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Abstract. The usual mechanism for modeling learning in spatially structured evolutionary games has to

date been imitation of some successful neighbor. However, it seems natural that individuals hesitate to

imitate their neighbor’s acts, specially if they can imply high costs. Here we study the effect of incorporating

resistance to imitation on these models. Our framework is the spatial Continuous Prisoner’s Dilemma. For

this evolutionary game, it has been reported that occasional errors in the imitation process can explain the

emergence of cooperation from a non-cooperative initial state. In this work, we show that this only occurs

for particular regimes of low costs of cooperation. Furthermore, we display how resistance gets greater

the range of scenarios where cooperative individuals can invade selfish populations. In this context, where

resistance to imitation can be interpreted as a general rule of gradual learning, our results show that the

less that is learnt in a single step from a successful neighbors, the larger the degree of global cooperation

finally attained. In general, the effect of step-by-step learning can be more efficient for the evolution of

cooperation than a full blast one.

PACS. PACS-02.50Le Decision theory and game theory – PACS-89.75Fb Structures and organization in
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1 Introduction

The evolution of cooperation has been a challenging prob-

lem since Darwin [1–5]. With sophisticated tools of game
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theory, researchers from many fields have attempted to

shed light on the underlying mechanisms that outperform

the vulnerability of cooperation of being cheated [6]. Mod-

els with spatial structures have been considered by these

researches to mimic real population where individuals do

not interact with everybody else. In these models, individ-

uals are located on the nodes of a network, play repeatedly

with their neighbors, and update their strategies by imi-

tating (with occasional errors) the strategy of some more

successful neighbor. Different update rules respond to the

same evolutionary principle of reproduction of successful

strategies [7] and are usually implemented through two

basic operators: Selection, in which individuals identify

whom to imitate, and mutation, occasional errors in the

imitation process.

Discrete-choice models, where cooperation is all or noth-

ing, do not lead mutation to generating new strategies

into the population. However in models in which individ-

uals can exhibit variable degrees of cooperation, muta-

tion can be certainly a source of generating diversity. The

study of cooperative behavior in a quantitative way rather

than a qualitative way has been crucial in dealing with the

problem of evolution and the stability of cooperation. The

first studies on this issue [8,9] considered the evolution of

degrees of cooperation by interpolating payoffs between

the discrete outcomes of the classical Prisoner’s Dilemma

model (PD). A natural approach to model variable lev-

els of cooperation was introduced later [10,11]. Iteration

and spatial structures based on continuous cooperative in-

vestment have also been addressed [12–19], [20,21] provide

a complete review of previous researches on the stability

in cooperation in variable-investment systems. Develop-

ing some of the ideas of [10], and following the classical

scheme of [22] for spatial evolutionary games, Killingback

et al. [12] introduced the spatial Continuous Prisioner’s

Dilemma (CPD). The joint consideration of continuous co-

operative investments and spatial structured populations

in their model represents an important advance in explain-

ing the evolutionary origin of cooperation [21].

The strategy update rule considered in [22] was orig-

inally designed for the discrete PD, where exact imita-

tion is the only way to update strategies. In a social and

economic context, where imitation is interpreted as learn-

ing [19], it seems natural that individuals hesitate to im-

itate exactly the investment of a neighbor. In this work

we investigate the effect of introducing some grade of re-

sistance to imitation in the spatial CPD. This resistance

leads to a process in which individuals learn step by step

from their successful neighbors. For this purpose we em-

ploy the most elemental rule that can be used: Each in-

dividual updates her investment by averaging her current

investment with the investment of her successful neigh-

bor. In adverse conditions in which costs for cooperation

are high, individuals have reason to avoid the blind imi-

tation of higher-investors, despite how successful they can

be. Counter-intuitively, we show that this wariness leads

partial learning to being more efficient than a full blast

imitation precisely in regimes of non-low costs of coop-

eration. The paper is organized as follows: In section 2,

we review the spatial CPD as well as we introduce gen-



Jiménez et al.: Gradual learning and cooperation 3

eral assumptions and the notation used throughout the

paper. In section 3, we characterize the different payoff

regimes according to the asymptotic behavior of the spa-

tial CPD. In particular, we prove that previous results

[12,?] in which it is reported that cooperation gradually

increases from a non-cooperative state correspond to par-

ticular payoff regimes that we classify as regimes of low

cost. In section 4, we introduce resistance to imitation and

explain how this mechanism operates for the maintenance

and promotion of cooperation. We also provide the condi-

tions in which higher-investment individuals can invade a

population of selfish individuals. Section 5 summaries our

conclusions.

2 The CPD in spatially structured

populations

In the CPD, if an individual, who invests x, interacts

with another, who invests y, the former receives a payoff

equal to S(x, y) = B(y) − C(x) and the latter S(y, x) =

B(x)− C(y). The function B(·) specifies the benefit that

an individual obtains from the investment made by the

other in their pairwise interaction, and the function C(·)

specifies the cost incurred by her. As standard assump-

tions, functions B(·) and C(·) are increasing and concave,

with B(0) = C(0) = 0, and B(x) ≥ C(x) for any feasi-

ble investment x [21]. In order to determine the maximal

possible investment, it is required to compute the optimal

mutual investment xmax that maximizes B(x)−C(x). In

general, for all 0 < x < y < xmax, one can verify the

inequalities shown by [12]

S(y, x) < S(x, x) < S(y, y) < S(x, y), (1)

which are continuous versions of the well known conditions

for the payoffs of the classical Prisoner’s Dilemma [17].

To avoid the problem of comparing investments in dif-

ferent scales, we only consider investments in [0,1]. For

that, it is sufficient to have xmax ≥ 1, therefore (1) holds

for any pair of investments 0 < x < y < 1.

Although the main results of this work cover general

increasing-concave functions, the simulations shown through-

out this paper are based on linear costs, namely, C(x) =

Cx, and benefit functions of the form B(x) = a[1−exp(−bx)],

with a, b > 0. These functions are typical of what might

be expected in real biological situations [23,24] and are ba-

sis functions in the literature of the CPD [12,17,19]. For

these basis functions, one has xmax = − log(C/(ab))/b,

thus, xmax ≥ 1 if and only if C < ab exp(−b). In our para-

metric analysis, we fix a and b and vary C between 0 and

ab exp(−b). One additional remark:

a
(
1− exp−bx

) → Bx, (2)

when b → 0+ and a → +∞, with ab → B < ∞. In fact,

for any investment 0 < x < 1, the convergence is very fast.

Therefore, linear benefit functions, used by [13,14], are an

interesting limit case of the basis functions and, because of

their simplicity, are especially considered in our analysis.

In the spatial CPD, individuals are placed on the nodes

of a network and recollect payoffs from their pairwise in-

teractions with their neighbors accordingly with a CPD.

The total payoff of each individual is given by the sum of
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these payoffs. At each time step, each individual updates

her investment by imitating the investment of her neigh-

bor (including herself) with the highest total payoff. Addi-

tionally, and this is an important ingredient in the model,

[12] consider occasional errors at the imitation moment

(mutations) that can change the investment. It is clear

that mutation and limited local interactions are crucial in

promoting (even to keep) cooperation in the spatial CPD.

In fact, if each individual interacts with the whole popula-

tion and there is no mutation, in the next step, each indi-

vidual always will invest the lowest value from the initial

generation. However, as occurs in the standard Prisoner’s

Dilemma on regular networks [21,25], we argue for the spa-

tial CPD that the spatial structure is capable of sustaining

cooperation only in limited cost/benefit regimes. To study

this issue, we consider the spatial CPD on a square lattice

with periodic boundary conditions, with individuals in-

teracting with their four nearest neighbors (von Neumann

neighborhood) and synchronous updating.

3 Asymptotics for different cost regimes

Let us analyze the evolution of the social network defined

in Section 2 in the simplest scenario. First, we consider

an initial condition with a single individual that invests

x < y in a group of y-individuals (individuals who invest

y) and assume no mutations. In that case, the update

rule is deterministic and we can compute analytically the

evolution of the system. More precisely:

(i) If C(y)− C(x) < (B(y)−B(x))/4, the x-individual

invades only its four nearest neighbors.

(ii) If (B(y)−B(x))/4 < C(y)−C(x) < (B(y)−B(x))/2,

the x-individual spreads over the lattice, reaching

a structure with the same shape of the cross with

sawtooth boundaries showed by [25].

(iii) If C(y)− C(x) > (B(y)−B(x))/2, the x-individual

spreads until the extinction of the y-individuals.

Assuming that cost and benefit are differentiable func-

tions, and using the fact that they are increasing and con-

cave, it is easy to establish

C ′(1)
B′(0)

<
C(y)− C(x)
B(y)−B(x)

<
C ′(0)
B′(1)

, (3)

for all 0 < x < y < 1. Thus, the quotients C ′(1)/B′(0) and

C ′(0)/B′(1) provide sufficient and necessary conditions,

regardless of the values x and y, to determine which ab-

sorbing state is reached. For all 0 < x < y < 1, from

a lattice of y-individuals, except one who that invests

x, the condition C ′(0) > B′(1)/4 is necessary for the

spread over all the lattice of the smallest investment and

the condition C ′(1) > B′(0)/4 is sufficient. Additionally,

C ′(1) > B′(0)/2 is sufficient for the extinction of the high-

est investment. In our study, we discriminate accordingly

the different payoff regimes:

– Low cost, when C ′(0) < B′(1)/4.

– Low-medium cost, if B′(1)/4 < C ′(0) and C ′(1) <

B′(0)/4.

– High-medium cost, if C ′(1) > B′(0)/4.

– High cost, if C ′(1) > B′(0)/2.



Jiménez et al.: Gradual learning and cooperation 5

For simplicity, sometimes we will not distinguish between

low-medium and high-medium costs and we refer to both

as medium costs. Notice that if the benefit is a linear func-

tion, namely B(x) = Bx, the only low-medium cost is the

linear function Cx, with C = B/4. In that case, B/4 and

B/2 are threshold values to determine the region of low,

medium and high costs.

3.1 Asymptotics from random initial conditions

without mutation

If a lower-investing individual spreads into a lattice of

higher-investing individuals), two lower-investing individ-

uals do the same. Furthermore, for high-medium costs, if

there are different low investments into a lattice of higher-

investing individuals, at least the lowest spreads over the

whole system and other low investments can locally do

the same. If the initial investments are randomly chosen,

the previous argument, and the fact that investments are

initially well-mixed on the network, allow us to conjecture

that high-medium cost is sufficient for the spreading of

lower investments from random initial conditions. On the

other hand, as we argued above, at high costs the smallest

investment always dominates the network. In contrast, if

the cost is low, the small investments do not spread on

the system and limited local interactions of the lattice

are capable of maintaining cooperation. If the cost is low-

medium, we do not provide arguments for determining the

asymptotic behavior of the system from a random initial

condition. For this reason, it is advisable to first take a

look at the linear benefit case, where low-medium costs

are reduced only to one threshold value.

The type of social network that we are studying typ-

ically reaches a steady state where the mean investment

lightly fluctuates around a value, called the asymptotic

mean investment [17,19]. Thus, the promotion or sustain-

ing of cooperation can be contrasted by comparing the

asymptotic mean investment with the initial one. Figure 1

shows the typical evolution in time of the mean invest-

ment as well as the investment configuration at the steady

state for the different cost regimes. For this illustration,

we considered the same random initial configuration, uni-

formly distributed on [0, 1] random variables placed on

the 100 × 100 lattice. For low costs, the figure displays

the previously reported clusterization of high investments

and consequent promotion of cooperation. However, the

figure also illustrates the spread of small investments for

medium cost regimes as well as the domination of the low-

est for high costs. That is, the square lattice is only ca-

pable of promoting (even sustaining) cooperation in low

cost regimes.

To have an overview of the asymptotic behavior of the

investments for different costs we considered different ba-

sis functions and varied the cost along its range. For each

parametric set, we perform simulations for 100 initial ran-

dom configurations until the steady state. Although the

asymptotic mean investment depends on the initial con-

dition, we noted that its slope, in terms of the cost, is

strongly independent. For this reason, we use the aver-

age, over the initial random conditions, as a smooth in-



6 Jiménez et al.: Gradual learning and cooperation

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

time

m
ea

n 
in

ve
st

m
en

t

Fig. 1. Time series of mean investments and configuration of the lattices at the steady state for linear benefit and low (solid

lines), medium (dashed lines) and high (bottom solid line) costs, from the same random initial investments. The figure illustrates

the typical behavior close to the threshold costs and in the middle values. The top solid lines and the first three snapshots

correspond, respectively, to low costs, {δ, 1
8
B, 1

4
B − δ}, with δ = B/1000. The dashed lines and the last three snapshots to

medium costs { 1
4
B + δ, 3

8
B, 1

2
B − δ}. The bottom solid line corresponds to high cost 1

2
B + δ (its snapshot at the steady state

is omitted, a complete black square). The gray scale used to represent the investments on the lattice is linear between black =

0 and white =1.

dicator of the relation between costs and the asymptotic

mean investment. The slope for four illustrative cases are

displayed in Figure 2. We remark that for costs above

the threshold cost B′(0)/2 = ab/2 the lowest investment

dominates the network from any random initial condi-

tions. Note that the transition between significant high

asymptotic levels of cooperation to low levels occurs in

low-medium costs, namely B′(1)/4 < C < B′(0)/4. This

transition is discontinuous if the benefit is the linear func-

tion Bx. In that case, the phase transition occurs at the

threshold cost B/4. The bifurcation of the mean invest-

ment time series around this critical cost can be observed
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Fig. 2. Asymptotic mean investment as function of the cost.

The left solid line corresponds to the linear benefit B(x) = x

and the right one to B(x) = 8x/5. Left dashed line corresponds

to the benefit function B(x) = 5(1−exp(−2x/9)) and the right

one to B(x) = 8(1− exp(−2x/9)).
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in Fig. 1, by comparing the resulting time series for costs

B/4− δ and B/4− δ, with small δ.

3.2 Asymptotic from small initial investment with

mutation

The mutation mechanism introduced by [12] corresponds

to neutral variations in the investment pool. Specifically,

they consider normal errors, at the imitation moment,

with variance equal to 10% of the expected investment.

Without mutation, the mean investment of the network

remains into the range of the initial investments. The

main result of [12] is that starting from arbitrary low in-

vestments, occasional mutations can increase the mean in-

vestment to significant levels, after a long runtime. Their

simulations are based on a parametric set that we have

characterized as low cost. Namely, B(x) = 8(1−exp(−x)),

C(x) = 0.7x, and xmax ≈ 2.4361. Performing simulations

with the same mutation rate per individual (1/100) and

modeling errors in the same way, we confirm their main

result for any low cost, when the benefit function is not lin-

ear. Moreover, we are now prepared to explain why muta-

tion raises cooperation for this cost/benefit regime: When

costs are low, our results show that negative mutations

(i.e. mutations with lower investments than their expec-

tations) do not spread on the system and that higher-

investing clusters invade lower-investment ones. To see

this, notice that individuals in the boundaries of the higher-

investing cluster outperform the individuals in the bound-

aries of the lower-investing cluster. On the other hand,

interactions with eventual positive mutations (mutations

with investments higher than their expectations) can give

origin to a small cluster of higher investments, again in the

low cost regime. For a strictly concave benefit function,

the lower the investment the higher the additional payoff

that a positive mutant adds to their neighbors. Addition-

ally, the more concave the benefit function is, the stronger

such effect is. To sum up, in this unbeatable cost/benefit

framework (e.g. low cost and very concave benefit func-

tion), a positive mutant can gradually invade a world of

low investors until obtaining a high mean investment at

the steady state. However, the less concave the benefit

function is the lower the mean investment reached is. This

pattern coincides with the results of [18], who analyze dif-

ferent regimes of physiological costs in a related adaptive

dynamics with the CPD. Our results complement the anal-

ysis for lattice-structured population. In fact:

1. If the benefit is linear, the lattice-structured popula-

tion is only capable of sustaining the mean investment

around the initial one, even if the cost is low.

When significant costs are considered, other asymptotic

results occur:

2. If the cost is low-medium, for any basis benefit function

(linear or strictly concave), the lattice is only capable

of sustaining the mean investment around the initial

one. This occurs with and without mutation. A muta-

tion (negative or positive) does not have any effect on

the lattice.

3. In high-medium cost regimes, the mutation mechanism

works against cooperation, by favoring negative muta-

tions (i.e. mutations with lower investments than the
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expectations). Thus, if there are not mutations, the lat-

tice can sustain low levels of cooperation, but cannot

stop the fall of investments if any occasional negative

mutation appears on the lattice.

4. For high costs, the investments nose dive, with or with-

out mutation.

Summarizing, small mutations promote cooperation

only in very particular scenarios of low costs of cooper-

ation.

4 Effects of resistance to imitation on the

evolution of cooperation

The above analysis was obtained when the strategy up-

date rule is based on exact imitation. Now we consider

weighted average as the way to update investments. In-

stead of focal individuals copying the best neighbor, each

individuals updates her investment with a new one “be-

tween” her own investment and the investment of her suc-

cessful neighbor. Into the spatial CPD, weighted average

operates as follows: If an individual invests x and her suc-

cessful neighbor invests y, in the next step, the former will

invest

αx + (1− α)y (4)

plus a possible error, for some α ∈ [0, 1].

In an economic and social scenario, the parameter α

can be viewed as a factor of resistance to imitation or as a

measure of wariness. When α = 0, there is no resistance,

individuals copy the strategy of their neighbors with the

highest payoff. However, when 0 < α < 1 the individ-

uals gradually learn from their most successful partner.

Whereas if α = 1 individuals refuse to imitate.

4.1 Supporting cooperation in adverse cost regimes

As in Section 3, we analyze first the evolution in time of

the social network without errors in the update rule. Sim-

ilar to the previously studied case, the lattice reaches a

steady state where the mean investment lightly fluctuates

around a constant. Figure 3 shows the typical evolution

in time of the mean investment for different resistance

levels in medium and high costs. It is noteworthy how the

presence of resistance to imitation can increase the asymp-

totic mean investment to higher levels when investments

are costly.

To have a better understanding of the effect of resis-

tance to imitation, we considered different cost/benefit

functions and varied the resistance along its range. For

each parametric set, we performed simulations for 100

initial random configurations until the steady state was

reached. We observe that only small variations on the

asymptotic mean investments were observed. Thus, the

average, over the initial random conditions, is a robust

estimator of this asymptotic mean investment, regardless

the initial condition. In general, in low cost regimes, re-

sistance neither favors cooperation nor dulls it. However,

for any medium or high cost, resistance to exact imita-

tion strongly favors cooperation. Moreover, the higher the

resistance is the larger the mean investment asymptoti-

cally reached. Figure 4 characterizes the behavior for the

different cost regimes. We conclude that cautious learn-
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Fig. 3. Time series of mean investments for medium (a) and

high (b) cost with different resistance degrees. Top solid lines

correspond to α = 0.8, dashed lines to α = 0.2 and bottom

solid line to α = 0. The benefit function is linear, and the costs

considered are to the right of the thresholds 1
4
B and 1

2
B.

ing is more efficient than hasty learning when the cost is

medium or high and it is necessary to sustain cooperation

(even in low levels) for high costs.

To understand how resistance works to favor cooper-

ation in medium/high cost regimes, let us consider again

the simplest initial condition with a single x-individual in

a lattice occupied with y-individuals, with x < y. Notice

that the x-investment spreads on the lattice (or dominates

it) if individuals have no resistance to imitation. For this

initial configuration, let the epicenter be the individual

with initial investment x and the front of the wave be the
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Fig. 4. Asymptotic mean investment as a function of α for

the benefit function Bx. Low costs in (a): top dashed line 1
8
B,

solid line 1
6
B, and bottom dashed line 1

5
B. Medium costs in

(b): top dashed line 1
4
B+δ, solid line 3

10
B, and bottom dashed

line 2
5
B. High costs in (c): top dashed line 1

2
B + δ, solid line

3
5
B, and bottom dashed line 3

4
B. To consider costs close to the

thresholds we make δ = 1/1000.



10 Jiménez et al.: Gradual learning and cooperation

Fig. 5. Attenuation of a 0-investor for a pool of 1-investors with low degree of resistance at time generations 10, 20, 100, 300,

1000 and 3000. B(x) = 4(1 − exp(−x/2)), C = 0.8, and α = 0.25. The asymptotic mean investment in the stationary state is

around 0.67. Note: for this parametric set, the 0-invertor dominates the system if there is no resistance.

y-individuals closer to the epicenter. It is easy to show that

while individuals gradually learn from the individual with

the least investment (expansion of the wave), the invest-

ment at the front of the wave of the generation k changes

to y−(1−α)k(y−x) in the next step. Thus, if the lattice is

big enough, there exists a resistance value such that these

individuals at the front of wave learn from their neighbors

with higher investments, in some generation, producing a

reflection of the wave. An immediate consequence of this

result is that the expansive wave generated by the x-agent

is reflected by a barrier of y-individuals when those have

enough resistance. The reflected wave is propagated to-

wards the epicenter making an increment of the mean in-

vestment of the system. Thus, if the lattice is big enough

and individuals have enough resistance to imitation, the

system can asymptotically recover high investments (de-

fection absorption); even if there is not enough resistance

to imitation, the wave can be attenuated producing a di-

minishment in the mean investment (defection attenua-

tion). Moreover, the absorption/attenuation effect, illus-

trated in Figures 5 and 6, can locally operate for random

initial configuration until producing the rebound in the

mean investment evolution showed in Figure 3(a).

4.2 The origin of cooperation: Learning errors and

resistance to imitation

The most amazing results occur when there are occa-

sional errors in the gradual learning rule. To study this

phenomenon, we performed simulations by covering low,

medium and high costs and linear and strictly concave

benefit functions. As in Section 3.2, we considered low ini-

tial investments, uniformly distributed between zero and

1/10, and error rate of 1%, Gaussian distributed with vari-

ance equal to 10% of the expected investment. Our study

is conclusive as to the effect of the resistance to learning:

1. In medium costs (low-medium and high-medium) as

well as in low costs with linear benefits, where the

model with learning errors and without resistance is

only capable of sustaining cooperation in the initial

investment range, gradual learning leads to significant

higher asymptotic mean investment.

2. In high costs, occasional errors work against coopera-

tion and even the resistance to imitation is unable to

maintain cooperation.

Figure 7 shows the typical effect of the resistance to imi-

tation in adverse conditions in which simple mutations in
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Fig. 6. Absorption of a 0-investor for a pool of 1-investors with high enough degree of resistance at time generations 10, 20,

100, 300, 1000 and 3000. B(x) = 4(1− exp(−x/2)), C = 0.8, α = 0.65. The asymptotic mean investment in the stationary state

is almost 1.

the structured population are not sufficient to trigger high

levels of cooperation.

In these scenarios of low and medium costs, with linear

or strictly concave benefits, there always exists a value for

the resistance parameter to raise cooperation to higher

levels. Moreover, we observed through simulations, that

any resistance level (0 < α < 1)) is enough to promote co-

operation when costs are low. Medium levels of resistance

may be required when costs are medium; the closer the

cost is to the high cost threshold, the higher the level of

resistance required.

5 Conclusions

In this paper we have studied the effect on the evolu-

tion of cooperation of introducing resistance to imitation

in the strategy update rule of the spatial CPD. We have

reviewed this evolutionary game in detail when the strat-

egy update rule is based on unconditional imitation. First,

we have studied the model without errors in the imitating

process. For this case, we have found a simple classification

of the payoff regimes (low, low-medium, high-medium, and

high costs) which allows us to determine the asymptotic

mean behavior of a population structured on a square lat-
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Fig. 7. Time series of mean investments with resistance (top

lines) and without resistance (bottom lines): (a) linear benefit

(B = 1), low cost (C = 0.2) and low resistance (α = 0.1). (b)

strictly concave benefit (B(x) = 4[1 − exp(−x/2)]), medium

cost (C = 0.4) and medium resistance (α = 0.5). Gaussian

mutation, with variance equal to 10% of the expected invest-

ment and mutation rate 1%. Initial investments are uniformly

distributed on [0, 1
10

].
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tice. From random initial conditions, the spatial structure

promotes high investments only in low cost regimes. We

observed fast transitions to low mean investments in low-

medium costs. It is interesting to notice that these transi-

tions are discontinuous when the payoffs are linear func-

tions. In regimes of high-medium cost the spatial structure

is unable to keep the initial mean cooperation investment.

The lowest investment in the initial state dominates the

system for any high-cost regime. When occasional errors in

the imitating process are considered, cooperation emerges

from a non-cooperative initial state only under a particu-

lar regime of low cost and strictly concave benefit. To ob-

serve this emergence, previously reported in the literature

of the spatial CPD [12,19], negligible costs of cooperation

[18] are required. For the rest of the regimes, the essential

problem of cooperation remains: Occasional errors have

no effect on the evolution of cooperation when costs are

low and the benefit function is linear or when costs are

low-medium. Moreover, they work against cooperation in

high-medium and high costs.

Weighted average can be viewed as a step-by-step learn-

ing mechanism in the strategy update process that can

prevent individuals from their costly acts. Amazingly, it

is this aspect that offers important insight into the prob-

lem of origin and sustainment of cooperation. Our anal-

ysis explains how cooperation evolves and is maintained

when gradual learning works in the spatial CPD. We have

proved that the resistance to exact imitation has a signif-

icant effect on medium (low-medium and high-medium)

cost and high cost regimes: The less that is learnt in a

single step, the greater the degree of global cooperation

finally attained. When learning errors can occur on an

arbitrarily non-cooperative population, we have showed

that a higher-investment mutant spreads all over the sys-

tem raising cooperation to significant levels in regimes of

low costs (with linear or non-linear benefits) and medium

costs. The larger the cost, the greater the resistance to im-

itation needed in a single step. However, in more adverse

conditions of high costs, occasional errors work against

cooperation and even the resistance is unable to maintain

cooperation.

We call attention to the fact that gradual learning can

be introduced in a straightforward way into the strategy

update rule of any continuous evolutionary game, such as

the continuous Snowdrift game [26] and the spatial ultima-

tum game [27]. Gradual learning can also operate jointly

with different selection mechanisms to identify from whom

to learn. To compare results with previous literature on

spatial the CPD, we have considered learning from the

successful neighbor, but the weighted average operator can

be easily fitted to random selection criterions [7]. We have

only considered weighted average, because it is the natu-

ral rule when strategies are represented by real numbers,

such as cooperative investments. But different schemas of

gradual learning can be considered when strategies are not

scalar. Our formulation is quite simple and can be applied

in a wide range of scenarios. We hope that this work will

contribute to highlighting the relevant role of this evolu-

tionary principle for the study of cooperation.
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In conclusion, resistance to imitation provides a nat-

ural solution to the evolutionary riddle of the origin and

maintenance of cooperation in a world governed by se-

lective forces. Our results suggest that populations which

learn slowly from successful partners are, in the long term,

more efficient in the sense that they allow for higher co-

operative investments. Thus, our model provides an evo-

lutionary version of the tortoise and the hare fable when

the goal is cooperation.
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