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In this paper we study the formation and dynamics of self-propelled cavity solitons �CSs� in a model for
vertical-cavity surface-emitting lasers �VCSELs� subjected to external frequency-selective feedback and build
their bifurcation diagram for the case where carrier dynamics is eliminated. For low pump currents, we find
that they emerge from the modulational instability point of the trivial solution, where traveling waves with a
critical wave number are formed. For large currents, the branch of self-propelled solitons merges with the
branch of resting solitons via a pitchfork bifurcation. We also show that a feedback phase variation of �2� can
transform a CS �whether resting or moving� into a different one associated to an adjacent longitudinal external
cavity mode. Finally, we investigate the influence of the carrier dynamics, relevant for VCSELs. We find and
analyze qualitative changes in the stability properties of resting CSs when increasing the carrier relaxation
time. In addition to a drifting instability of resting CSs, a distinctive kind of instability appears for certain
ranges of carrier lifetime, leading to a swinging motion of the CS center position. Furthermore, for carrier
relaxation times typical of VCSELs the system can display multistability of CSs.
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I. INTRODUCTION

In recent years, there has been significant progress in the
experimental �1,2� and theoretical �3,4� studies of self-
localized states in vertical-cavity surface-emitting lasers
�VCSELs� subject to frequency-selective external optical
feedback �FSF�. These systems are attractive from an experi-
mental point of view because they can be implemented with
basically off-the-shelf optical components, and they do not
require an optical holding beam to support self-localized so-
lutions, also known in this context as cavity solitons �CSs�.
These systems are known as cavity soliton lasers because for
certain parameter regions laser emission takes place only in
localized structures. An important property of this system is
its invariance under phase transformations. Hence each CS is
a member of a continuous family of phase-equivalent local-
ized structures. Further, for the same parameters there may
be several families of CSs with different frequencies. In con-
trast, localized structures in driven-cavity systems are phase
and frequency locked to the holding beam.

There are many possible applications of CSs �5�, but we
will emphasize here only the most relevant one for the con-
tents of this article, namely, an optical delay line or shift
register. This element is essential in communication systems
for delaying pulses when routing several sequences of bits.
This function was proposed to be implemented on the basis
of spatially drifting CSs �6�, where the drift of CSs was
caused by a gradient of the system parameters. Thus, one can
inject a sequence of pulses at one transverse position and
read out a copy of this sequence at another position at some
later time �delay time of the shift register�.

In contrast with gradient-induced CS motion, the possibil-
ity of self-motion was shown in a holding beam system �7�
with thermal effects. Spontaneous motion of vortices in la-
sers and laser amplifiers with saturable absorption has been
also studied in �8�. In a previous work �4� we have shown the

existence of two-dimensional �2D� self-propelled CSs in a
VCSEL with FSF, even without thermal effects. This is an
alternative mechanism to induce motion in delay lines. Since
no parameter gradient has to be imposed and controlled,
there is, in principle, no limit to the drift distance and hence
delay time of the shift register. Since CSs moving in the
transverse direction can be reflected by the boundaries of the
device �9�, the delay line can be folded, enabling longer
paths for a given VCSEL aperture and therefore improving
the delay-bandwidth product.

In this paper we analyze in detail the bifurcation diagram
of self-moving solitons elucidating the conditions for the ap-
pearance of motion in the one-dimensional �1D� case. In
comparison with �4� here we address the role of the feedback
phase, which plays an important role in determining the
longitudinal-mode frequency of the CS. For a given feedback
phase several CS solutions with different frequencies �asso-
ciated to adjacent external cavity modes� are found to coex-
ist. For each solution, sweeping the feedback phase allows to
change continuously the frequency of the CS. Applying a 2�
sweep in the feedback phase shows a smooth transition from
one CS solution branch to the adjacent one. The number of
coexisting solutions increases with the delay time. We also
investigate the role of the carrier dynamics, which was ne-
glected in �4�, and analyze its influence on the stability of
CSs. In particular we show the existence of a swinging in-
stability in which the position of the CS maximum starts to
perform growing oscillations near the initial position.

The paper is organized as follows. In Sec. II we discuss
the system and the models considered. In Sec. III we de-
scribe the properties of self-propelled CSs and formulate the
equations for their semianalytical calculation using a Newton
method. In this section we present also the bifurcation dia-
grams of moving and resting solitons explaining their con-
nection with the stability properties of the nonlasing back-
ground solution and discussing the relation between the 1D
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and the 2D problems. In Sec. IV we study the possibilities of
controlling the solitonic states by varying the feedback phase
and show the coexistence of multiple states, both moving
and resting. In Sec. V we study the influence of the carrier
dynamics, leading to the swinging instability and to the sta-
bilization of resting solitons. Finally, in Sec. VI we give
some concluding remarks.

II. SYSTEM AND MODEL

Following �1–4�, we consider the setup sketched in Fig. 1,
where light is fed back to the VCSEL after being filtered in
frequency. The polarizer allows feedback only for the lin-
early polarized field component that is dominant in the soli-
tary laser so that the field can be treated as a scalar.

The dynamics of the complex envelope of the electrical
field E�x , t�, the filtered feedback field F�x , t�, and the carrier
number N�x , t� can be described by

�
�E

�t
= ��1 + i���N − 1�E − i��E + F + i�sE

dF

dt
= − �F + �ei	�E�t − 
�

dN

dt
= �� − �N�1 + �E�2�

� , �1�

where � is the decay rate of the field in the cavity; � is the
linewidth enhancement factor describing phase-amplitude
coupling; � is the pump current normalized to be 1 at the
threshold of the solitary laser; ��= �2

�x2 describes diffraction;
and �= 1

T1
is the carrier relaxation rate. The filter is consid-

ered to have a Lorentzian frequency response �10–12�, and
its central frequency is taken as reference. Hence, �s is the
frequency of the axial mode of the solitary laser at threshold
�N=1�. The other filter parameters are � as the feedback
strength, 	 as the feedback phase, 
 as the delay time in the

feedback loop, and � as the filter bandwidth.
Eliminating the carriers adiabatically model �1� reduces to

�
�E

�t
= ��1 + i��� �E

1 + �E�2
− E	 − i��E + F + i�sE

dF

dt
= − �F + �ei	�E�t − 
� � .

�2�

For a fixed feedback phase 	=0 this was the model consid-
ered in �4�. We will use this simplified model in Sec. III to
determine the bifurcation diagrams of moving and resting
solitons as well as in Sec. IV to discuss the role of the feed-
back phase. While the simplified model allows for easier
calculation, the typical relaxation times of the system are in
fact �−1
0.01 ns, �−1
0.2 ns, and T1
1 ns �throughout
this paper time is measured in nanoseconds�. Since the car-
rier density is the slowest variable, adiabatic elimination of
the carriers is not fully justified. Nevertheless, as discussed
in Sec. V where we address the influence of the carrier dy-
namics by considering full model �1�, the reduced model
correctly predicts the existence of moving and resting stable
CSs, albeit with slight changes in the parameter regions
where they are observed.

III. RESTING AND MOVING CAVITY SOLITONS

We consider in this section simplified model �2� for feed-
back phase 	=0, as in �4�. Figure 2 shows the marginal
stability curves for the trivial solution E=0. This solution is
stable for small pump values �below line D in the figure�. At
�=�D=1−� /�=0.4 it becomes unstable to perturbations
with the frequency of the filter maximum and with a finite
transverse wave number. For values of the pump between
lines D and B the formation of a complex spatiotemporal
regime is observed. For pump values in between line B and
the thick line at �
1 the trivial solution is stable again. In
this region, which we will call gap region, we observe the
spontaneous formation of self-localized states, both resting
CSs and self-propelled CSs �4�. In the 1D case, we observe
the formation of self-propelled CSs for almost all the values
of the pump in the gap region whereas in the 2D case this
region splits in 3 subregions: �a� close to B, where moving
2D CSs are excited, �b� intermediate values, where resting
2D CSs are observed, and �c� values closer to 1, where no
solitons can be excited �4�.

The system is invariant under translational and global
phase transformations, and thus the operations E�x�→E�x
+x0� and E�x�→E�x�ei
0 transform solutions in solutions. So
there is a whole family of CSs, which have the same distri-
bution of the far-field absolute value �E�k��. The members of
the family are identified by two continuous parameters, their
location and global phase. Moving solutions break the left-
right symmetry of the system so that two equivalent families
of self-propelled CSs exist, one with a positive kmax moving
to the left and its specular image with negative kmax and
moving to the right.

FIG. 1. �Color online� Scheme of the system. F1 and F2 are the
focal lengths of the first and second lenses, respectively.
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The spatial distribution of a self-propelled 1D CS for �
=0.65 is shown in Fig. 3. The near field is characterized by
an exponential spatial localization. The far field shows a
typical cascade of energy from small to large wave numbers
due to nonlinearity. The far field is centered off-axis �at
kmax=−2.54 in Fig. 3� and is asymmetric. We note that the
part of the far field to the right of the maximum is smoother
than the left part. Self-propelled CSs move at a constant
velocity, which is proportional to −kmax.

The residual level at �10−16, both in the near and far
fields, is indicative of the numerical precision. The spatial
profile of the soliton shown in Fig. 3 has been obtained from
numerical integration of Eq. �2� where the initial condition
breaks the left-right degeneracy. As for the numerical inte-

gration, we should note that accurate results are difficult to
obtain using usual finite difference methods because large k�

transverse modes lead to the presence of very high frequen-
cies, and hence they require very small temporal steps. For
the numerical integration we have used the two-step pseu-
dospectral method described in the appendix of �13�, where
in Fourier space the linear part of the equations is handled
analytically, thus avoiding the problem with the high fre-
quencies associated to high wave numbers due to diffraction.
Nonlinear terms are evaluated in real space. The pseudospec-
tral method can be easily adapted to equations with delay
such as the ones considered here. We have taken the tempo-
ral stepsize much smaller than all the characteristic times of
the system, and we have verified that the selected stepsize
allows to reproduce correctly the threshold of the back-
ground instability predicted by the linear stability analysis
and the threshold of the drifting instability obtained by the
Newton method described below.

One of the main objectives of this work is, however, to
compute the whole branch of self-propelled states, including
the region where they are unstable; hence, we need to imple-
ment a Newton method, similar to what was done for resting
2D solitons in �4�, for moving solutions. We will seek solu-
tions of the form

�E�x,t� = Eo�x + vt�ei�t

F�x,t� = Fo�x + vt�ei�t
 . �3�

Substituting Eq. �3� into Eq. �2� we have the following equa-
tions:

�−
�E0

�x�
v + �− ��1 + i�� + i�s − i��E0 + ��1 + i���

E0

1 + �E0�2
+ i

�2E0

�x�2 + F0 = 0

−
�F0

�x�
v − i�F0 − �F0 + �ei	�E0�x� − v
�e−i�
 = 0 � , �4�
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FIG. 2. �Color online� Marginal stability curves of the nonlasing
state in the VCSEL with external feedback. The inset shows the
frequencies of the modes that become unstable between lines D and
B in the main figure. The gray �cyan� curve corresponds to the
boundary of excitation of external cavity modes with frequencies
close to �=0 �the filter maximum�. Line A corresponds to value of
the pump at which the marginal instability curve gray �cyan� inter-
sects the axis k�

2 =0. The thin dark �red� curve corresponds to the
boundary of excitation of the two modes at either side of the domi-
nant mode with frequencies �
 �

2�

 
 �1.25 �the boundary is

practically the same for both modes for the parameters considered
here�. The thick black line corresponds to the excitation of modes
with frequencies close to those of the solitary laser. The circles
represent the square of the wave number of the far-field maximum
for self-propelled 1D CSs. Stable localized solutions can exist in the
region between line B and the thick black line in which the trivial
solution is stable. Parameters: 	=0, �=60, �=5, �=2.71, 
=5,
�s=250, and �=100.
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FIG. 3. Shape of moving 1D CSs: �a� near field, �b� far field, �c�
near field in semilogarithmic scale, and �d� far field in semilogarith-
mic scale. Parameters are the same as in Fig. 2 and �=0.65.
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where x�=x+vt is the spatial coordinate in the moving ref-
erence frame. In Fourier space,

F0�k�� = F�F0�x��� , �5�

E0�k�� = F�E0�x��� , �6�

F�E0�x� − v
�� = eik�v
E0�k�� , �7�

the set of differential Eq. �4� is transformed into a set of
algebraic equations. The second equation is linear and can be
solved directly,

F0�k�� =
�ei	�ei�k�v−��


� + i�� + k�v�
E0�k�� , �8�

leading to a single equation for the field E0,

AE0�k�� + BF� F−1
„E0�k��…

1 + �F−1
„E0�k��…�2

� = 0, �9�

where

A = − ��1 + i�� + i��s − � − k�v − k�2�+
�ei	�ei�k�v−��


� + i�� + k�v�
,

�10�

B = ��1 + i��� . �11�

Equation �9� is analogous to Eq. �3� of �4� for stationary
solutions, while it also supports more complex solutions, like
self-propelled CSs. In practice Eq. �9� is solved numerically
by discretizing k� in n values, which leads to a set of 2n
coupled equations. There are 2n+2 unknowns �E0�ki�� �i
=1, . . . ,n�, v, and �� and two constraints associated to the
translational and global phase invariance. This set can be
solved using a Newton method starting from an initial guess
prepared by direct integration of Eq. �2�. At each Newton
iteration, imposing that in the moving frame the location of
the CS does not change allows for the determination of v.
Similarly imposing that the global phase does not change
allows for the determination of �. Equivalent solutions can
be obtained by applying a translation or a global phase
change. The specular family of self-propelled CSs can be
obtained just by reflection. Furthermore, once a precise so-
lution for a given set of parameters is obtained, it is possible
to build the full branch of 1D self-propelled CSs for different
parameter values using continuation methods.

The branch of 1D self-propelled CSs is displayed in Fig. 2
as circles indicating the square of the wave number of the
far-field maximum kmax. A bifurcation diagram showing the
maximum amplitude of resting and self-propelled CSs is
shown in Fig. 4. The dependence of the frequency �, square
of the velocity v2, and spatial width of 1D self-propelled CSs
on the pump current is shown in Fig. 5. On one side the
branch starts from pump current �=�D, where self-propelled
CSs appear with zero amplitude �Fig. 4� and with a kmax
which coincides with the critical transverse wave number of
the zero solution �intersection of line D and gray �cyan�
curve in Fig. 2�. Furthermore, self-propelled CSs originate

with a negative detuning with respect to the filter central
frequency �see Fig. 5�a��, with a finite velocity �Fig. 5�b��
and with an infinite width �Fig. 5�c��. This last characteristic
is similar to the appearance of resting CSs in points A and B
of Fig. 4 �see also �4��. The shape of self-propelled CSs close
to point D is displayed in Fig. 6 for �=0.405. The real part
of the field performs many oscillations within a HWHM of a
sechlike envelope. The fact that the width diverges while the
oscillation wave vector remains finite �corresponding to the
critical wave number of the zero solution� does not allow to
follow the branch close to bifurcation point just by rescaling
the spatial length scale. It requires an increase in number of
discretization points �2048 points were used in our 1D cal-
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FIG. 4. �Color online� Bifurcation diagram of the homogeneous
solutions �dotted green curve�, 1D-resting CSs �dash-dotted red
curve�, 2D-resting CSs �solid blue curve�, and 1D self-propelled
CSs �circles�. �Emax� corresponds to the maximum field amplitude
for localized structures and to the field amplitude for the homoge-
neous solution. The vertical dash-dotted �blue� lines are the bound-
aries of the stable and unstable regions of the trivial solution corre-
sponding to B and D and �=1 in Fig. 2. Parameters are the same as
in Fig. 2.
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FIG. 5. �Color online� �a� Dependencies of the frequency, �b� the
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�HWHM� of the 1D self-propelled CS on the pump current. Vertical
lines D and M� mark the starting point and the end of the branch
respectively.
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culations�. As might be expected, it can be proved analyti-
cally that in this limit the moving CS is an envelope soliton
of the critical traveling-wave solution and moves with its
group velocity.

The moving-CS branch in Fig. 2 defines only existence
and says nothing about stability. It is clear that the entire
section of the branch below line B must correspond to un-
stable CS because of instability of the zero-amplitude back-
ground state. Above line B, we find numerically that the
moving cavity solitons are usually stable, though those asso-
ciated with sidebands may show instability �see Sec. IV�.

It is worthwhile to emphasize that the motion of localized
states is connected with the modulational instability of the
background leading to traveling waves with a finite critical
transverse wave vector. This suggests a way of eliminating
the drifting instability of resting solitons by removing the
finite wavelength instability. This can be done by varying the
detuning �s, which shifts the critical transverse wave vector
along the k� axis �see �3��. If instead we want to enhance the
self-propelled solitons �increase the velocity� we need, then,
to increase the critical wave number.

Increasing the pump, the value of �kmax
2 � and the associated

value of �v�, decrease �see Figs. 2 and 5�b��. Simultaneously,
the self-propelled CS becomes narrower �Fig. 5�c��, taller
�Fig. 4�, and its frequency approaches the one of the filter
�Fig. 5�a��.

The branch of self-propelled CSs ends at point M�, where
the moving solution merges with the resting one �Fig. 4�. In
fact, at M� a drift pitchfork bifurcation takes place. Decreas-
ing �, two stable self-propelled CSs with velocities v and −v
originate from the resting CS that becomes unstable. The
squared variables, v2 and kmax

2 , scale linearly from zero with
the distance to the bifurcation point �see Figs. 2 and 5�b��, as
expected for a supercritical pitchfork.

Finally, some remarks on the 2D case are in order. In 2D,
self-propelled CSs can move in any arbitrary direction. The
drift is associated to an asymmetric cross section along the
direction of motion while the section in the orthogonal
�transverse� direction is symmetric. Due to the lack of rota-
tional symmetry, finding the branch of self-propelled 2D CSs
using a Newton method as above requires solving a full 2D
problem. This is too demanding computationally for us to
obtain a bifurcation diagram to compare with the 1D case.
Some 2D results may be inferred, however. Beyond the rest-
ing and self-propelled 1D CSs, Fig. 4 also shows the resting
2D CS branch �solid �blue� curve� and the homogeneous
solutions �dotted �green� curves� from �4�. Comparing the

curves for the 1D and 2D cases one may expect that the 2D
self-propelled CS branch will start at the same point D, with
zero amplitude, infinite width, finite velocity, and wavelength
equal to the critical transverse wave number of the zero so-
lution. Increasing the pump, self-propelled 2D CSs will be-
come narrower and their speed will decrease. The branch of
self-propelled 2D CS ends at point M in Fig. 4, where it
merges with the resting CS branch. Point M has been ob-
tained from numerical simulations of Eq. �2� for the 2D case
�4�. The natural extension of the drift pitchfork bifurcation
observed in 1D to 2D is a 2D drift circle pitchfork bifurca-
tion �14� in which a CS moving in an arbitrary direction
originates while the resting CS becomes unstable.

IV. CS CONTROL VIA FEEDBACK PHASE

In the previous sections we have discussed the properties
of model �2� with a fixed feedback phase. However, in de-
layed systems, the variation in this parameter leads to tran-
sitions between adjacent external cavity modes �16,17�.
Therefore we consider here the influence of feedback phase
	 on the solitonic branches in model �2�. In Fig. 7 the solid
lines show the branches of resting 1D CSs as a function of 	.
The branches have an elliptical shape. The part of the branch
with larger amplitude, and lower frequency, is associated to
external cavity modes, while the opposite part is associated
to antimodes, saddle points �18� that act as separatrices in
phase space. Consider, for instance, the branch shown as a
thick line. At 	=0 the higher amplitude CS Z1 is stable while
the lower amplitude CS Z2 is a saddle. As the feedback phase
is varied, the amplitude and the frequency of the CS change
continuously. The branch covers a feedback phase interval
larger than 4�. Since the feedback phase is 2� periodic, for
some values of the feedback phase six solutions exist, while
for others there are only four, as is clear from Fig. 7�b�.
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FIG. 6. Shape of a moving 1D CS close to bifurcation point D
of Fig. 4. �a� Near-field amplitude �solid thick line� and its real part
�solid thin line�; �b� far-field amplitude. �=0.405.
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FIG. 7. �Color online� Bifurcation diagram of 1D CSs as a func-
tion of the feedback phase 	: �a� maximum amplitude; �b� fre-
quency. The solid thick curve �blue online� corresponds to resting
CSs; the open �filled� circles correspond to the unstable �stable�
self-propelled CSs. The vertical dashed lines correspond to 	=0
and 	= �2�. From the 2� periodicity, translating the thick curves
gives the set of equivalent gray curves. Here �=0.6 and the other
parameters as in Fig. 2.
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For example, for 	=0, resting CSs Z3, Z4, Z5, and Z6 exist
in addition to Z1 and Z2. The coexisting “mode” states �Z1,
Z3, and Z5� have significantly different frequencies, with a
separation approximately of 2� /

1.25, similar to the fre-
quency separation of the marginal instability curves in Fig. 2.
The coexisting antimodes for a given phase are also associ-
ated to neighbor external cavity antimodes �Z2 to the central,
Z4 to the high-frequency one and Z6 to the low-frequency
one�.

Changing continuously the feedback phase by �2� trans-
forms a CS solution into a different one, associated to an
adjacent longitudinal external cavity mode. For example, in-
creasing 	 from 0 to 2� transforms Z1 into Z3. We cannot
speak here of multistability because most of these resting
solitonic states are unstable for the parameters we have con-
sidered. We will show below, however, that these unstable
states can be stabilized by the effect of the carrier dynamics
in model �1�, leading to bistability and apparently to multi-
stability.

Figure 7 also shows the branch of self-propelled CSs.
Open �filled� circles indicate unstable �stable� solutions. For
simplicity we have not plotted here the equivalent solutions
obtained for a 2� shift in the feedback phase. As in the case
of resting solitons, there can be multiple moving states and,
moreover, they can be bistable because the interval of feed-
back phases where they are stable is slightly broader than
2�.

Finally Figs. 8 and 9, show two examples of the dynamics
of the system starting from an initial condition just above the
lower unstable CS branch in Fig. 7�a�.

In the first case �Fig. 8� we start the simulation with an
initial condition just above point Z2 in Fig. 7�a�. We observe
first a slow evolution away from the lower unstable CS to
form a transient approximation to the unstable state Z1. We
note that Z1 differs from initial state in both amplitude and
frequency. Then the amplitude and frequency switch to those

of the stable self-propelled CS corresponding to the filled
�red� circle intersecting the vertical dashed line 	=0 in Fig.
7�a�. Such evolution is typical for feedback phase values for
which the only stable CS state is the self-propelled CS and
for initial conditions above the lower branch solitonic states.

There is a second scenario, typical for values of the feed-
back phase for which both the resting and moving upper-
branch CSs are unstable. An example is shown in Fig. 9.
Starting just above the point Z6 the system approaches Z5 and
then starts oscillating with a large amplitude before switch-
ing off completely. This long transient excursion, for a per-
turbation just above the CS lower branch, is an indication of
excitable behavior since perturbations just below this thresh-
old decay directly to the zero solution. The period of the
oscillations is close to 
, as might be expected, which indi-
cates that more than one longitudinal mode is excited. Ini-
tially, it seems that there is a beating of the two CS modes Z5
and Z1, but in the later stages the sharpness of the spikes
�both dark and, latterly, bright� indicates transient locking of
at least three CS modes.

V. INFLUENCE OF CARRIER DYNAMICS

In this section we address the influence of the carrier life-
time on the dynamics of the system, which is typically very
important in semiconductor laser media. For this, we use Eq.
�1� instead of the simplified version �Eq. �2��, studied in
previous sections. The resting solitons are actually solutions
of both models �2� and �1� because the adiabatic elimination
of the carriers does not influence these steady states. As a
prototypical example to study the effects of the carrier dy-
namics on the CS, we will analyze how the stability of state
Z1 of Fig. 7 changes with the carrier relaxation time T1.

For small enough values T1�T1
a=0.085�0.001, the be-

havior of Eq. �1�, starting from the solitonic state Z1, differs
from the behavior of Eq. �2� only quantitatively; i.e., we
observe in both cases the transition from a resting to a self-
propelled CS. Figure 10 shows this dynamics for T1=0.05,
which can be compared with the middle and final part of Fig.
8 where a soliton started from Z2 first evolves toward Z1 and
then starts to move.
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FIG. 8. �Color online� Dynamics of system �2� for an initial
condition just above the point Z2 of Fig. 7�a�. �a� Time-space plot,
where the vertical direction is x and the horizontal direction is time
on the same scale as in panel �b�. White corresponds to large am-
plitude, black corresponds to zero. �b� Time evolution of the CS
maximum amplitude.
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FIG. 9. �Color online� Dynamics of the system, plotted as in
Fig. 8, for an initial condition just above the point Z6 of Fig. 7�a�.
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For T1�T1
a, the drifting instability is transformed into a

swinging instability, where the CS starts to perform spatial
oscillations around its initial position �see Fig. 11�a��. There
are several physical mechanisms that may contribute to this
behavior. One is delay that in combination with the motion
of the structure gives a positive feedback at the rear part of
the CS, slowing down the motion, and possibly causing the
oscillations. Another one is the slow relaxation of the carri-
ers, which also opposes the unidirectional movement of the
CS. The oscillations in space are also accompanied by inten-
sity oscillations of the maximum �Fig. 11�b��. The amplitude
of the oscillations grows initially and then evolves in a com-
plex manner before the CS finally switches off. The full qua-
siperiod of the oscillations is again close to 
, indicating
multimode behavior, though there are two “maximum
maxima” per period, and hence two oscillations in Fig. 11�b�
per feedback time. Swinging, followed by switch off, is ob-
served for an interval of carrier relaxation times between T1

a

and T1
b=0.791�0.001.

For carrier relaxation times larger than T1
b state Z5 be-

comes stable, and the swinging instability of the state Z1
leads to the birth of a pair of solitonic states Z5, as shown in

Fig. 12. Finally, for T1�T1
c =1.885�0.005 state Z1 is stable.

Moreover, state Z5 remains stable, so therefore in this region
there is bistability between two resting CSs with different
amplitude, which is not found in Eq. �2�.

For the chosen value of the detuning �s, and typical val-
ues of T1, self-propelled self-localized states disappear. How-
ever increasing the detuning, which reinforces the drifting
instabilities as discussed in Sec. III, we observe stable self-
propelled 1D CSs for Eq. �1� for T1=1, �s=200, and �
=0.8, with the other parameters as in Fig. 2. We note that this
value of T1 is typical �19,20� for carrier relaxation in VC-
SELs.

Summarizing this section, carrier dynamics plays a really
important role in the evolution of the system. For relatively
long carrier lifetimes it allows bistability of resting CSs in
parameter regimes where it is not present in Eq. �2�. In an
intermediate range of lifetimes it can lead to a new “swing-
ing” CS instability, which in turn may lead to “CS fission.”

VI. FINAL REMARKS

We have studied in detail the formation of self-propelled
localized solutions in a cavity soliton laser composed of a
VCSEL subject to filtered external optical feedback. These
states are potentially useful for applications such as all-
optical delay lines �6�. Our results have been obtained for
systems with one spatial dimension, but evidence of a quali-

0 100 200 300 400 500
0.7

0.75

0.8

t

|E
m

ax
|

(b)

FIG. 10. �Color online� Dynamics of system �1�, plotted as in
Fig. 8, starting from an initial condition corresponding to the point
Z1 of Fig. 7. Here T1=0.05.
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FIG. 11. �Color online� The same as in Fig. 10 for T1=0.5.
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FIG. 12. �Color online� Dynamics of the system with the same
parameters as in Figs. 10 and 11 except that T1=1. �a� Space-time
plot of the field amplitude for time interval �750;1000�. �b� Evolu-
tion of the CS maximum amplitude; �c� location of the CS maxi-
mum; the split signals the birth of two states; and �d� evolution of
the instantaneous CS frequency �=Arg�Emax�t� /Emax�t−�t�� /�t,
all for time interval �0;3500�.
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tative agreement with the more realistic 2D case is given.
The self-propelled soliton branch has been constructed by

solving with a Newton method the stationary equations in the
reference frame moving with the soliton. The branch origi-
nates from the modulational instability bifurcation point of
the trivial solution where tilted waves appear with the critical
wave number. Apparently, amplitude modulation of the tilted
wave leads to the existence of self-propelled CSs in such
systems. We have also shown that the characteristics of CSs
can be controlled via the feedback phase and the existence of
multiple localized solutions associated to different external
cavity modes.

We have analyzed the influence of the carrier relaxation
time on the properties of the solitonic states. It has been
shown that increasing T1 leads to the stabilization of resting
solitonic states. This opens the possibility of observing mul-
tistability of CSs. For intermediate values of the carrier re-
laxation time we have observed a distinctive kind of insta-
bility leading to the oscillation of the position of the CS and,

for larger T1, to the formation of two identical solitons at
different positions.

Finally, we should mention that the models used here still
represent only a rather rough approximation to experiment.
The complexity of real devices is much higher, involving
different spatial mechanisms such as carrier diffusion �21�,
gain and loss dispersion �22�, thermal frequency shift �23�,
and multiple round-trips in the external cavity �24–26�.
Simple models such as ours are, nonetheless, useful for un-
derstanding fundamental features of basic phenomena such
as self-propelled solitons and swinging instabilities.

ACKNOWLEDGMENTS

We acknowledge financial support from MICINN �Spain�
and FEDER �EU� through Grants No. FIS2007-60327
FISICOS and No. TEC2006-10009 PhoDeCC. We are grate-
ful to T. Ackemann and N. N. Rosanov for useful discus-
sions.

�1� Y. Tanguy, T. Ackemann, and R. Jäger, Phys. Rev. A 74,
053824 �2006�.

�2� Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, Phys. Rev.
Lett. 100, 013907 �2008�.

�3� P. V. Paulau, A. J. Scroggie, A. Naumenko, T. Ackemann, N.
A. Loiko, and W. J. Firth, Phys. Rev. E 75, 056208 �2007�.

�4� P. V. Paulau, D. Gomila, T. Ackemann, N. A. Loiko, and W. J.
Firth, Phys. Rev. E 78, 016212 �2008�.

�5� www.funfacs.org
�6� F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J.

R. Tredicce, T. Ackemann, A. J. Scroggie, W. J. Firth, G.-L.
Oppo, G. Tissoni, and R. Jager, Appl. Phys. Lett. 92, 011101
�2008�.

�7� A. J. Scroggie, J. M. McSloy, and W. J. Firth, Phys. Rev. E 66,
036607 �2002�.

�8� N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, Appl. Phys.
B: Lasers Opt. 81, 937 �2005�.

�9� F. Prati, K. Mahmoud Aghdami, G. Tissoni, M. Brambilla, and
L. A. Lugiato �unpublished�.

�10� M. Giudici, L. Giuggioli, C. Green, and J. R. Tredicce, Chaos,
Solitons Fractals 10, 811 �1999�.

�11� M. Yousefi and D. Lenstra, IEEE J. Quantum Electron. 35,
970 �1999�.

�12� A. P. A. Fischer, O. K. Andersen, M. Yousefi, S. Stolte, and D.
Lenstra, IEEE J. Quantum Electron. 36, 375 �2000�.

�13� R. Montagne, E. Hernández-García, A. Amengual, and M. San
Miguel, Phys. Rev. E 56, 151 �1997�.

�14� The circle pitchfork bifurcation has been described, for ex-
ample, in the context of a two species reaction diffusion model
�15�.

�15� M. Kness, L. S. Tuckerman, and D. Barkley, Phys. Rev. A 46,
5054 �1992�.

�16� M. Wolfrum and D. Turaev, Opt. Commun. 212, 127 �2002�.
�17� B. Tromborg, J. H. Osmundsen, and H. Olesen, IEEE J. Quan-

tum Electron. 20, 1023 �1984�.
�18� S. H. Strogatz, Nonlinear Dynamics and Chaos with Applica-

tions to Physics, Biology, Chemistry, and Engineering �Persues
Books, Reading, MA, 1994�.

�19� Semiconductor Quantum Optoelectronics: From Quantum
Physics to Smart Devices, Proceedings of the Fiftieth Scottish
Universities Summer School in Physics, St. Andrews, June
1998, edited by A. Miller, M. Ebrahimzadeh, D. M. Finlayson
�Scottish Universities Summer School in Physics & Institute of
Physics, Edinburgh, 1999�.

�20� B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics
�John Wiley and Sohns, New York, 1991�.

�21� P. V. Paulau, I. V. Babushkin, and N. A. Loiko, Phys. Rev. E
70, 046222 �2004�.

�22� N. A. Loiko and I. V. Babushkin, J. Opt. B: Quantum Semi-
classical Opt. 3, S234 �2001�.

�23� A. Naumenko, N. Loiko, M. Sondermann, K. Jentsch, and T.
Ackemann, Opt. Commun. 259, 823 �2006�.

�24� P. Besnard, B. Meziane, K. Ait-Ameur, and G. Stephan, IEEE
J. Quantum Electron. 30, 1713 �1994�.

�25� C. Etrich, A. W. McCord, and P. Mandel, IEEE J. Quantum
Electron. 27, 937 �1991�.

�26� A. J. Scroggie, W. J. Firth, and G.-L. Oppo, Phys. Rev. A 80,
013829 �2009�.

PAULAU et al. PHYSICAL REVIEW A 80, 023808 �2009�

023808-8


