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The excess energy or enthalpy in thermodynamically unstable solutions relaxing towards equilib-
rium is related to properties of the cluster distribution. We thus infer a general scaling 4nsatz and
the simultaneous occurrence of two mechanisms during the system evolution, both in agreement
with data. We also find two different classes of phase points, and propose a graphical method to
analyze these matters in microcalorimetric measurements.
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Many homogeneous binary mixtures suddenly
brought into a two-phase region may become thermo-
dynamically unstable thus undergoing phase separa-
tion. The kinetics of these processes can be analyzed
in some cases by monitoring the structure function
S(k,p), where k is a wave vector and ¢ the time since
quenching.! S(k,» reflects, in a way which is not
quite understood yet, the behavior of the cluster or
droplet distribution, #;(#), with the cluster size / and
with ¢ while phase separation occurs. When the mean
cluster radius or some other characteristic length R (¢
becomes weli defined, say when T << T, so that the
correlation length is rather irrelevant, and ¢ > ¢ (a
transient time which is a function of T and composi-
tion), universal features are observed during the sys-
tem relaxation.!=> Namely, S(k,0) =R (0)3*F(kR (D),
where F is a rather universal function.> Whereas this
scaling behavior has attracted some theoretical atten-
tion, !5 more work needs to be done in order to clarify
the range of validity of both the scaling of S with time
and the universality of Fand to generalize these prop-
erties to physical quantities other than the structure
function. In this Letter we relate the structure func-
tion, cluster distribution, and system excess energy,
make some specific predictions concerning scaling and
universality which seem well confirmed by experimen-
tal data, and give a simple graphical method to analyze
microcalorimetric measurements and computer-gener-
ated data. We also infer the simultaneous presence of
two different mechanisms during the system evolution
and its significance.

For the sake of simplicity we shall refer here to the
lattice-gas model system with a Kawasaki stochastic
hopping dynamics! where the N (= L3) sites of a sim-
ple cubic lattice with periodic boundary conditions, at
positions r;,, i=1,...,N, hold occupation variables
n(r;) = +1, —1 according to whether there is a particle
or a hole at site i The number of particles,
pN=(1-79)N/2, N=3m(r;), remains constant

]

2,7 (08 (k1) = 7 (L/2m) (/DK dk j (k) S, o),

during the system evolution. The system configura-
tional energy is defined as

E(t) = _%ELJJU"”(’i’t)n(rj’t)'

Here J;; > 0 so that it represents a ‘‘ferromagnetic” in-
teraction leading to decomposition below T, into a
liquid phase (*‘large’ clusters, say / > [) surrounded
by a gas phase (monomers, dimers, etc. up to /< /,).

The structure function can be related to the energy
via an equation which was essentially written before by
Binder?:

E()=—3[3,T(k)S(k,1)+ NnJ(0)]. (1)

Here
J(k)=3, Jyexplik- (r;— 1)1

The simplest interaction corresponds to J;=J when i
and j are nearest neighbors and J;=0 otherwise; it
then follows that

J (k) =J(k)/2J =cosk, +cosk, +cosk,, j(0)=3,

and the excess energy AE()=E(t)—E(o0) can be
written as

AE(0)/JIN

=— @) IN1 3, j (k) S (k) =31, (2)

where 7, is the value of 7 at the coexistence line,
Si1(k,0)=[S(k,t)~S.(k, T)I(52—n» "1,

with S, (k,7) the equilibrium structure function at the
coexistence line and S,;(k, o) =N5(k), a Dirac delta
function, for a macroscopic system. Note that S;(k,t)
aims to represent that part of the structure function
which corresponds to the liquid phase. Now we may
use spherical averages in (2); assuming isotropic con-
ditions and replacing the sum by an integral we have

(3)

where the cutoff is x =2xw. Here j(k) =23k " 'sink for 0=k =<2, and a rather complicated expression for
k > 2, but the latter is irrelevant here given that S;(k,#) is typically very small for k > 27 after a very short ini-
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tial time; S, (k) was discussed by Lebowitz, Marro, and Kalos.®
The scaling behavior with time may be expressed as

Sl(kt)=Jg(f)F(X) x=kRg(1),

where Rg(1) is the scalmg length obtained by following the Guinier method described in Ref. 3. Real and com-
puter experiments>® have shown that the scaling function F(x) decreases rather sharply for x > 1 to a very small
value [F(x) =0 in practice for x > 3]. Also, as ¢ increases, R () — constX L with L the linear dimension of the
system. We thus expect that, by substitution of (3) and (4) in (2), one may write approximately after some initial

t> i, (4)

regime
Jc;( ?)

AE(D) _ o _
N 12(0—p—p)p—p)|1— R3 (D
where p.=(1—7.)/2. The integral here normalizes

to a constant, R (00)/Jg(oo), since AE(t)— 0 as
t— oo. Moreover, the ratio Jg(9/RE (#) is propor-
tional® to the number of particles in the liquid phase,
Nlp—p(9)] where p(#) represents the density of the
gas phase at time #, so that it follows that

AE(t)IN=120—p,—p)lp()—p.]. (6)

This fundamental relation can be checked against
Monte Carlo (MC) data; these support indeed a linear
relation between E(f) and p(7) as shown by Fig. 1.
Note that the prefactor in Eq. (6) is only roughly con-
firmed here because the data are very sensitive to our
definition of liquid and gas phases in terms of the cut-
off [. (which should probably depend on temperature
and density).

To exploit the consequences of Eq. (6) we may write
the density p(9) of the gas phase in terms of a renor-
malized fugacity’ w(¢) such that

IC
p(8) = Diw ()0 (1—p)".
I1=1

Here Q, represents a ‘‘cluster partition function™
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FIG. 1. The negative of the energy obtained in a MC

computation as a function of the density of the gas phase
(/= 10) showing the linear dependence obtained in Eq. (6).

Yy
B ey el et sl &
\Qg

T

[
N

J; ax xR (), (5)

which only depends on /and T,® k1=3.25, k,=4.5,
ky=35, and /= 3. p, satisfies a similar equation with
w(?) replaced by wy, its equilibrium value. These two
magnitudes can be related via the usual assumption
w(D=wl1+(B~10], with f(8~1)— 0 when
t— oo and B depending on p and T. Reference 7
makes the extra assumption that f(8~ e« t~V3 but
this is not necessary here. We thus have

Iw(D/wl'=[1+ BN =1+ 1r(B" 10
and it follows that
E()/IN=af(B" 1), @)

where « and B are density- and temperature-
dependent parameters. The scaling relation (7) is what
was essentially observed in the microcalorimetric mea-
surements reported before’; the above derivation thus
provides a simple explanation of an interesting general
behavior which seems well confirmed by experiments.
This agreement also provides further indirect evidence
for some assumptions involved in our discussion in
this paragraph which are of interest in nucleation
theory.”

In order to study deeply the above results, we shall
analyze the relevance of two mechanisms!'® during the
system temporal evolution. Phase separation is said to
occur by Smoluchowski coagulation or effective cluster
diffusion* when the clusters diffuse through the sys-
tem, meet, and coalesce Ostwald ripening or monatom-
ic diffusion, 1 on the other hand, corresponds to the sit-
vation where clusters grow (or shrmk) via single-atom
processes, the growth being competitive in the sense
that (in a steady-state condition) the largest clusters
grow at the expense of the smaller ones. These
mechanisms can be seen®’ to imply an approximate
behavior AE(t)~t'b with characteristic exponents

=—é— and =+ 5 respectively in three dimensions. Using
b —-— 12 instead of b = % would not modify our main
concluswns in the following. Also, the consideration
of hydrodynamic interaction leads to » =1 but, as one
should expect, this is definitely inconsistent with the
data here. Thus we shall simply write, assuming that
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both mechanisms can occur simuitaneously in the sys-
tem,

AE(D =yt~ 3+ y, 1~ V6 (8)

where y; and y, will eventually be allowed a simple
dependence on time to account for the possibility that
the two mechanisms may vary their relative impor-
tance with time; y; and vy, are then expected to take
on constant values for relatively small ¢ and for very
large ¢ Note that Eq. (8) shows an unsatisfactory
behavior for r— 0 but this is rather irrelevant to our
purpose here because the data always show untypical
behavior during the very initial regime of the evolu-
tion as a result of finite temperature of homogeniza-
tion, memory effects, etc.

The behavior of Eq. (8) is made explicit in Fig. 2
where the data come from a MC calculation and from
some microcalorimetric measurements on alloys (see
Ref. 9 for details). Figure 2 confirms our expectation
about constant values for y; and y, when ¢ is large
enough and when ¢ is small enough. It also shows a
maximum corresponding to a rather sharp transition
between initial and final regimes which seem respec-
tively dominated by effective cluster diffusion and
monatomic diffusion. Note however that there is no
time regime in Fig. 2 where only one of the mecha-
nisms occurs; this fact explains the usual failure!®
when one makes log-log plots looking for a single ex-
ponent to describe the whole or part of the temporal
evolution. The same statement probably holds for
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FIG. 2. The solid lines represent the two hyperbolas
which correspond approximately to the two classes, deep and
shallow quenches, with different dynamical behavior. The
respective origins and principal axes are also shown; the an-
gles denoted by 1 and 2 are respectively 92.9° and 96.5°.
The data and corresponding scaling factors are as follows:
MC data at 0.597, and p =0.20 (crosses, a=1, 8=1), MC
data at 0.59T, and p=0.10 (circles, a=2.597, 8=0.567),
Al-Zn alloy at 0.597,, 6.8 at.% (triangles, o =187 J/mol,
B=312s), Al-Zn alloy at 0.597T,, 10 at.% (asterisks, o =266
J/mol, 8=119s).
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other quantities such as the moments of the structure
function or cluster distribution. The shape of the
curve in Fig. 2 also seems in contradiction with the
speculation of Furukawa!? that wvarious growth
mechanisms occur intermittently.

The plot in Fig. 2 is also convenient to demonstrate
the kind of scaling derived before, Eq. (7), and to
analyze some other open questions. As a matter of
fact, a similar plot in Ref. 9 seems to indicate that the
phase points inside the coexistence curve for the lat-
tice model described before and for a number of
aluminum alloys can be grouped into two different
classes, corresponding to different shapes of the curve
in Fig. 2, showing differences in their system dynam-
ics. In order to be able to elucidate this important
point (by stimulating new microcalorimetric studies)
we propose a graphical method which should also pro-
vide clear evidence for the properties (7) and (8).

The method requires a set of data as an (arbitrary)
reference; let us take for this purpose the data ob-
tained by MC calculations applied to the lattice model
evolving at T/7.=0.59 with p=0.20. These data,
when ploited as in Fig. 2, show a maximum at
X,,=2.33 +0.03, Y,,=1.24 £0.02 in the (nondimen-
sional) MC units and can be fitted quite well by
the hyperbola X%/ C+ Y%/ C$=1 with C;=0.450,
C,=0.521, the origin at (2.410,1.690), and the axis
rotated —92.9°. We believe that, in analogy with the
situation in Ref. 6 where the data corresponding to the
structure function are analyzed, this curve is represen-
tative of a class of phase points with similar dynamical
behavior which will be termed deep quenches. In con-
trast, shallow quenches, which can be represented, for
instance, by the MC data at T/ T,=0.59 and p=0.10,
seem to behave slightly differently, namely, they are
fitted instead by a hyperbola with C;=0.306,
C,=0.328, the origin at (2.435,1.542) and the axis ro-
tated an angle —96.5°; see Fig. 2.

Any experimental data concerning measurements of
the excess energy can thus be compared with those hy-
perbolas in order to analyze the range of validity of the
above results, particularly (7) and (8), and whether
one can indeed distinguish between deep and shallow

- quenches, a question related to the problem of meta-

stability. To this end one may make a plot of the ex-
perimental data in terms of the reduced variables
E*=o~'E and t*=pB"1t, where « and B are scaling
parameters (dependent on T and p) such that the
curve AE*(*)V3 versus (£*)V6 has its maximum at
(X,,, Y, ). Figure 2 includes two examples which show
the typical order of magnitude of the scaling parame-
ters @ and 8. Note that Fig. 2 is indeed strong evi-
dence in favor of the simultaneous occurrence of both
mechanisms of evolution, effective cluster diffusion
being initially dominant while monatomic diffusion
seems to play the most important role during the final
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regime t*= 160 +20, and in favor of the scaling An-
satz (7) with a ‘“‘universal” function £ The function f
can be represented (excluding very small ¢) as in Eq.
(8), or by the mentioned hyperbolas, and it seems to
be slightly different for deep than for shallow
quenches.

Finally, we wish to mention that our results are also
consistent with previous findings. The ordinate of the
maximum in Fig. 2, i.e., the time #* = 160 separating,
say, Smoluchowski coagulation from Ostwald ripening
type of evolution, is consistent with the time zo es-
timated in Ref. 13 for the changeover from Cahn-
Hilliard-Cook behavior to more complex, nonlinear
behavior. Moreover, our distinction between deep and
shallow quenches is also inferred in Ref. 6 from dif-
ferent data and point of view, and can be seen to be
roughly consistent with crude mean-field criteria.!*
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