed exponent 1/2
of the distance scaling with system size in the case p = 1/2. At the time the growing
tree has n leaves in total, let Da(n) be the expected sum of distances of active leaves
from the root, and Db(n) the analogous quantity for the inactive leaves. When
a randomly chosen active leaf –at distance da from root– branches, the expected
increase of Da(n) is

∆Da(n) ≡ Da(n+ 1)−Da(n) =

p2(da + 2) + 2p(1− p) · 1 + (1− p)2(−da)
= (2p− 1)da + 2p .(3.4)

Here the three terms of the second line are for the activation of two, one and zero of
the new leaves, respectively. This expression is appropriate as far as the number of
active nodes is not zero. Simultaneously, the expected change in Db(n) during the
same event is

∆Db(n) =

p2 · 0 + 2p(1− p)(da + 1) + (1− p)22(da + 1)

= 2(1− p)(da + 1) .(3.5)

We now average ∆Da(n) over the different choices of the particular active leave that
has been branched. This amounts to replacing da in the above formulae by 〈da〉n,
the average depth of the active leaves in a tree of n leaves. Writing Di(n + 1) =
Di(n) + ∆Di(n), for i = a, b, one would get a closed system for the quantities
Di(n) provided 〈da〉n is expressed in terms of them. This can be done by writing
〈da〉n = Da(n)/a(n), where a(n) is the expected number of active leaves in a tree of
n leaves. This expected value is used here as an approximation to the actual number
of active leaves.

The recurrence equations for Di(n) are specially simple in the most interesting
case p = 1/2, since the dependence in 〈da〉n disappears from one of the equations:

Da(n+ 1) = Da(n) + 1(3.6)

Db(n+ 1) = Db(n) + 〈da〉n + 1 .(3.7)

The solution (with initial condition Da(1) = 0) of Eq. (3.6) is simply:

(3.8) Da(n) = n− 1 .

Since the probabilities of an increment or decrement (by one unit) of the number of
active leaves are the same and time-independent for p = 1/2, the number of active
nodes performs a symmetric random walk with a reflecting boundary at 0 (this last
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condition arises from the prescription of setting active one node when the number
of active nodes has reached zero in the previous step). For such random walk the
expected value of active leaves a(n) increases as the square root of the number of
steps. Since a new leaf is added at each time step, this leads to:

(3.9) a(n) ∼ n1/2 .

Combining (3.8) and (3.9) we obtain the average distance of active nodes from root
at large tree sizes:

(3.10) 〈da〉n ≈
Da(n)

a(n)
∼ n1/2 .

Now we can plug this result into Eq. (3.7), which can be solved recursively:

(3.11) Db(n) = Db(1) +
n−1∑
t=1

(〈da〉t + 1) ∼
n−1∑
t=1

t1/2 ∼ n3/2 .

The totally averaged depth 〈d〉n, which counts both the active and the inactive
leaves, is

(3.12) 〈d〉n =
Da(n) +Db(n)

n
∼ n1/2 + n3/2

n
∼ n1/2 ,

which explains the asymptotic behavior observed in Fig. 3.4 for p = 1/2.

We note that the growth dynamics presented here may be mapped to a branch-
ing process (Harris, 1963), with the difference that here the death (inactivation) of a
node does not lead to its removal from the tree. The special case p = 1/2 corresponds
to a critical branching process.

3.4 Discussion

We have presented and studied two simple models which lead to non-logarithmic
scaling of the tree depth. In contrast with many of the available models having this
behavior (Aldous, 2001b; Banavar et al., 1999; Blum and François, 2006; Ford, 2006)
they are formulated as dynamical models involving growing trees, so that rules are
given to obtain the tree at the next time step from the present state. Their study
has been motivated by data from phylogenetic branching, and they are interesting
additions to our present understanding of complex networks and trees.

A recent analysis of several evolutionary models including species competition
(Stich and Manrubia, 2008) indicates that in these models correlations are finally
destroyed by mutation processes and persist only for a finite correlation time. Thus
sufficiently large trees would have a scaling behavior closer to the asymptotic ERM
predictions. Since the largest phylogenies in databases such as TreeBASE have
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only some hundreds of leaves, it is possible that the observed imbalance and depth
scaling is a finite-size regime. Nevertheless models going beyond the ERM scaling
are needed at least to explain this finite-size regime, and also to elucidate the true
asymptotic scaling behavior. Here, we have also observed large finite-size transients
in the alpha model of Sect. 2.

The different types of scaling of depth with size can be interpreted as indicating
different values of the (fractal) dimensionality of the trees. This is so because 〈d〉 is a
measure of the diameter of the tree, and because for a binary tree the total number of
nodes is simply twice the number of leaves. Since the simplest definition of dimension
D of a network (Egúıluz et al., 2003) is given by the growth of the number of nodes as
the diameter increases, n ∼ 〈d〉D, power law scaling of the type 〈d〉 ∼ nν indicates
that the tree can be thought as having a dimension D = 1/ν. The logarithmic
scaling in the ERM model is an example of the small-world behavior common to
many network structures (Albert and Barabási, 2002), which is equivalent to having
an effective infinite dimensionality, whereas the power law scaling reveals a finite
dimension for the tree, which implies a more constrained mode of branching. The
alpha model produces trees with tunable dimension from 1 to ∞, and the critical
activity model gives two-dimensional trees.

The final aim of the modelling of phylogenetic trees is to provide biological
mechanisms explaining the branching topology of the Tree of Life. In this direction,
the branching of internal edges in the Ford model has no obvious biological interpre-
tation. The activity model puts the mechanisms of birth-death critical branching
(Harris, 1963) within a framework of transitions between node internal states sim-
ilar in spirit to the approach of (Pinelis, 2003). The need to tune a parameter to
attain the non-ERM critical behavior is however a limitation for its applicability.
Much additional work is needed to identify the proper biological mechanisms behind
evolutionary branching and adequate modelling of them.
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4
Might an Age Dependent
Branching Model Help Us to
Understand Macroevolution?

Abstract1: Understanding the rules of macroevolution remains a fundamental topic
of biological research. Phylogenetic trees serve as an estimated macroevolutionary
relationship structure, usually obtained directly from molecular data. In this work,
we first analyse TREEBASE and PANDIT databases for tree imbalance and find
scaling behavior with tip (species) number n, which has not been explained yet by
branching models with biological interpretation. We then propose a one-parameter
family of branching models in which the branching probability depends on the age
of the species. We investigate it analytically and computationally, exploring the
transitions among different behaviors. We identify a member of the family produc-
ing imbalance scaling as log2 n, in good agreement with the behavior found in the
databases.

4.1 Introduction

The evolution of life has been one of the most intriguing fields in science at least since
the publication of Darwin’s On the Origin of Species (Darwin, 1859). Traditionally,
the research field of biological evolution has made a sharp distinction between mi-
croevolution and macroevolution (Erwin, 2000). Microevolution deals with changes
occurring within a species or small group of organisms in comparably short time.
Availability of vast empirical datasets has allowed extensive and systematic research
of microevolutionary processes. Macroevolution is the long-term dynamics of the
set of species. Species cease to exist (extinction) when the reproduction is inhib-
ited by environmental pressure. New species come into existence by diversification

1The content of this chapter are part of Murat Tuğrul, Stephanie Keller-Schmidt, Vı́ctor M.
Egúıluz, Emilio Hernández-Garćıa and Konstantin Klemm, work in progress
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(speciation) of existing ones.

Following the concept of vertical evolution, the speciation throughout the his-
tory can be presented as a tree where tips are extant species and internal nodes
are speciation events. The real tree representing the history of life is not observ-
able itself, except for some estimation from fossil data which is open to scientific
controversies. However, phylogenetic methods reconstruct trees of evolutionary rela-
tionship between a number of present-day species, proteins, etc. by using molecular
data from them. The resulting trees are generally binary trees and named phy-
logenetic trees. Scrutinizing these structures is useful to elucidate properties of
macroevolution (Barraclough and Nee, 2001; Reznick and Ricklefs, 2009).

From the mathematical point of view, a tree is a graph (or network) without
cycles. One of the notions characterizing the topology of a tree is its balance,
meaning its degree of left-right symmetry.

There are many databases of such reconstructed (estimated) evolutionary trees
available today and the balance of the trees have been analysed in the litera-
ture (Blum and François, 2006; Herrada et al., 2008). To our knowledge, the balance
characteristics of phylogenetic trees have not been explained yet by a biologically
inferred model and thus remains as a gap in evolution research.

It is important to note that there are discussions on the possible non-biological
effects contained in reconstruction results (i.e. artifacts from estimation techniques,
incompleteness of the trees, decisions of phylogeneticists, etc.; see references (Mooers
and Heard, 1997) or (Barraclough and Nee, 2001) for a detailed discussion). How-
ever, we leave these discussions out of this paper and consider the observed balance
scaling as a property of the diversification structure throughout the evolutionary
history on earth.

Therefore, we seek biologically inspired models of growing trees that exhibit
a similar balance scaling for both finite and asymptotic sizes (assuming that this
scaling is universal, i.e. occurring at all tree sizes, even very large ones). In partic-
ular, we propose an age dependent branching model (hereafter called Age Model).
We investigate the model by both numerical and analytical means and show that
it reproduces the balance scaling in observed phylogenetic trees for a particular pa-
rameter value. In the concluding section we discuss age dependent branching as a
novel interpretation of the shapes of phylogenetic trees and as potential principle of
macroevolution.

4.2 Characterizing Tree Balance

Several indices for balance measurement have been proposed, used and compared in
the literature (see References (Agapow and Purvis, 2002; Matsen, 2006; Mooers and
Heard, 1997) for detailed discussion). After the reported comparison of the indices
by (Agapow and Purvis, 2002; Matsen, 2006), considering the possibility of use in
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Figure 4.1. The mean depth vs. size of phylogenetic trees contained in databases of species
(TREEBASE) and proteins (PANDIT) (black dots) displayed. The results are also binned
in powers of 2 and averaged as shown as a blue dashed line. In this scale, the behavior
〈d〉 ∼ log n would be a straight line. Note that there are points under the symmetric tree
line, which corresponds to the minimum possible depth for binary trees. This is so because
the displayed symmetric tree line is for binary trees, and some polytomies occur in the data
sets (more apparent in PANDIT).

polytomies, and most importantly, for the sake of a clear biological meaning and
an easy-to-derive analytical tool for models, we analyse here the mean depth of the
tree, or 〈d〉 (Sackin, 1972) being the average number of ancestor nodes from tips to
the root, i.e.

(4.1) 〈d〉 = (
n∑
i=1

di)/n

where di is the depth, i.e., the number of ancestors, of tip i, and n is the total
number of tips in tree.

In the present work we reexamined the phylogenetic databases TREEBASE
(containing species phylogenies) and PANDIT (protein phylogenies) by using 〈d〉 as
seen in Figure 4.1. The mean depth scaling is clearly not logarithmic, which is the
outcome of the Equal Rate Model (ERM) or from a completely symmetric tree. It
is neither linear as occurring for perfectly imbalanced trees. It displays instead a
behavior of the type 〈d〉 ∼ (log n)q with q ∼ 2.



36 Chapter 4.

4.3 The Age Model

We introduce here a model to construct a binary tree starting from a single node,
the root. Time is considered to be incremented at discrete steps of duration ∆t. At
a given time, each tip or leaf i is assigned an age τi(t) which is the time passed from
the birth of the tip, ti, to present time t, i.e. τi = t− ti. Two new tips, representing
a pair of new species arising in a speciation event from an existing leave, i, are
added to the tree after each time increment ∆t. The particular tip i suffering this
speciation event is chosen with probability proportional to the inverse of its age
raised to a power, α which is a parameter of the model:

(4.2) pi(t) =
c(t)

(τi)α
, α ∈ R.

c(t) is the normalization constant:

(4.3) c(t)−1 ≡
n∑
i=1

(τi)
−α,

which depends on time and, in principle, also on the particular stochastic set of
ages τ1, ..., τn assigned to the tips of the tree, of size n, grown up to time t. Since
we allow α to be positive and negative, the probability of choosing a tip may be
both a decreasing or an increasing function of its age, but it will be shown that the
empirical results are recovered for a particular positive value of α, namely α = 1,
which means a branching probability decreasing with age. Note that if α → ∞
the youngest tip is always chosen for branching, leading to the comb-like tree. If
α→ −∞, it is the oldest one which is always chosen, leading to a tree as symmetric
as possible under the present rules.

We will consider first the case in which time increments are constant (∆t = 1,
so that t in fact is equivalent to the number of species n; we assume that the root
speciates at time t = ∆t = 1) and later the case ∆t = 1/n, which corresponds to the
more realistic setting of a number of speciation events proportional to number of
species in a constant time interval. Some of our results do not require to specify ∆t
as a function of time or of species number, so that the arguments could be applied
to rather general cases.

4.4 Mean Depth Scaling

4.4.1 Numerical approach

Mean depth scaling for the age model defined in the previous section was first ob-
tained numerically by averaging over 100 simulations for each value of α. Figure 4.2
is for ∆t = 1 and Figure 4.3 is for ∆t = 1/n. The main result of the figures is that
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Figure 4.2. Figure shows the model’s mean depth scaling (∆t = 1) for different α values
(solid lines) in comparison to real phylogenetic trees (TREEBASE and PANDIT, blue dashed
lines). Note that the scale of the plot is such that log n seems to be straight line.

the scaling for α = 1 is 〈d〉 ∼ log2n in both cases (with different prefactors) and are
in good agreement with the scaling behavior observed in the databases. The log2 n
scaling of mean depth is mentioned in (Blum and François, 2006) in the context of
the AB model, already stressing its aggreement to estimated data. When moving
away from the α = 1 case, the mean depth scaling rapidly goes in the direction of
the behavior of the comb tree (mean depth scaling linear with n) for α > 1, and
to that of symmetric trees (〈d〉 ∼ log n) for α < 1. Simulations for larger tree sizes
are plotted in Figure 4.4 (b = 0.0 cases), supporting that the asymptotic behavior
of the model for α = 1 is 〈d〉 ∼ log2 n.

We checked the sensitivity of the inverse dependence pi ∝ 1/τi (α = 1) by
replacing it with pi ∝ (τi + b)−1 where b is a constant. The results can be seen
in Figure 4.4. Only for large values of b deviations from the log2 scaling are evi-
dent (more important for the ∆t = 1/n case) so that the model is quite robust to
perturbations of the 1/τi branching probability dependence.

4.4.2 Analytical Approach

The simulation results above can be captured by some analytic arguments. The
premise is that the average path from the tips to the root, which consists of 〈d〉
(mean depth) branches, is made of branches whose ages are approximated by their
expected value at time t. In terms of t(〈d〉), the time at which the expected mean
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depth 〈d〉 occurs, which is the function inverse of 〈d〉 = 〈d〉(t), this is written as:

(4.4) t(〈d〉)− t(〈d〉 − 1) = 〈τ〉t(〈d〉) .

〈τ〉t(〈d〉) is the expected age of the tip chosen at time t(〈d〉). When 〈d〉 � 1 the
difference can be approximated by a derivative:

(4.5)
dt

d〈d〉
= 〈τ〉t(〈d〉)

We can now write the above expression in terms of n instead of t. For ∆t = 1,
t = n, so that

(4.6)
dn

d〈d〉
= 〈τ〉n

or equivalently

(4.7)
d〈d〉
dn

= [〈τ〉n]−1.

For ∆t = 1/n, t =
∑n

k=1 1/k ≈ log n+ γ+ . . . for big n (γ is the Euler constant), so
that dt/dn ≈ 1/n. Therefore:

(4.8)
dn

d〈d〉
= n 〈τ〉n

or equivalently

(4.9)
d〈d〉
dn

= [n 〈τ〉n]−1.

We stress that the above expressions are valid for large 〈d〉 and n. More in general,
for an arbitrary sequence of increments ∆t(n), n = 1, 2, ..., we have t(n+1)− t(n) =
∆t(n). For large n and t, we can approximate the difference by a derivative, leading
to dt/dn ≈ ∆t(n), so that (4.5) implies that the mean depth scaling will be given
by

(4.10)
d〈d〉
dn

=
∆t(n)

〈τ〉n
.

Now, we only need to estimate the behavior of 〈τ〉n, the average age of the
chosen-tips as a function of n to determine the mean depth scaling of model. The
expected number of tips having an age τ at time t is denoted by m(τ, t). This t
should be considered as the time just before a branching occurs from n to (n + 1)
tips.

Therefore, at time t

(4.11) n =
∑
τ

m(τ, t).
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Considering that only those 2 tips which were just added ∆t time ago have an age
∆t, all other tips increase their age by ∆t if they were not chosen for branching,
and the chosen one has disappeared, then we can write recursive expressions for the
expected number of tips of given age:

(4.12) m(τ, t) =

 2 if τ = ∆t(
1− c(t−∆t)(

τ−∆t
)α)m(τ −∆t, t−∆t) if τ > ∆t

The above expressions are for expected values, and in writing them we have
assumed that the normalization factor c(t) from (4.3) depends only on time, and
not on the particular set of tip ages τ1, ..., τn, i.e. we have used the mean value

(4.13) [c(t)]−1 =
∑
τ

m(τ, t)τ−α,

which is a good approximation to (4.3) when there is a sufficiently large number of
tips.

Expressions (4.12) and Eq.(4.13) can be iterated to obtain the tip age distri-
bution for any n.

Now, we can write the average chosen-tip age in terms of m, (4.2) and (4.13):

(4.14) 〈τ〉t = c(t)
∑
τ

m(τ, t)τ−α+1 .

The numerical evaluation of this expression for the values of m(τ, t) obtained recur-
sively before are shown in Figure 4.5 for our two elections of ∆t.

We can understand the observed numerical behavior analytically, at least for
the case ∆t = 1. The main point is that, as revealed by extensive solutions of the
recurrence equations, the dependence on τ and t = n of m(τ, t) at large n converges
to the scaling form:

(4.15) m(τ, n) = q(x = τ/n)

Note that x = τ/n ∈ [1/n, 1), and for large n we can approximate it to be a
continuous variable. Also, q(x = 1/n) = m(1, n) = 2 and q(x = 1) = m(t, t) = 0.
Equations (4.11), (4.13), and (4.14) become, respectively:

(4.16) 1 =

∫ 1

1/n

q(x)dx,

(4.17) [c(n)]−1 =

∫ 1

1/n

q(x)n−α+1x−αdx,

and

(4.18) 〈τ〉n = c(n)

∫ 1

1/n

q(x)x−α+1n−α+2dx .
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tips, obtained from the recursive Eq. 4.14.

The behaviour of these quantities as n → ∞ can be elucidated by analysing
the small-x behaviour of the integrand, and the fact that since q(x = 1/n) = 2, q(x)
remains finite as x→ 0. The result is

(4.19) c(n) ∼


nα−1 if α < 1
(log n)−1 if α = 1
constant if α > 1

and

(4.20) 〈τ〉n ∼


n if α < 1
n

logn
if α = 1

n2−α if 1 < α < 2
log n if α = 2
constant if α > 2

This analysis is in good agreement with both simulations and recursive expres-
sions as given in Figures 4.5 and 4.6.

Remembering Eq.(4.7) we conclude

(4.21) 〈d〉 ∼


log n if α < 1
(log n)2 if α = 1
nα−1 if 1 < α < 2∫
dn/ log n if α = 2

n if α > 2
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and from direct simulation (points). Note that they agree with the approximate analytical
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We see that the aging model with α = 1 has a scaling behavior consistent
with the reconstructed trees in databases. Note that the known behavior of the
symmetric tree and of the comb tree are correctly recovered in the α → −∞ and
α→∞ limits, respectively.

4.5 Discussion

In macroevolutionary context, our model can be classified in a modeling scheme
where species are units of dynamics (Erwin, 2000). In other words, species are taken
as the smallest interacting bodies with some properties and due to those properties
they are selected for speciation or extinction, like individuals in population genetics.
For example, the geographical range is mentioned as an inheritable species’ property
in reference (Erwin, 2000). If an age property of species exists, then our model
becomes a null-model in the sense that it explains the structure of the speciation
(in the sense of balance scaling of the phylogenetic trees) with one parameter.

An additional interesting point of analysis and comparison of phylogenetic
tree shape might be branching lengths distributions. TREEBASE and PANDIT
do not contain this sort of data. However, even though our model is explicitly
related to this quantity we have not intended here such comparison. The main
reason of that branch length data are not as reliable as the topological structure
of phylogenetic trees (Barraclough and Nee, 2001). This argument is supported in
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reference (Pigolotti et al., 2005) by summarizing the variety of behaviors of distribu-
tions found in the literature. We believe future studies will yield more reliable data
for branching length, in other words lifetime of species, and therefore our model will
be able to be judged further for its branching length distribution.

One of the main questions in phylogenetic studies is how often speciation
occurs. This is analysed by plotting the number of lineages versus evolutionary
time (Barraclough and Nee, 2001). In our model, this is actually an input for
determining ∆t; it is linear (n = t) for ∆t = 1 and exponential (n = et for big n)
for ∆t = 1/n. This ingredient of model can be further altered, e.g. ∆t = f(t, n),
and estimated results can be obtained.
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Egúıluz and Konstantin Klemm. “Simple Models for Phylogenetic Trees”, to
appear in IJBC, arXiv:0810.3877 [q-bio.QM].
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