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I. Introduction

In this article we review existing experimental and theoretical studies of
the dynamical properties of a large class of first-order transitions. These
involve such phenomena as nucleation, spinodal decomposition and late
stage growth and coarsening. In the typical situation which we will consider,
a system is rapidly quenched from a one-phase, thermal equilibrium state
to a one-phase, nonequilibrium state inside its coexistence curve (Fig. 1).
Such a quenched system then gradually evolves from this nonequilibrium
state to an equilibrium thermodynamic state which consists of two coexisting
phases. It does so by the temporal development of spatial fluctuations

©

Temperature T

Ca G

Concentration C
FiG. 1. The coexistence curve (solid line) and classical spinodal curve (dashed line)
are shown schematically for a system such as a binary fluid or binary alloy. Typical
quenches into the metastable (m) and the unstable (u) regions are also shown. In
the former case the system is under-cooled by an amount 87, corresponding to an
initial supersaturation éc, = ¢; — ca, at atemperature T = T, — AT below the critical
point.
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which take the initially homogeneous system through a sequence of highly
inhomogeneous states which are far from equilibrium. This dynamical
evolution is highly nonlinear. Thus the problem of pattern formation in
systems which are spontaneously attempting to reach equilibrium provides
a fascinating example of nonlinear, nonequilibrium phenomena. In spite
of extensive experimental and theoretical studies of these first-order tran-
sitions, a first principles understanding does not yet exist. It should be
noted that the prototype first-order phase transition which we consider
here is associated with a second-order phase transition which occurs at a
critical point (Fig. 1). (This dynamical prototype obviously involves a
first-order phase transition, since discontinuities in the order parameter,
entropy and other extensive variables characterize the two-phase equilib-
rium states.) We will in general not consider here the dynamical behavior
of first-order phase transitions which do not involve a critical point, such
as the liquid-solid transition (e.g. undercooling water). Much of the
theoretical formalism which we describe, however, can rather straightfor-
wardly be applied to this latter class of phenomena.

It should also be observed that the dynamical evolution toward thermo-
dynamic equilibrium with which we concern ourselves here differs some-
what from other interesting nonlinear phenomena in which pattern for-
mation is involved. For example, in problems such as the Rayleigh—Benard
instability or Couette flow, ordered structures also develop, but the final
state in such cases is a nonequilibrium state. The pattern formation is a
consequence of nonequilibrium boundary conditions. (Recent reviews of
hydrodynamic instabilities include Swinney and Gollub, 1981, and Eck-
mann, 1981.)

In our case, since the final state is in thermodynamic equilibrium, its
properties are in principle well known from first principles. In addition,
for the phenomena with which we are concerned, a well defined free energy
functional exists, which provides the driving force for the dynamical evo-
lution. In nonlinear problems in which the final state is in nonequilibrium,
such a free energy functional often does not exist. (For a discussion of free
energy functionals in this case see Graham, 1975, 1981, 1982.)

In the classical theory of first-order phase transitions one distinguishes
between two different types of instability which characterize the early
stages of phase separation in such systems. The first is an instability against
finite amplitude, localized (droplet-like) fluctuations which leads to the
initial decay of a metastable state. The rate of birth of such droplets is
described by homogeneous nucleation theory. The second is an instability
against infinitesimal amplitude, nonlocalized (long wavelength) fluctuations
which leads to the initial decay of an unstable state. This latter instability
is termed spinodal decomposition. In the classical picture there is a sharp
distinction between metastable and unstable states. This is provided by the
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spinodal curve which in the classical (mean field) theory is the locus of
points inside the coexistence curve for which an appropriate susceptibility
(such as the concentration susceptibility (d¢/du)r for binary fluids or the
isothermal susceptibility for simple fluids) diverges. As is shown in Fig. 2,
the classical theory predicts a van der Waals loop in the two-phase, non-
equilibrium region. In this picture metastable states are those for which
the appropriate susceptibility is positive, while unstable states are those
for which this susceptibility is negative. The spinodal curve separates these
two states. This distinction was originally proposed by Gibbs (1906).

”
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Fic. 2. The chemical potential i as a function of concentration ¢ for T < T, as
predicted by mean field theory. The horizontal line indicates the equilibrium
chemical potential, while the van der Waals loop indicates the regions of meta-
stability and instability. The classical spinodal points are the two points on the loop
for which (du/ac)r = 0.

*

Although the classical spinodal curve still provides a convenient way to
distinguish loosely between metastable and unstable states, recent research
suggests that there is in fact no sharp distinction between such states.
Rather, there is a gradual transition in the dynamical behavior of a quenched
system as one varies the quench concentration in the vicinity of the classical
spinodal curve in Fig. 1. This point is discussed in detail in several sections
of this article (Sections III, V, VII, IX-XI).

To get an understanding of the qualitative features of the dynamical
properties of metastable and unstable states, it is helpful to note two
experimental methods used in the study of first-order phase transitions.
These are direct microscopic observations and small angle scattering
measurements. We discuss the former method first. In Fig. 3 we show the
results of a transmission electron microscope study of the alloy Fe—Al (Oki
etal., 1977). The extreme left and right sets show the growth of droplets
for various times following quenches of the alloy into two metastable
regions of its phase diagram. The center set of figures shows the result of
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FiG. 3. Domain structures imaged with B; superlattice reflection in 23.0, 24.7 and
24.9 at% Al alloys, from left to right. The samples are quenched from 630°C and
annealed at 570°C in the case of 23.0 and 24.7 at% Al alloys and at 568°C in the
case of 24.9 at% Al alloy. (a) As quenched; (b) annealed for 15 min in 23.0 and
24.9 at% Al and for 10 min in 24.7 at% Al alloy; (c¢) 100 min; (d) 1000 min; (e)
10000 min. (From Oki et al., 1977.)

a quench into an unstable region of the Fe-Al phase diagram. This shows
the characteristic interconnectivity of phases which is often used as a mark
of spinodal decomposition. The reaction following a quench into the region
of instability starts with the appearance of a fine, uniformly dispersed
precipitate. This shows the long wavelength instability mentioned above.
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The interface between the phases is initially very diffuse, but sharpens with
time. In the later stages of the reaction the pattern coarsens and surface
energy effects become important, as in the late stage growth following
nucleation events. Features qualitatively similar to those in Fig. 3 have
also been observed in optical microscope studies of binary fluids. It is clear
that these microscopic measurements yield interesting, detailed, dynamical
information about the phase separation process. One can determine, for
example, the distribution of droplet sizes as a function of time by this
method. This droplet distribution function is obviously a quantity of fun-
damental interest and is discussed in sections VI, VII and IX of this article.
It should be noted that the advent of high resolution electron microscopy
has enormously advanced our understanding of nucleation phenomena in
solids (Russell, 1980). However, light microscope studies of nucleation and
growth in binary fluids have just recently begun, as we mention in Section
X.

Before discussing small angle scattering methods we add a word of
warning concerning the interpretation of the interesting morphological
distinction between the droplet-like and interconnected structures shown
in Fig. 3. Such a distinction was originally used in the literature to try to
distinguish between metastable and unstable dynamical processes. Namely,
it was originally assumed that the appearance of the interconnected struc-
ture meant that the decay of an unstable state was being observed. It was
then noted, however, that a similar interconnected structure could be
obtained from a superposition of many droplets, i.e. as a result of the
nucleation and growth from a metastable state. Thus it has been pointed
out by Hilliard (1970) and Herman and MacCrone (1971) that morphology
alone cannot be used to determine unambiguously whether a process of
phase decomposition begins by spinodal decomposition. An extensive
discussion of this point is given by Jantzen and Herman (1978). For the
purpose of this review article, however, the origin of the interconnected
structure is not crucial. Whenever such a structure develops, it can be
important, as for example in the case of binary fluids. In this situation
unusual hydrodynamic effects can result (Sections V and XI). Whether this
interconnectivity results from an “unstable” or a “metastable” quench is,
from our point of view, less important, although in principle interesting.

The second experimental technique of relevance to us involves small
angle scattering. A very good summary of the use of small angle scattering
of X-rays and neutrons in first-order phase transitions has been given by
Gerold and Kostorz (1978). When multiple scattering effects can be either
neglected or corrected for, one obtains the structure function of the system
from the measured intensity of scattered radiation. (When multiple scat-
tering effects can be neglected, this intensity is proportional to the structure
function.) This structure factor is a time-dependent, nonequilibrium cor-
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relation function. For example, for binary alloys or binary fluids it is the
Fourier transform of the nonequilibrium average (at a given time) of the
product of the local concentrations at two different spatial positior}s in the
system (Sections V and XI). This function is obviously of considerable
experimental and theoretical interest and is discussed extensively through-
out this article (Sections V, VII-IX and XI).

It is worth noting what one sees in typical scattering experiments following
a quench of a system into an unstable region. For a binary fluid, for
example, one observes the (almost) instantaneous appearance of a halo of
scattered light. This ring subsequently brightens and collapses as phase
separation proceeds (Sections V, IX and XI). The peak in the scattering
intensity is used as a measure of a characteristic inverse length, such as a
domain size, of the phase-separating system. A similar behavior in the
intensity can also result from scattering due to a distribution of grovying
droplets, following their formation via nucleation, as we discuss in Sections
VII and VIII. ‘

Before turning to an outline of this review we first describe a typical
nucleation experiment in a binary fluid, in order to introduce some useful
concepts and notation. In such an experiment the system is undercooled
by an amount 87, corresponding to an initial supersaturation éc; (as deﬁged
in Fig. 1). The metastable system is then observed for some finite period
of time. If no significant nucleation occurs during this time, as measured
say by a detectable attenuation of an incident laser beam, the system is
undercooled further. Eventually, by repeating this procedure, the experi-
mentalist can determine the location of the so-called cloud point, which
is the maximum value of undercooling possible before significant nucleation
occurs (on the time scale of the experiment), such that a dramatic atten-
uation in the intensity of the laser beam occurs. The system becomes cloudy
in appearance due to the formation of alarge number of detectable droplets.
Nucleation theories (Sections II, IV and VII) predict the rate of formation
of the droplets of the nucleating phase as a function of the undercooling
or supersaturation. These theories predict a large increase in droplet
formation in a very narrow region of undercooling (the cloud point), so
that a comparison of theory and experiment is possible (Section X). It
should be noted, however, that the cloud point is clearly a dynamical
property of the system, rather than an intrinsic limit of metastability, since
its determination involves the time scale of observation of the experiment.
As we note in Section X, a more meaningful characterization of meta-
stability is a so-called completion time, which is the time, say, that it takes
the reaction (produced by nucleation) to go half-way toward completion.
It should also be remarked that as long as the system remains truly
metastable (i.e. does not decay), it is possible to perform experimental
measurements of thermodynamic quantities such as the specific heat for
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the metastable state. An interesting and fundamental question is how to
describe from a statistical point of view these “equilibrium” properties of
a metastable state. We give some discussion of this point in Sections II and
IV when considering the problem of defining the analytic continuation of
a stable state into the metastable phase. An interesting discussion of the
equilibrium properties of a metastable state in terms of a constrained
ensemble of states is given by Penrose and Lebowitz (1979). A complete
description of metastability requires a discussion of dynamics and involves
concepts such as nucleation rate (Sections II, IV, VII and X), completion
time (Section X) and the nonlinear relaxation time (Section XIII).

The outline of this review is as follows. In Section II we summarize the
classical Becker-Déring (1935) theory of nucleation. In addition to being
a useful approximation in many applications of nucleation theory, this
classical theory also introduces many of the basic concepts used in the more

meophisticated theories which we discuss in Sections IV and VII. In Section
III we discuss the semi-phenomenological equations of motion involved in
the continuum theories of nucleation and spinodal decomposition. These
models involve Fokker—Planck equations for the time-dependent proba-
bility distribution functional for a given system. An equivalent formulation
can be given in terms of nonlinear Langevin equations for the semi-macro-
scopic dynamical variables of interest. In both the Fokker-Planck and
Langevin equations a basic ingredient is a “coarse-grained” Helmholtz free
energy functional. This is usually taken to be given by a Ginzburg-Landau
form. We also summarize in Section III recent renormalization group
calculations of this free energy functional for first-order phase transitions.
In this case one must renormalize a double well potential. Such calculations
show that there is no unique spinodal curve. Rather, its location depends
on the coarse-graining size considered. In Section IV we discuss a field
theoretic generalization of the classical nucleation theory due to Langer
(1969). This seems to provide a first principles theory of nucleation for
systems describable by continuum models. We illustrate this approach by
summarizing a calculation of the nucleation rate for a binary fluid near its
critical point. We also state the results for the essentially equivalent problem
of a liquid—gas transition. Finally, we discuss a problem closely related to
nucleation theory. This involves the determination of the analytic contin-
uation of the free energy of a stable state to a metastable state. The free
energy is predicted to have an essential singularity at any point on the
coexistence curve, which, however, is so weak as to be experimentally
unobservable.

In Section V we summarize various theories of spinodal decomposition
for binary alloys. These include the linear theory of Cahn (1961) and a
nonlinear theory of Langer, Bar-on and Miller (1975). We also note there
the need for further theoretical work in this area, since no fully satisfactory
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theory yet exists. In addition, we discuss interesting hydrodynamic effects
on the spinodal decomposition and late stage coarsening in binary fluids.
A particularly interesting effect arises from surface tension-driven flow in
interconnected droplets, for quenches inside the percolation limit (Siggia,
1979). Our current theoretical understanding of such hydrodynamic effects
is at best semi-quantitative. We also discuss power law approximations that
have been used to analyze various dynamical quantities of experimental
interest. We note that such approximations should be viewed with a certain
degree of caution. In Section VI we discuss the late stage growth theory
of Lifshitz and Slyozov (1961) and Wagner (1961), applicable to systems
such as binary alloys and binary fluids in the limit of small “supersaturation”.
We also outline the late stage growth theory of Allen and Cahn (1979a,
b) for systems in which the order parameter is not conserved. In addition,
we mention other interesting work in this area of interface dynamics.

In Section VII we present a cluster dynamics theory of nucleation and
growth due primarily to Binder, in collaboration with Stauffer, Miiller-
Krumbhaar and others. This theory is more microscopic than the continuum
formulation and has led to several useful qualitative insights concerning
the dynamics of first-order phase transitions which we summarize. These
include a scaling theory of nucleation, theories of cluster growth and a
qualitative theory of spinodal decomposition as a generalized nucleation
phenomenon. We also contrast the current cluster picture of a gradual
transition from the metastable to the unstable domain with the classical
picture of Cahn and Hilliard (1958). In the latter theory the classical
spinodal curve provides a sharp distinction between metastable and unstable
states. We also describe in Section VII some of the difficulties involved in
obtaining a quantitatively successful theory of cluster dynamics. In Section
VIII we summarize various phenomenological theories for a dynamic
scaling of the nonequilibrium structure factor, for systems such as binary
alloys and binary fluids. We also discuss scaling theories for the somewhat
simpler problem in which the order parameter is not conserved. This scaling
behavior has been confirmed in experimental and computer simulation
studies of several systems (Sections VIII, IX, XI and XII). These include
cases in which the order parameter is conserved as well as cases in which
it is nonconserved. It also appears likely that small deviations from the
simple scaling behavior have been observed (Sections VIII, IX, XI and
XII). Further theoretical investigation of this scaling is clearly necessary.

In Section IX we present the results of extensive computer simulation
studies of an Ising model of a binary alloy by Lebowitz, Kalos and collab-
orators. These studies have led to many interesting results for the structure
factor for this model. These include the observation of a gradual transition
from the metastable to unstable domain, the invalidity of the linear theory
for the observable time domain and a scaling behavior for the structure
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function. We also discuss the results of the Monte Carlo studies of cluster
growth in the Ising model, as well as various theoretical analyses of these
results due to Penrose, Lebowitz and collaborators.

In Section X we discuss the results of several experimental studies of
homogeneous nucleation in near-critical fluids. These careful investigations
revealed an apparent breakdown of nucleation theory in the vicinity of a
critical point. However, as we note in Section X, it now appears that this
is not the case. Rather, the anomalously large undercoolings observed in
these cloud point studies seem to be due to the effects of critical slowing
down (Binder and Stauffer, 1976), although this is not a completely settled
issue. Such a slowing down decreases the growth rate of the nucleating
droplets and prevents their observation in conventional cloud point experi-
ments. These experiments have served to remind us that metastability is
intrinsically a dynamical problem. They have raised the interesting and
difficult theoretical problem of describing simultaneously the nucleation
and growth of droplets. We summarize in Section X the first detailed
theoretical study of this problem (Langer and Schwartz, 1980) and compare
this theory with the experimental studies of near-critical fluids. We also
mention in this section a very interesting experiment by Krishnamurty and
Goldburg (1980), who have attempted to study with a microscope the birth
and growth of droplets near a binary fluid critical point. This work seems
to provide the direction for future research in this field. We also note in
Section X that the coupling between nucleation and growth means that no
definitive test of homogeneous nucleation theory yet exists.

In Section XI we discuss a variety of experimental studies of spinodal
decomposition. In particular we review recent neutron scattering studies
of the alloy Al-Zn (Hennion et al. 1982; Guyot and Simon, 1982). These
careful studies on single crystals have revealed features for the structure
function which are very similar to those found in Monte Carlo studies of
the Ising model (discussed in Section IX). Indeed, with a suitable rescaling
of coordinates the experimental and Monte Carlo results are in close
agreement. This agreement is to some extent surprising given differences
between the Al-Zn and Ising model dynamics which we mention in Section
XI. We also discuss very nice light scattering studies on near-critical binary
fluids (e.g. Chou and Goldburg, 1981; Knobler and Wong, 1981). These
studies show that the structure function for binary fluids satisfies a scaling
behavior, although small deviations seem to occur (Knobler and Wong,
1981). These experiments also reveal the important effects of hydro-
dynamics mentioned earlier. In particular, Wong and Knobler (1981) have
confirmed that the predictions of Siggia (1979) for the late stage growth
rate are qualitatively correct. This experimental study also shows that a
more quantitative theory of the effects of hydrodynamics on growth rates
and the structure factor is necessary.
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In Section XII we present theoretical, Monte Carlo and experimental
results for the dynamics of systems quenched below a tricritical point.
These include theoretical and experimental studies of *He~*He mixtures.
The latter experiments have revealed both a scaling behavior as well as
interesting effects due to gravity. We also discuss results of theoretical and
Monte Carlo studies of a simple relaxation model involving two order
parameters. This model provides a simplified description of metamagnets,
binary alloys and chemisorption, as we mention in Section XII. We also
note various similarities and differences between the dynamical properties
of critical and tricritical systems in this section.

Finally, in Section XIII, we discuss a variety of topics not treated in the
main text. These include studies of a nonlinear relaxation function, a
quantity which seems to provide an important theoretical tool for the study
of first-order phase transitions. We also discuss very recent theoretical
work on the dynamical behavior of systems under various quench condi-
tions. These include a periodic variation in the temperature which can lead
to periodic spinodal decomposition. Other novel effects are predicted under
certain quench conditions. We also summarize theoretical and experimental
studies of the dynamics of first-order phase transitions in several systems
other than the prototype binary alloy and binary fluid systems discussed
in the text. These include superfluids and superconductors, electron-hole
condensation in semiconductors, physisorption and chemisorption systems,
intercalation compounds, polymer blends, percolation, geological systems,
pattern formation in chemical reactions, gels, optical instabilities and mol-
ecular dynamics. (The molecular dynamics section contains a summary of
recent work on spinodal decomposition in a two-dimensional fluid, as well
as crystal nucleation in supercooled liquids.) In our opinion one rich area
for future research in first-order phase transitions lies in the direction of
studying a wider range of physical systems. It would seem likely that one
will encounter interesting new effects in nucleation and spinodal decom-
position by such efforts, similar to the interesting differences found between
binary alloys and binary fluids in recent studies.

We should also note some topics which we do not discuss in this article.
First, it is impossible to review all of the (enormous) literature on homo-
geneous nucleation. We have restricted our attention primarily to nuclea-
tion in near-critical fluids, although the formal theories which we describe
are not limited to this domain. Our reasons for this choice are the following.
First, fluids are excellent systems in which to study homogeneous (rather
than heterogeneous) nucleation. Second, far below the critical point fluids
are reasonably well described by Becker—Doring-type theories. This is in
part due to the limited accuracy of experimental data, so that more refined
theories are not warranted. As well, for such fluids the attempt frequency
(Sections II, IV and VII) is so large that nucleation is significant whenever
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the activation energy barrier for the formation of droplets of a critical size
is less than about 50kgT. For these high energy barriers the classical theory
is a reasonable first approximation (Binder, 1980a). On the other hand,
for fluids very near the critical point a much stricter test of nucleation
theory is possible. The attempt frequency and activation energy are much
smaller here. By changing the temperature one can vary the relevant time
scale by several orders of magnitude (because of critical slowing down) so
that an accurate test of theory is possible. Studies near the critical point
have the additional advantages that the nucleating droplets are of macro-
scopic size and that nucleation takes place over times which are conveniently
measurable. Considerable experimental data is now available in this domain
(Section X). We should also note that solids do not provide as good a test
of homogeneous nucleation theory as fluids. This is due to the fact that in
most cases heterogeneous nucleation is more important. (Such nucleation
occurs at dislocations, grain boundaries, etc.) As well, the theoretical
analysis of nucleation in solids is more complicated, due to the need to
take into account elastic and anisotropic effects when discussing the energy
of formation of a droplet. Thus we do not discuss nucleation in solids here.
An excellent recent review of this important subject has been given by
Russell (1980), who discusses metals, semiconductors, glass and crystalline
ceramics and minerals. Another significant topic which we do not treat
concerns rigorous results about metastability. In view of the extreme
difficulty involved in obtaining a first principles understanding of meta-
stability, rigorous results are very helpful. However, this field has not
developed as much as one would like. A very good review of existing work
on this topic is that of Penrose and Lebowitz (1979). Discussions of other
topics in homogeneous nucleation omitted here can be found in the texts
of Abraham (1974a) and Skripov (1974). The text by Abraham also contains
a summary of other important experimental tools for the study of homo-
geneous nucleation not mentioned in our article. These include the expan-
sion and diffusion cloud chambers as well as the supersonic nozzle tech-
nique. Finally we note that some aspects of spinodal decomposition not
covered here are treated in review articles by Metiu et al. (1979) and
Skripov and Skripov (1979), as well as in several references given in Section
XI.

Il. Classical Theory of Nucleation
A. Classical droplet model

Modern nucleation theory is based on the “classical” theory for the rate
of formation of nucleating droplets. This nucleation rate is derived in the
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text by Frenkel (1946) who attributes its origin > Pecker and Doring
(1935) and Zeldovich (1943). Prior to this, import"! contributions were
made by Gibbs (1906), Volmer and Weber (1926) #d Farkas (1927). The
work of Gibbs in particular involved a thermodyr™i¢ theory of curved
surfaces which still provides a basic starting point fofnderstanding droplet
formation. Since the classical theory captures much’ the essential physics
of metastability, we review it briefly here. It spt!d be pointed out,
however, that although the subject of homogeneo® ucleation is an old
and rich field, fundamental questions still remain. A Practical illustration
of this we note that the anomalous undercooling o®¢7Ved in near critical
binary fluids (Section X) originally was interprete 25 Implying an error
in nucleation theory of about 10%. As we will see ip>cction X, a complete
understanding of such binary fluids is still lacking.

We begin by first discussing the equilibrium pre€rties of the classical
droplet model which underlies the dynamical theor | 1is model provides
a useful insight into the mechanism of decay of Metastable state. In
addition, its free energy has a very weak, esserid Singularity at the
condensation point which is present (in a somewhar!!t€red form) in more
sophisticated theories which we review later. Finall> this model serves as
a convenient introduction to the field theory mod, discussed in Section
Iv.

This classical picture of condensation was put f 1 independently by
Bijl (1938), Band (1939) and Frenkel (1939). It Particularly easy to
describe for the Ising model of a ferromagnet (disc S¢d in more detail in
Section IX.A). Imagine an Ising lattice of N spins (e 1! ©f Which can either
be up or down) in a small positive magnetic field . - @' @ temperature T
sufficiently below the critical temperature 7T that ¢ 105t all the spins are
up. If one slowly changes H to negative values, it POSSible to prepare
this system in a metastable state, in which the ave; !¢ Value of the mag-
netization remains positive. The problem is to expLIQY.SUch, A st
eventually decays into a more stable state. The classical picture is that for
positive H, the typical configurations of this ferromagnet consists of small
droplets (clusters) of down spins dispersed in a background of up spins.
Further, typical distances between these droplets are sufficiently large such
that one can treat the system as a “gas” of noninteracting droplets. The
?umber of clusters of size / (i.e. of / spins) is then given by the Boltzmann
actor

n=NeP, (2.1)
where ¢ is a “free energy” of formation of a cluster and 8= 1/knT. The
crucial problem is then to determine g. 1he classical assumption is that

I
& =2HI + ol@-¥4 (2.2)

T AR
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for a d-dimensional system. The bulk term is the energy required to flip
I spins, while the surface term involves a “surface tension” o. These droplets
are assumed to be sufficiently compact that one has a “normal” surface to
volume ratio, in contrast to “sea-weed-like” clusters, say. The condensation
mechanism implicit in this model can then be seen from considering the
behavior of n; as a function of the droplet size /, as shown in Fig. 4. For
positive H, n; decreases rapidly as / increases, so that the clusters which
determine the physical properties of the system are all microscopically
small. On the other hand, if one considers the case with negative H, the
situation is quite different. Then there is a competition between the bulk
and surface terms, with the surface term dominating for small / and the
bulk term dominating for large /. As a consequence, there is a critical size
droplet /. (with a critical radius R.) such that droplets for which /> [ are
energetically favored and grow. These droplets thus provide the nucleating
mechanism by which the metastable state decays. This theory certainly
captures the qualitative properties of nucleation correctly, but, as discussed
in Section VII, it is in general not quantitatively accurate.

£e L—

FiG. 4. The classical droplet distribution function n; as a function of the droplet size
1, for stable and metastable values of the magnetic field H.

Also implicit in this picture is a prediction that at a condensation point
H =0, T<T,, the free energy has an essential singularity. This point has
been discussed by several authors, notably Andreev (1964), Fisher (1967a)
and Langer (1967). This singularity results from the droplet contribution
to the free energy, F(H), which is given (Langer, 1967) by

F(H)=N"! ;n,(H), (2.3),

and which, from (2.1), (2.2) and (2.3), can be written as a Mayer-like
cluster expansion (Mayer and Mayer, 1940),

F(H) = 1_21 b, (2.4)
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with
z=¢ #H, (2.5)
by = g Pl (2.6)

The form (2.6) is a rather crude droplet model approximation for the
Mayer cluster coefficients b;. It is clear that one should identify the free
energy of the metastable phase in this model as

le

- 1
F(H)=— !
(H) =~ 2 bid, @.7)
where the cut-off is the critical droplet size /. < R?, and where the critical

size is given by
_{d- 1)0)d
le (—————2le| . (2.8)

This critical size follows from determining the minimum in n;(H) from
(2.1) and (2.2). The remaining contribution of the droplets in (2.4) gives
rise to an essential singularity in F(H), as has been discussed thoroughly
by Fisher (1967a) and Langer (1967). A simple version of this treatment
which illuminates the role played by the critical droplet in the determination
of the essential singularity has been given by Wallace (1980). If one converts

the sum in (2.4) into an integral and replaces / by the droplet radius R, one-

obtains for the droplet free energy per unit volume
F(h) o [ dR e 29)
0

in appropriate dimensionless variables, where 4 o< H. (In obtaining (2.9)
Wallace neglects for simplicity the volume term R?1.) If one then expands
(2.9) as a power series in A, it is easy to see that the radius of convergence
of the resulting power series is zero. The free energy F(h) is singular at
h = 0, but the singularity is extremely weak, since one can show that all
derivatives of F exist at h = 0. The nature of this singularity can be
investigated by determining the analytic continuation of F(h) from 4 >0
through complex values of & to & < 0. This can be done by the standard
method of steepest descent, choosing an appropriate contour in the complex
R plane as shown in Fig. 5. This analytic continuation of F(h) yields a
complex free energy, which has a branch-point singularity at 2 = 0. The
fact that F(h) is complex is easily understood, since the analytic contin-
uation of (2.9) in the complex k-plane from A > 0 to kA < 0 requires that
Re hR? > 0, in order that the integral in (2.9) converges at the upper limit.
Thus to reach arg h = +7, one must rotate the contour of integration in
the R-plane in the opposite direction, through an angle arg R = +a/d, as

]
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in Fig. 5. Since this contour of integration lies in the complex R-plane for
h < 0, it is not surprising that F(k) is complex.

The imaginary part of F(h) can be determined for small 4 from a saddle
point located at R.. The result is

Im F(argh = =) = TB|h|b exp{~A|h|*"1}, (2.10)

where b = (d — 3)/2 and A and B are constants. It is noteworthy that the
critical droplet is responsible for this imaginary part, in the sense that the
saddle point is at R..

ImR
Complex R
T —
Re Re R

F1G. 5. Contour of integration for the steepest descent evaluation of the free energy
for the simplified classical droplet model discussed in the text.

We conclude this section with two observations. The first is that more
sophisticated theories also predict that the free energy is singular at such
a condensation point (Sections IV and VII). However, the nature of this
singularity is still a controversial subject, as we discuss in more detail later
on. It is, however, of more mathematical than physical interest, since it
would seem to be such a weak singularity as to be unobservable experi-
mentally. The second remark is that subsequent generalizations of the
classical droplet model have taken two quite different directions. The first
approach attempts to improve this droplet model in a very detailed way,
by giving a more precise definition of droplets and attempting to develop
a more accurate statistical theory of their contribution to F(H). We briefly
summarize this approach in Section VII. The second approach attempts
to avoid all the difficulties associated with developing a precise cluster
theory. The resulting field theoretic model replaces the sum over droplets
of all different sizes by a single length problem, which involves perturbation
about the critical droplet size R;. This approach is reviewed in Section IV.
This theory gives a singularity similar to (2.10) but with a different value
of the exponent b. In addition, there is a physical significance associated
with the imaginary free energy in this model, as it is proportional to the
nucleation rate. Finally, we note that it is easy to extend the above
discussion to other systems. For example, for simple fluids the magnetic
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field H is replaced by the chemical potential difference u — u., where p.
is the condensation value of u. The classical model thus can be used to
describe such systems as simple fluids, binary fluids and binary alloys.

B. Becker-Doring theory

Since metastability is a dynamical problem, we now consider the kinetics
of cluster formation, as formulated in particular by Becker and Déring
(1935). This classical theory is presented in many texts, such as Frenkel
(1946) and Abraham (1974a). We therefore only briefly discuss the basic
ideas involved in this calculation of the nucleation rate. There is an extensive
literature on cluster dynamics dealing with subsequent attempts to improve
the Becker—Déring theory, which we will summarize in Sections VII and
IX. Recent discussions of these attempts include Binder and Stauffer
(1976), Mirold and Binder (1977), Penrose et al. (1978), Katz and Donohue
(1979) and Penrose and Lebowitz (1979).

The starting point of the Becker-Déring theory is a kinetic equation for
a time-dependent n,(¢z), where n;(t) is the average number of droplets of
size [ present at time t. The basic assumption of their theory is that the
time evolution of ;(¢) is only due to an evaporation—condensation mech-
anism, in which a droplet of size / gains or loses a single molecule.
Therefore, effects such as the coagulation of two droplets are not con-
sidered, so that the equation of motion for »;(f) can be written as

—=J -7, =2, (211)

where

J,=R1n,(t) —R[+1n1+1(t) (2.12)

is the rate per unit volume at which droplets of size / grow to droplets of
size / + 1. Equation (2.11) does not hold for single particle clusters, since
such clusters are not constrained to events involving other one-particle
clusters. Becker and Doring essentially assumed that n; remains constant,
as we will do. An alternative treatment has been proposed by Penrose and
Lebowitz (1979), who determine 7n; from the conservation of the total
number of particles in the system.

Equation (2.12) expresses the assumption that the evaporation and
condensation rates which determine J; are proportional to the number of
droplets present of sizes / + 1 and / respectively, with corresponding pro-
portionality coefficients R/, and R,. These kinetic coefficients are related
via a detailed balance argument, which follows from requiring that the

3. Dynamics of first-order transitions . 285

equilibrium droplet distribution function n; given by eqn (2.1) is a time-
independent solution of (2.11). This yields

R,_j e a-/keT = R} g=alkeT (2.13)

With this relation one can write (2.11) as

R; 3¢ 9
—6"55’) = - % = 331[75317"711 m(t) + Ri—; n,(t)], (2.14)
treating / as a continuous variable. This is a Fokker-Planck equation with
an [-dependent diffusion coefficient R;. One can thus interpret the
Becker-Doring theory as a stochastic process in I-space. The details of the
kinetics are included in R,;, which we have yet to specify. The Becker-
Déring assumption is that the rate at which molecules condense on a
droplet of size /is proportional to its surface area, so that in three dimensions

R o< I, (2.15)

Other choices for R, are possible, however, as will be discussed in connection
with the Lifshitz-Slyozov theory in Section VII. It should be noted that
the solution of (2.14) does not take into account the conservation of
particles, since it is not important in nucleation events. (See Sections vil
and X.)

The quantity J;, which occurs in (2.11) and (2.12) is just the current of
the continuity equation (2.14). The value J; = 0 corresponds to the equi-
librium solution. Nucleation theory, on the other hand, is based on a
nonequilibrium, steady state solution of (2.14), with J; = I = constant. The
quantity [ is called the nucleation rate and measures the rate of production
of droplets (larger than the critical size) in the nonequilibrium steady state
determined by a time-independent solution nj of (2.14). The method which
Becker and Doring used to obtain this solution involves the following
choice of boundary conditions:

n?—T—g ny, ni— 0. (2.16)

This describes a steady state in which we have a source of droplets at
I = 0. Furthermore, it assumes that once a cluster grows to a specified large
size (greater than [.), it is removed from the system. This choice of “source
and sink” boundary conditions is also employed by Langer (1967) in this
field theory formulation. The steady state solution of (2.14) which one
obtains using (2.16) is

© -1
= [ f (R dl] , 2.17)
(1}
* 1 n
ns=Ij ——dl'. 2.18
! ! Ryny - (2.18)
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It is possibly useful to note that this steady state situation is completely
analogous to the one considered when calculating the tunnelling of a
Brownian particle across a potential barrier. The potential barrier in the
nucleation problem is g and has a maximum at the critical size .. We
should also note that the steady state solution given here can be at best
an approximate description of the real process of nucleation. For example,
for a gas-liquid system the formation of liquid droplets produces a decrease
of the initial supersaturation, éc, which implies that the chemical potential
difference, du = u — . is a time-dependent quantity. This phenomenon
is called the depletion effect and is not taken into account in this steady
state solution, since oy is kept fixed at its initial value. This shortcoming
is also present in the field theoretical approach which we discuss in Section
IV. The completion time theory discussed in Section X takes this depletion
effect into account in an approximate way.

For the small fields (or small initial “supersaturations”) which we consider
here, g has a sharp maximum at /., so that the integral in (2.17) can be
evaluated by expanding the integrand around /.. We then have

I=Iye™%/kT, (2.19)
g \n

I = ¢ —_ }

o= CR <2kBT) (2.20)

where C is a constant and & =d %¢/a/”. This is the Becker-Déring result
for the nucleation rate and describes a thermally activated process. The
quantity g, is an activation energy (the energy of formation of the critical
droplet) and I, is the so-called nucleation rate “prefactor”. It should be
noted that this nucleation rate depends very strongly on the exponential
term. The implication of this for experimental measurements of cloud
points is discussed in Section X.

We conclude this section by noting that it is beyond the scope of this
article to discuss the extensive applications of this classical theory to the
many areas involving homogeneous nucleation. There are many excellent
reviews of such applications in the literature, including Pound (1972),
Abraham (1974a) and Russell (1980). As mentioned in Section 1, we will
confine ourselves here to a discussion of nucleation in simple and binary
fluids near the critical point, which we present in Section X. A scaling
version of (2.19) will be given in Sections IV, VII and X, in a form
appropriate for the critical region. We should also note that a controversial
modification of the Becker-Déring theory proposed by Lothe and Pound
(1962) has received considerable attention in the literature. A discussion
of this work and additional references to it may be found in Abraham’s
book (1974a).
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l. Field Theory Models
A. Semi-phenomenological equations of motion

We now turn to a field theoretic approach to the nonequilibrium dynamics
of metastable states, which provides an alternative to the cluster dynamics
theory of the preceding section. This continuum description will also be
of use in developing a theory for spinodal decomposition, as we will discuss
later. In this section we present the semi-phenomenological dynamical
equations of motion which provide a starting point for a dynamical theory
of metastable and unstable states. The rationale for these equations is
similar to the situation in critical dynamics. Namely, one recognizes that
it is hopeless to obtain a detailed microscopic theory at the level of solving
the Liouville equations. Therefore one focuses attention on a small set of
semi-macroscopic variables {y;}, i=1,2,...,N, whose dynamical evo-
lution is “slow” compared to the remaining microscopic degrees of freedom.
Dynamical equations of motion for the variables ; are then obtained,
either by phenomenological arguments or formal projection operator
techniques (Zwanzig, 1961; Mori, 1965; Kawasaki, 1973; Ma and
Mazenko, 1975). In these equations the remaining microscopic (“fast”)
variables enter only in the form of random forces. This phenomeno-
logical approach is particularly useful for the study of metastable and
unstable states if the system of interest is in the immediate vicinity of
its critical point, where it has a large correlation length and long time
scales.

The choice of this set of variables is an important issue. Just as in critical
dynamics one must choose the set {y;} with care, in order not to omit any
essential physics nor introduce any unnecessary complexity into the theor-
etical description. The ultimate test of such a theory and its underlying
assumptions is, of course, its ability to explain the experimentally observed
dynamical phenomena. In general this set of slow variables includes the
order parameter y and hydrodynamic variables, as we discuss below for
several models.

In much of our illustrative discussion of the formal theory of metastability
and spinodal decomposition we will use as a prototype a simple diffusion
model of a binary alloy, with the order parameter y being the local
concentration c(7 ), of one of the two component species. The same model
can be used in a simplified treatment of nucleation of a binary fluid, with
an appropriate relabeling of variables.

The general dynamical model used in the continuum theory involves a
Fokker-Planck equation for the probability distribution functional
p({y}, £). This takes the form of a continuity equation in the space of
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variables {y;}, namely

N
to_ ol
ot B ;awi’ (31)

where the probability current J; is given by
ap
2 M,, p + kT ).

We have used a condensed notation in the above in which a sum over i
represents an integration over 7 and a sum over the semi-macroscopic
variables. The quantity F{y;} is a so-called “coarse-grained” free energy
functional (which we will discuss in more detail later). It contains a spatial

integral over a free energy density. An essential feature of this free energy .

density is that below a critical point it has a double well structure. This
double well describes the equilibrium situation in which two phases coexist.
In the cases with which we will primarily concern outselves here, F is
usually assumed to be given by a Ginzburg-Landau Hamiltonian for an
appropriately chosen wavenumber cut-off A. The matrix M; in general
consists of a symmetric and an antisymmetric part. The symmetric part
corresponds to a set of generalized Onsager coefficients while the antisym-
metric part corresponds to any nondissipative terms. As a specific example
of this Fokker—Planck equation we consider a simple binary alloy in which
the order parameter can be chosen to be the local concentration c(?) of
one of the two species of A and B atoms. Then (3.1) and (3.2) are given
by

ap({c} n_
j d7 5c( 7’

where

J(?)=—M\72( OF ot kaT

bp
5¢(7) &(7))’ 34

where M is a mobility. (We have neglected here the possibility of M
depending on ¢, in which case MV? should be replaced by V- MV.) The
Fokker—Planck equations have been derived and discussed by a variety of
authors. In particular Langer and coworkers have discussed them in the
context of first-order phase transitions (Langer, 1967; Langer and Turski,
1973).
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An equivalent formulation of the dynamical models can be given in
terms of nonlinear Langevin equations for the variables y:

aw,
= M;— + , 3.5
-2 My w, & (3.5)
where £ is a Langevin noise term (random force) which is taken to be
Gaussian distributed. Its mean value and correlation are

(G(7,0 =0 (3.6)

and
(G(F,0) G(F', ")) =2kgTIi6(F = 7') 6(1 — 1), (3.7

where I is the symmetric part of the matrix M; (generalized Onsager
coefficients). We will now discuss several models of relevance to this article,
which are particular examples of (3.5)-(3.7). Reviews of these models
within the context of critical dynamics have been given by Kawasaki (1970,
1973), Hohenberg and Halperin (1977) and Gunton (1979). We will in
general follow the model designation given in Hohenberg and Halperin
(1977). Their article contains a comprehensive discussion of these phenom-
enological models and has an excellent summary of the applicability of
these models to a variety of physical systems.

One of the systems which we will primarily consider in this article is a
simple binary alloy consisting of two atomic species A and B. (Its magnetic
analog is an Ising ferromagnet.) Below its critical point such an alloy phase
separates into an A-rich and an A-poor phase. The dynamical model for
this system is taken to be

al(:t’—‘)=—v-7(?,t)+ 87,0, (3.8)

where as noted above the order parameter y =c(7 , t) denotes the local
concentration of one of the species. The 1nterd1ffu51on current J ( 7)is

= OoF
] ( r) = — MV m, (39)
where M is a mobility. The local chemical potential is
O6F

u(7) =) (3.10)

so that (3.8)—(3.9) describe a diffusion process. The Ginzburg-Landau free
energy functional F{c} is

Fic} = J' d7 K| Ve2 + f(o)}, (3.11)
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where it is assumed that c(7) contains only spatial variation with wavev-
ector smaller than some cut-off A. The usual “c*” approximation for f(c)
is

flo) = ——rc t3 2 (3.12)
where r > 0 for T < T,. Thus, below the critical point, f(c) has the double
well structure mentioned earlier. The same free energy functional F was
introduced independently by Cahn and Hilliard (1958, 1959) in a study of
metastable states. (They discussed the droplet profile, activation energy
and surface tension, as we briefly summarize in Section VII.G.) The noise
term ¢ satisfies (3.6) and (3.7), the latter taking the form

(E(F, 1) E(F' 1))y = —2kgTMV2S(F - 7') 8(t —¢').  (3.13)

The physical source of this noise term { is assumed to be the phonon modes
of the alloy, whose time scale is much smaller than the slow diffusive
process of interest here. The equations (3.8), (3.9) and (3.11) yield the
explicit nonlinear diffusion equation

dc 2 of
E— MV { KV2C } C (3.14)
With (3.12) this becomes
= MV2
o = MV*{(-KV? - r)c+ uc’} + L. (3.15)

This model is known as model B in critical dynamics (Hohenberg and
Halperin, 1977). It is the continuum analog of a kinetic Ising model in
which neighboring A and B atoms are allowed to exchange lattice site
positions with some specified transition probability (Kawasaki, 1972). The
dynamical properties of this lattice model have been studied in cluster
dynamics theories of nucleation and spinodal decomposition (Section VII)
and in computer simulation studies (Section IX).

A closely related model is model A, in which the order parameter y is
not conserved (in contrast to model B). Its equation of motion is thus given
by the analog of (3.14) or (3.15), i.e.

-
wa(tr) _ _M{_sz 3f(1/’)} + E(7) (3.16)

or
"’V’a(t’) = —M{(—-KV2 = )y + up’} + £(F) (3.17)
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with the Gaussian noise £(7) satisfying (3.6) and (3.13), with —MV?*—
M. Model B is the continuum analog of a kinetic Ising model in which a
single “spin” at a lattice site is allowed to flip with some specified transition
probability (Glauber, 1963). We will discuss various nucleation and domain
growth properties of model A in Sections VI, VII and XIII. This model
is thought to describe the critical dynamics of various alloys, such as FesAl,
NizMn and CuZn (B-brass), which undergo an order~disorder transition.
The equilibrium properties of such alloys can be described in terms of an
antiferromagnetic Ising model (It should be noted that models A and B
are often called time-dependent Ginzburg-Landau (TDGL) models.)

Another model of interest involves the coupling of two dynamical vari-
ables, a nonconserved order parameter y and a locally conserved variable
c. This is model C, whose equations of motion are

Y _ _

P "’61/; + &y, (3.18)
o _ py2dF

at—FCV &+CC, (3.19)

with
_.1 2 1 2 u 4 v 6
= = -= + = -
F=[ a7 {SKIVyP-SrivP+ Slvlt+ Zlvi
-1
+[§6|Vc|2+-xg—cz—Ac+YCW|2}- (3.20)

(We have included a gradient term in ¢ and a y# term which are neglected
in the Hohenberg-Halperin (1977) definition. It should also be noted that
4 is real for model C. However, the same free energy appears later on,
in (3.30), but in the latter case y is complex.) The noise terms {, and &
satisfy (3.6) and the relations

(o, DEWF ', 1)) = 2kaTL, (7 = 7Y — 1), (3.21)
E(F,08(7', 1)) = —2kgTTV7T -7t —1). (3.22)

The cross-correlation functions are zero. The free energy functional in
(3.20) was proposed by Halperin, Hohenberg and Ma (1974) for their
models C and D. It has also been derived for metamagnets by Nelson and
Fisher (1975). (The physical significance of various coefficients in (3.20)
is discussed in both these papers.) In the latter case y represents the local
staggered (or sublattice) magnetization and c the local magnetization. A
discussion of nucleation and spinodal decomposition below this metamagnet
tricritical point, which is based on (3.18)—(3.22), is reviewed in Section XII.
The results of a computer simulation study of a two-dimensional meta-
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magnet with Kawasaki spin exchange (which is a lattice analog of model
C) is also given in Section XII. Various other applications of model C, as
well as an analysis of its critical and tricritical behavior, are discussed by
Siggia and Nelson (1977) and Hohenberg and Halperin (1977).

Models A, B and C are purely relaxational models. (The antisymmetric
part of M;; in (3.2) is zero for these models.) For many interesting phase
transitions, however, such as the gas-liquid and binary fluid critical point
transitions and the *He—*He tricritical and A-line transitions, hydrodynamic
modes occur in the equations of motion. For a pure fluid it is well known
that there are four hydrodynamic modes (Landau and Lifshitz, 1959).
These include two viscous modes and a thermal diffusion mode, as well
as a sound wave. However, sufficiently near the critical point and for
frequencies small compared to ck and c£! (where c is the sound velocity
and & is the correlation length) one can ignore the sound waves (whose
frequencies are much higher than the diffusive modes for k ~ £7). Thus
a model H has been proposed to describe the critical dynamics of fluids,
whose equations are

Y SF SF

= ;Lovzw — gV -6—_; + &y, (3.23)
3 _ oy [py20F OF 2

=T [V e g+ T, (3.249)
F=Fy— fd?{h('r’,z)1p+2(r,:) Jh (3.25)
Fo= fd?{mwzplz— ry? + 5—1/;‘-# 173 (3.26)

These are the Hohenberg-Halperin (1977) equations for model H, as
developed by Kawasaki (1970), Halperin etal. (1974) and Sig_gia etal.
(1976). The various quantities involved are the transverse part, j, of the
momentum density, a thermal conductivity 4 and shear viscosity 7, a
coupling constant g, and infinitesimal applied fields # and A. The operator
T projects out the transverse part of the vector on which it operates
(Top = Oup — kokg/k?). The noise terms ¢, and { satisfy the appropriate
fluctuation—dissipation analogs of (3.6) and (3.7). Finally, the order par-
ameter ¥ in (3.23) is a certain linear combination of the local energy and
mass densities (Hohenberg and Halperin, 1977). Nucleation theories for
pure fluids have been developed which are based on versions of model H,
as we discuss in Section IV.

It is well known that model H also describes the critical dynamics of
binary fluids. This is not immediately obvious, since a binary fluid has six
conserved dynamical variables, its energy density, two mass densities (for
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the A and B constituents respectively) and the three components of the
momentum density j. There are five hydrodynamic modes (Landau and
Lifshitz, 1959), four of which are diffusive. These consist of a thermal
diffusion mode, a concentration diffusion mode and viscous relaxation
modes for the two transverse compoments of j. The fifth mode is a
propagating sound mode. As has been shown by a variety of authors (see
Hohenberg and Halperin, 1977) the binary fluid belongs to the same
dynamic universality class as pure fluids. Thus with an appropriate iden-
tification of variables, model H can be used to describe binary fluids.
Theories of nucleation and spinodal decomposition in binary fluids have
been given, based on simplified versions of model H, as we review in
Sections IV, V and X. However, it should be noted that no first principles,
nonlinear theory of spinodal decomposition has been developed for model
H itself, due to the complexity of the equations of motion.

A final model which we will discuss in this review describes *He-‘He
mixtures (Siggia and Nelson, 1977). The equations of motion are given by

oy W, W . W

—_— - — —_— —4 .

Y 2Foaw,, gy 3 gy~ Eys (3.27)

ac , W , oW ( . 6W>

—_= _— - + .

Y AV > + LoV 5 +2g, Im|y v ¢, (3.28)

g _ , W , W ( . 6W)

ot = KV _(Sq + LoV ——(SC + Zgl Im Y —61p* + Cq’ (329)
where

W=F+ éfd?C"qz (3.30)

with F defined by (3.20). (This choice of W includes as term Ac not included
in the original Siggia and Nelson (1977) model, but introduced by Hoh-
enberg and Nelson (1979).) The noise terms have correlations given by

(EAF, 0 (F' )y =4ReId(7 — 7")6(t - 1t'), (3.31)
E(F,DE(F', 1))y = 2AV(T — 7Ot - 1), (3.32)
G708, 1)) = —2K V(7 - 7)(t — 1), (3.33)
(C(F, D E(F ", 1)) = —2L V(7 — 71 8(e - 1), (3.34)

with all other cross-correlations equal to zero. The superfluid order par-
ameter 1 is complex, with an amplitude || and phase 6. The variables
c and q are the local concentration of *He and the “entropy” respectively.
An interesting feature of superfluid *He~*He mixtures is the existence of
a second sound mode not present in normal binary fluid mixtures. The
physical significance of the various kinetic coefficients Iy, Koy, Lg, 4 as
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well as coupling constants g; and g, are discussed by Siggia and Nelson
(1977) and Hohenberg and Nelson (1979). We will summarize a linearized
theory of spinodal decomposition *He—*He (quenched below its tricritical
point) in Section XII. As well, we discuss some aspects of a nucleation
theory for this system in the same section.

Finally, we should note that all the dynamical coefficients which have
been introduced in the models discussed here (i.e. the matrix M;; in (3.2)
or the various coefficients corresponding to its symmetric part I; in (3.7))
are so-called “bare” coefficients. Their values depend on the particular
cut-off A implicit in the equations of motion. Namely, spatial variations
in the order parameter only include Fourier components for which the
magnitude of the wavevector k is less than A. These bare coefficients are
finite at a critical point. However, when one renormalizes these equations
of motion by including fluctuations on a length scale of the order of the
correlation length &, the renormalized coefficients usually become singular
at the critical point (some vanish at 7 for the relaxational models while
others diverge at 7. for models with hydrodynamic modes (Hohenberg and
Halperin, 1977). It should be noted that in the theories of nucleation and
spinodal decomposition which we review in this article it is the physically
meaningful, renormalized coefficients which occur in the final results.

Since some of our discussion of first-order phase transitions involves
studies near a critical point, we summarize in Table I some of the standard
critical exponent notation used in this article. (It should be noted in Table
I that for T> T similar exponents can be defined, but without primes.
Scaling theories assume that the corresponding exponents for T = T, are

TasLE I. Notation for critical exponents. () denotes the order parameter, H its
conjugate field and &= (7/T — 1) = 0. For simplicity, we consider only “Ising-
like” systems, for T < T..

Conditions
Exponent Definition H {y) Quantity
o Cu~¢e"” 0 0 Specific heat
at constant field
B (y) ~ ¢ 0 #0 Coexistence curve
value of ()
Y xr~ €7 0 #0 Zero field isothermal
susceptibility
S H~|( y)]" sign({y)) #0 #0 Critical isotherm
v E~¢ 0 #0 Correlation length
z T~ (g7Y) 0 *0 Characteristic time
constant

y
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equal.) Detailed reviews of critical phenomena are given in the texts by
Stanley (1971), Pfeuty and Toulouse (1975) and Ma (1976).

B. Coarse-grained free energy functional

At this point we discuss in more detail the coarse-graining procedure
involved in obtaining the free energy functional F for the continuum models
defined by (3.1) and (3.2) or (3.5)~(3.7). For simplicity we will restrict our
attention to a simple binary alloy, such as model B, whose free energy
functional given by {(3.11) and (3.12) contains the essential features common
to most systems of interest. We consider a microscopic model of a binary
alloy in which a given site i of the lattice can be occupied by either an A
or a B atom. Such a model can be described in Ising-like language, where
one introduces a variable ¢; = +1 to specify that the site is occupied by an
A or B atom respectively. (A more complete discussion of such a model

. is given in Section IX A, using a slightly different notation in which ¢;—

0;.) A microscopic state of this model is then given by some specific
configuration {¢;}, with a corresponding Hamiltonian H{c;}. The appropriate
Boltzmann factor for finding such a state is, of course,

P{c;} = e FHCl/7, (3.35)

where Z is the partition function
Z= ~BHe}, 3.36
e (3:36)

A coarse graining of this system can be carried out by dividing the original
lattice into hypercubical cells, of edge size L. One then introduces an
average concentration variable c, for the ath cell,

co=L71 2 Ci (3.37)

i€ athcell

and defines a coarse-grained Helmholtz free energy functional F{c,}

e~ PFica) = )’ e~ PHI (3.38)
Ci

The prime in (3.38) denotes that the sum is over all microscopic configur-

ations {c;} consistent with the constraint that the cell configuration is
specified by {c,}, with a specified average concentration ¢;. One seldom
explicitly calculates the partial trace in (3.38). Rather, one assumes that
the result is given by a lattice version of the Ginzburg-Landau free energy
functional, i.e. ‘

Flea} = 2 f(ca) + (%QKL(C‘, —cp)?+. .. (3.39)
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with the free energy density f(c,) approximated by

flea) = —drick+ usch +. . .. (3.40)
The sum () in (3.39) is over nearest neighbor cells. The coupling constants
(rr, ur, Kr,...) depend on the initial choice of cell size L. For such an

expansion to be valid, with the coupling constants depending on temper-
ature in a nonsingular way, it is necessary that L < £, where & is the
correlation length. Sufficiently near 7., where & becomes arbitrarily large,
one can choose L > ay (where qy is the lattice spacing). One can then
replace (3.39) by a continuum approximation in which F{c,}— F{c}, given
by (3.11) and (3.12). In eqns (3.11) and (3.12) only Fourier components
{cg} of ¢(r) with |k| < A are included, where A is a cut-off analogous to
' 5

The above coarse-graining procedure is well known and is the starting
point for various renormalization group calculations (Wilson and Kogut,
1974; Binder, 1981b). The interesting point for first-order phase transitions
is that below T the free energy density f, given by (3.12) or (3.40), is a
double well potential, as shown in Fig. 6. Furthermore, the shape of this

FiG. 6. The coarse-grained free energy f(c). The function f is the corresponding
equilibrium function in the limit of an infinite coarse-graining size.

double well potential and in particular the location of its spinodal points
(where 9%f/ac* = 0) depends on the (arbitrary) choice of cut-off (L™! or
A) which one chooses. We will discuss the implications of this latter point
in Section II1.C.

Before doing so, we note two important points with respect to this
coarse-graining procedure. The first is that if one performs the remaining
partial trace over the {c,} in (3.38) (or the analogous functional integral
over the functions ¢(7) using (3.11)), one will obtain the equilibrium free
energy density f(co), where ¢, is the average concentration of one of the
components of the binary mixture. Namely,
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f(co) = —kgT lim V™ 'In j 8¢ e~ Flel/keT (3.41)
Vo

where the integral denotes the functional integral over the space of functions
{c(7)}, subject to the constraint

C= V‘lfc(_r’) d7, (3.42)

with F{c} given by (3.11). The resulting free energy density f(co) is a convex
function of the concentration, in contrast to f(c), as shown schematically
in Fig. 6. The corresponding chemical potentials for f(c) and f(c) are shown
in Fig. 7. Since f(c) is simply a straight line between the equilibrium
concentration values c, and cg, it clearly contains no useful information
about metastable and unstable states. On the other hand, one can define
the analytic continuation of the equilibrium free energy density f(cy) of

T<Te

L L >

Ca Cp c
F1G. 7. The chemical potentials u(c) and f(c) corresponding to the coarse-grained
free energy f(c) and equilibrium free energy f(c) respectively.

the stable state into the metastable state. This has been discussed in Section
II within the context of a classical droplet model. We discuss a much better
field theoretical derivation of this analytic continuation in Sections IV.B
and IV.E. The interpretation of this is that the real part of the analytic
continuation of f(cy) (shown as the dotted lines in Fig. 6) describes the
equilibrium properties of the metastable state (Section IV). On the other
hand, the coarse-grained free energy function, f(c), defined by (3.12), say,
is crucial for understanding the nonequilibrium properties of metastable
and unstable states as described by equations of motion such as (3.14) or
(3.15). Thus there are two quite different free energies, the coar_se-grain;d
f(c) and the analytic continuation of the equilibrium free energy f(c), which
arise in describing metastable states. This important point has been made
most explicitly by Langer (1974).

Finally, we discuss a major issue concerning the coarse-grained free
energy functional. Namely, what is an appropriate choice for the cut-off
A implicit in the equations (3.11) and (3.12) (or more generally in the
appropriate free energy functional for any one of the phenomenological
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models of interest). This choice is determined bythe fact that one is
interested in describing the dynamics of these phasiseparation processes
on a length scale of the bulk correlation length ¢ at the temperature
T < T, to which a given system is quenched. Therexre, one chooses this
cut-off to be A7 = a&, where §is the equilibrium carelation length at the
temperature T < T, and « is a number of order urty. The rationale for
this choice is the following: first, the cut-off A~! musbe large enough that
the continuum approximation makes sense, i.e. A™> ag, Where qg is the
lattice constant. Second, it cannot be much largeithan the correlation
length £ because then the cell could contain two pases and one would
have lost the details of the phase separation Wth one is interested in
describing. Another practical reason for choosing A' = a&is that one has
included all the critical fluctuations in the partial sin involved in (3.38).
Thus one would expect that in the dynamical theorto be described later
various quantities can be reasonably well approximted by their thermo-
dynamic values.

C. Renormalization group theory

Since the determination of the free energy functionafor a coarse-graining
size of the order of & is important for a dynamical ’scription of a given
system, we summarize here existing work on this sub :t. The first attempts
were quite phenomenological. They involved dete 1ining relevant par-
ameters in (3.11) from extrapolations of measured ermodynamic quan-
tities (Rundman and Hilliard, 1967; de Fontaine, 19 ). Later, in a theory
of spinodal decomposition discussed in Section V _anger etal. (1975)
assumed that near the critical point f(c) was given a scaled version of
(3.12), for a coarse-graining size A~ = af (with a .gofied value ot ).
Only one system-dependent parameter, fy, entered their approximation for
f. Its value was determined from known critical exponents and critical
amplitudes of the three-dimensional Ising model.

Subsequent to these phenomenological approaches it was noted that the
evaluation of a free energy functional such as Fic} in (3.11) (or its lattice
analog (3.38)) for different coarse-graining sizes is an example of a renor-
malization group calculation. In contrast to the usual applications of the
renormalization group (Wilson and Kogut, 1974), however, one must
consider double well potentials, such as is shown in Fig. 7. The first
renormalization group calculation of the coarse-grained Helmholtz free
energy functional (3.11) was carried out by Kawasaki etal. (1981). Their
starting point was the usual Ginzburg-Landau free energy functional ((3.11)
and (3.12)) with “bare” coupling constants r and u and an initial cut-off
Ag. (That is, the original functional only includes Fourier components of
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the order parameter {cg; | k| < Aq}.) A renormalized free energy functional
with a new A;= Age™’, where e’ is the length rescaling parameter, was
then computed to first order in € = 4 — d, using differential renormalization
group equations formulated by Nicoll et al. (l‘)’(_ﬂ. As one would expect,
the shape of the double well potential f(c) changes as / varies. (This is due
to coupling constants such as r and u becoming /-dependent.) In particular,
the spinodal curve (the locus of points for which 8f/ac* = 0) is I-dependent.
That is, there is not a unique spinodal curve, but rather a family of such
curves, specified by the coarse-graining size Ag'e’. The free energy func-
tional at the coarse-graining size proportional to § was compared with the
phenomenological form used by Langer et al. (1975). It differed from their
approximate form by additional higher order terms in the fourth-order
‘ polynomial (3.12). (This is to be expected.) In addition, the value of the
; parameter f; obtained in the first-order calculation was significantly less
. than that of Langer etal., but this could be at least in part due to the
* limitations of a first-order calculation for £— 1.

It should be noted that the renormalization group result that the spinodal
curve is dependent on the coarse-graining size had been implicit in an
earlier cluster theory result of Kikuchi (1967). It is also consistent with
predictions by Langer (1974) and Binder etal. (1978) that the dynamical
transition between nucleation and spinodal decomposition mechanisms is
intrinsically smooth; that is, no sharp spinodal line exists in the dynamical
theory.

An alternative Maonte (Carln “renarmalbanti~—

'recently been developed by Bmder (1981b) whlch promlses to be very
'useful in determlmng a coarse-grained free energy functional from micro-

‘scopic models of binary alloys, binary fluids and other systems of interest.
-In this approach, a real space “renormalization group” method is imple-

‘mented by Monte Carlo simulation techniques. One can directly compute
various reduced distribution functionals in the two-phase region, as a
function of cell size. For example, one can compute the joint distribution

\functional p;(c,, cg) for finding cells @ and B with concentrations c, and

cg respectively, for a given cell size L (using the notation of (3.37)). One
can then parametrize this distribution functional by a Ginzburg-Landau-
type approximation and obtain the coupling constants analogous to K, ;.
and u; in (3.39) and (3.40) as a function of cell size. Preliminary results
(Kaski eral., 1983) of such a study of the three-dimensional Ising model
of a binary alloy (Section IX) are shown in Fig. 8, where the coarse-grained
“spinodal curve” for different choices of cell size are shown.

Finally, we note that in principle one should renormalize the dynamical
equations of motion, such as (3.3) or (3.14), rather than just the free
energy functional. An approximate renormalization has been carried out
by Horner and Jiingling (1979) to first order in £ =4 — d, for models A
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and B. Renormalized Fokker-Planck equations (such as (3.3) and (3.4))
are obtained for a new field variable (which is a type of coarse-grained
order parameter), by a formulation in terms of path integrals. Although
this approach appears to be quite interesting, the authors used a simple
factorization scheme to solve the resulting approximate renormalized equa-
tions. This factorization yields some qualitatively correct features of the
dynamics of phase separation, but is quantitatively inaccurate.

|l 4 L-3
o L-4
100
\ & LB
90 |
‘\ x L =8B
80 \
% \\
o
60 | \\
o
50 2
I:\\
40 | N
N
LW
30 A)u
20 87
1.0 Vo&/)u‘"
...—-&""M'..-
e

-04 03 “02 0% O 01 02 03 04 05 08 07 08
(1._3.-0
M
Fic. 8. Schematic dependence of the *‘spinodal” curve on the coarse-graining cell

size L. A scaled form is shown in which the ratio L/ is plotted versus the ratio
of the spinodal value S;; to the equilibrium value M of the order parameter.

-IV. A Field Theoretic Nucleation Theory

A. Basic ideas

We now discuss a formal theory of nucleation due to Langer (1969), which
is based on the semi-phenomenological Fokker-Planck or nonlinear Lan-
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gevin equations discussed in Section III. This formalism has been applied
by Langer and others to a variety of problems including the liquid—vapor
transition (Langer and Turski, 1973; Turski and Langer, 1980), binary
fluids (Langer, 1980), superconductivity (Langer and Ambegaokar, 1967,
McCumber and Halperin, 1970) and superfluidity (Langer and Fisher,
1967; Langer and Reppy, 1970). A variation of this field theory approach
has also been applied by Kawasaki to the liquid—vapor and binary fluid
systems (Kawasaki, 1975a, b; Kawasaki and Gunton, 1976). Although this
theory has only been derived under conditions which require one to be
somewhat below the critical point, it has often been used in the critical
region (Langer and Turski, 1973; Langer, 1980; Kawasaki, 1975b). It seems
quite likely that its applicability near the critical point is justified. However,
the only theoretical work which substantiates this is a “one-loop” renor-
malization group calculation by Houghton and Lubensky (1981) valid to
lowest order in &, where £ = 4 — d. Further theoretical work in this area
would be quite useful. -

In this chapter we outline the formal structure of the theory and briefly
summarize its application to the liquid-gas and binary fluid systemis. We
then discuss within the same formalism the closely related problem of the
mathematical description of the condensation point which we discussed in
Section II in the context of the classical droplet model. An elegant result
emerges from this analysis (also due to Langer, 1969). Namely, the nuclea-
tion rate is proportional to the imaginary part of the analytic continuation
of the free energy from the stable to the metastable phase. This gives a
physical significance to the analytic continuation which is absent in a purely
static treatment. We summarize applications of the field theoretic nuclea-
tion theory to superfluidity and superconductivity in Section XII.

Before discussing the formalism we should note some important quali-
tative similarities and differences between the continuum and the cluster
dynamics theory. To begin with, the two theories have in common the
concept that a metastable state decays via the thermal activation of a
localized, unstable fluctuation. For the case of a gas-liquid or binary fluid
mixture, for example, this corresponds to a droplet of critical size (“critical
droplet”). In contrast to the classical theory of Becker and Déring, however,
this critical droplet need not be a physical droplet of the condensing phase,
as first pointed out by Cahn and Hilliard (1959), but rather characterizes
a certain saddle point configuration. Secondly, no detailed theory of droplet
formation is required in the field theory approach. Indeed only the critical
droplet and its surface deformation, as well as its initial growth rate, are
required. This is on the one hand a great advantage in that one need not
worry about the difficulties involved in giving a precise definition of clusters
or in obtaining a mathematical solution of their kinetic equations (Section
VII). On the other hand, it is a disadvantage if, in addition to discussing
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the birth of droplets (nucleation theory), one needs also to discuss their
growth. Unfortunately a satisfactory theory of recent experiments on binary
fluids near the critical point requires a statistical theory of birth and growth,
as we discuss in Section X. At the moment a first principles field theory
of nucleation and growth has not been developed.

We now outline the basic ideas involved in the field theory calculation
of the nucleation rate. To do this we first note that the stationary state
equilibrium solutions of the Fokker-Planck equations (3.1) and (3.2) are
given by

Py e~ FLWKT (4.1)

(where for simplicity we omit the subscript i in {y;}), where F is equal to
the coarse-grained free energy functional F plus certain constants of the
motion. For example, for the binary alloy or binary fluid,

Fic}=F,{c}=F - ufc(?) d7, 4.2)

where u is the chemical potential. For solutions given by (4.1) the current
Jis zero. The underlying idea concerning the field theoretic characterization
of nucleation is that the states of metastable and stable equilibrium lie in
the vicinity of configurations {1} which minimize F and therefore maximize
Peq- For example, imagine that a system such as a binary alloy is in a stable
one-phase state very near its coexistence curve. This equilibrium state
corresponds to a minimum of F which is a spatially uniform solution of the
Euler-Lagrange equation, 6F7 8¢ = 0. Itis clear, however, that there should
be another spatially uniform solution of this equation which represents the
metastable state at the same chemical potential. Thus the distribution
function is a doubly peaked function of the concentration, with its maxima
at the stable and metastable values of the concentration. The larger peak
corresponds, of course, to the stable phase, while the smaller peak cor-
responds to the metastable phase. The contribution of this second peak to
the partition function (given by the trace of p,) is, however, negligible in
the thermodynamic limit, since it is not the absolute maximum of the
distribution function. Now slowly change the chemical potential to prepare
the system in a metastable state at a point just on the other side of the
condensation point. Then the two maxima of the distribution function
change roles. What was the stable extremum becomes the metastable
extremum and vice versa. It is the decay of the system from this metastable
state which we wish to describe in nucleation theory.

The field theoretic description of nucleation is based on the following
assumptions of Langer. The decay of a metastable state occurs when a
configuration {y} located in the vicinity of a metastable extremum, say
{40}, moves to the vicinity of another minimum of lower F. (In the simplest
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cases this will be the stable state.) The most likely trajectories are those
which pass near the lowest intervening saddle point of F, say {}. The rate
of probability flow across this saddle point {} then determines the nuclea-
tion rate I. As we will show in Section IV.B, this saddle point describes
a configuration in which a single, critical droplet of the more stable phase
is located somewhere in a spatially homogeneous metastable background
which is everywhere the same as the metastable configuration {yy}. It is
in this sense that only a single length scale, the size R, of the critical
droplet, enters the field theoretic formulation of nucleation theory. The
steady state solution of interest is one with a constant probability flow
across {y} from the metastable to the stable extremum (Fig. 9). To find

1

Metastable Region @

Path of steepest descent

Stable Region
Saddle
Point

Fic. 9. Schematic illustration of the probability current flowing from a metastable
state to a stable state across a saddle point.

this current J, we obtain the steady state solution of (3.1) in the neigh-
borhood of {}. This is done by expanding F{y} around {y}, which leads
to a functional linear Fokker-Planck equation with boundary conditions
analogous to the ones used in the Becker-Doring theory. The nucleation
rate is finally obtained as the integral over the plane perpendicular to the
current J in the above described steady state solution, as we discuss in
more detail in Section IV.C.

B. A critical droplet solution of the saddie point equation

Before outlining the general results of the nucleation theory, we discuss
some properties of the Ginzburg-Landau model which will be useful for
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our discussion in Sections IV.D and IV.E. As noted earlier, this model is
relevant for the discussion of systems such as simple fluids, binary fluids
and binary alloys. In particular, we will be interested in obtaining a solution
of the equation for the saddle point which describes the profile of the
critical droplet associated with nucleation phenomena in such systems. The

prototype free energy functional F(y) for these systems is the Ginzburg-
Landau free energy for a “y*' model,

F(y) = fd?{tlvwlz —iry? + %w“ - Hzp}. (4.3)

This is of the form (3.12), where y denotes the order parameter, H denotes
a small magnetic field for magnetic systems or a chemical potential in the

case of fluids, binary fluids or ‘binary alloys (e.g. (4.2)). Th_partition___

function Z(H) is defined by the functional integral

Z(H) = f Sy e FwksT (4.4)
and the expectation value of the order parameter is defined by
W =27 [ by y(F) e o 4.5)

We are interested in the case r > 0 in (4.3), so that we are dealing with a
double well potential

V(y)=f(y) - Hy (4.6)
= —dry? + %w‘ - Hy. 4.7)

There are two minima of V(y), y.(H). For H > 0, v, describes the stable
phase and y_ the metastable phase, whereas for H < 0 the roles of v, and
Y are reversed.

The maxima and minima of the integrand in (4.4) are solutions of the
Euler-Lagrange equation

OF -, V(y)
——— = —V2y(¥ =0;
oy(7) YO S T @9
i.e.
V2(7) = —ryp(7) + uy(7) - H. (4.9)

The spatially uniform solutions of (4.9) are . (H). In the limit H— DE
these tend to the limits + 1), where v, = V/7/u. This is the mean field theory
prediction for the coexistence curve.

A solution of the one-dimensional form of (4.9) which is of particular
interest describes the planar interface between the two equilibrium phases
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(H = 0). This is the well known profile
Y.(z) = Vrjutanh V2(z — z,)/E (4.10)

for an obvious choice of boundary conditions. In (4.10) z denotes the
direction normal to the planar interface, zo denotes the centre of the
interface and £is the classical correlation length & = (2r)~¥2. (This solution
has many names in the literature, including kink, soliton and instanton,
depending on the context in which it is used.) More accurate theories exist
for the interface profile, including renormalization group theories by Ohta
and Kawasaki (1977), Rudnick and Jasnow (1978) and Jasnow and Rudnick
(1978). Current theories of nucleation only use the approximation (4.10),
however.

To understand the role of solutions of (4.9) in nucleation theory, we
first consider the problem of obtaining a systematic, mean-field-like evalu-
ation of the free energy of a stable one-phase state at a point near the
coexistence curve. Consider, for example, a small field H >0, with a
corresponding average value ¥, = () > 0 which describes the stable phase.
Then the integrand in (4.4) has an absolute maximum at the spatially
uniform value (7 ) = .. A systematic evaluation of Z( H) may be carried
out by expanding F() around v,

F{y(P)}=V[f(y.) —Hy.] +4% ” A7 a7 ' w(F) Mo(F") +. ... (4.11)

Her V is the volume of the system (not to be confused with the potential
V(v)) and f(v) is defined by (4.6) and (4.7). The operator

- GF

" su(F)S(F)

Upon inserting (4.11) in (4.4) and performing the resulting Gaussian
integrals one obtains

(4.12)

W«».

Z(H) = Zy(H) = e~ VIfCps) — HyVksT [det (ﬁ%ﬂ_m (4.13)

If the eigenvalues of M, are denoted as {A}o)} we obtain the formal result

Z(H) = Zo(H) = e V¥~ HyuJksT H <—_2’;’(‘0‘;T) W. (4.14)
y
This is the standard mean-field approximation for the partition function
which could be extended by a systematic perturbation expansion which we
do not discuss here.
This expression is in itself not of particular interest to us. What is relevant
to note is that the integrand in (4.4) has another maximum at a spatially
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uniform y(7 ) = y_ which corresponds to the metastable solution of (4.9)
for H> 0 (Fig. 10). The contribution of this relative maximum to (4.4)
could be obtained by precisely the same procedure as above. One would
perform a Gaussian expansion around .. The result would be of the form
(4.14) (with v, replaced by y_) and is thermodynamically negligible in

=Y

FiG. 10. The stable and metastable values, 4. and -, of the order parameter. For
a binary fluid the order parameter is the concentration and H is the difference of
the chemical potential from its condensation value.

comparison with the contribution from the absolute maximum. Now, how-
ever, imagine smoothly changing the field H from its original small positive
value to a small negative value, such that the average value of 9 remains
positive. This corresponds to changing the system from its original stable
state to a new metastable state. Then, as described earlier, the roles of the
two maxima interchange. It is therefore natural to identify the metastable
free energy corresponding to this analytic continuation of the free energy
of the stable phase as the logarithm of Zy(H), given by (4.14). (It is
understood that . > 0 in (4.14) now means the metastable value of (1)
for H <0). Equation (4.14) is the field theoretic analog of the classical
droplet model result, eqn (2.7), for the metastable free energy.

The next, essential observation in the field theoretic formulation is that
there is another extremum solution of (4.9) which is near the metastable
extremum .. This spatially nonuniform, saddle point solution is a maxi-
mum of F which describes a critical droplet The analysis of this saddle
point solution was originally carried out in considerable detail by Cahn
and Hilliard (1959). Langer (1967, 1969) then analyzed the nature of the
fluctuations about this saddle point, as we summarize in Section IV.E. We
briefly outline here the form of this saddle point solution. When |H| is
sufficiently small, one finds a solution that one might guess from physical
arguments. Namely, the saddle point solution y(r) describes a radially
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symmetric droplet of the nucleating phase embedded in a spatially uniform,
metastable background. Its profile is accurately approximated by the profile
of the planar interface (4.10). Its form is thus

P(r) = H(ys + 9-) + H(y+ — y_) tanh[(r — RY/V2E],  (4.15)

where R is the droplet radius. The droplet interface thickness is given by
the classical correlation length £ This solution describes a droplet con-
figuration in which y(r = 0) = y_ and y(r— ) = y,, i.e. a droplet of
the stable phase in the metastable background. This is an approximate
solution of (4.9) for sufficiently large droplets such that R > £. To determine
the critical droplet size R., one maximizes the free energy of formation of
such a droplet by varying R. Since this free energy is just AF(R) =
F{y} — F{y.}, one easily finds that

- 4
AE(R) = - {R%Aw + 4R, (4.16)
where Ay = (¢, — y_) and o is a surface energy e
dye(2) [°

(4.17)

-1

Thus the usual competition between a bulk and surface energy yields the
expression for R.:

dz

20
R.= . 4.18
[HIAY (418
The corresponding activation energy is
2 1670°
PN R e .
AF=AF(R,) N AGVE (4.19)

For the binary fluid which we discuss in Section IV.D, Ay— Ac = ¢g —
ca (see Fig. 1) and H— 8u = u — p., where u is the condensation value
of the chemical potential. We will consider the consequences of this critical
droplet and its fluctuations in the next two subsections.

C. Nucleation rates

We now consider the main goal of this section, which is to outline the
formal calculation of the nucleation rate for a given model. The basic idea,
as noted in Section IV.A, is to find a steady state solution of (3.1) which
describes a constant current from the metastable minimum across the
saddle point to the more stable minimum (Fig. 9). To do this one imposes
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boundary conditions in which the stationary distribution function coincides The second point is that there is a set of zero eigenvalues. These arise
with the equilibrium solution on the metastable side and is zero on the from the fact that i does not possess all of the symmetries of F{y}. For
stable side. This requires a continuous removal of droplets larger than the example, changing the physical location of the fluctuation defined by v
critical size R. and a continuous replenishment of the metastable phase. i leaves F invariant. Thus the d translational modes of the droplet of a d-

dimensional system should have zero eigenvalues. Similar situations occur

A generalization of the Becker-Déring method was made by Landauer
in superfluids and superconductors, due to phase invariance (Langer and

and Swanson (1961) who showed how to use it for a system of arbitrarily

many degrees of freedom. Langer extended the Landauer—Swanson ' Ambegaokar, 1967; Langer and Fisher, 1967; McCumber and Halperin,
approach to the field theories discussed here. Since his 1969 paper is a 1970; San Miguel and Gunton, 1981).
model of clarity, we simply sketch the solution and indicate the origin of l_ To obtain the nucleation rate we need to determine the probability
each of the terms in the final expression for the nucleation rate. The first ' current whose components are given by (3.2). The steady state solution
point is to restrict the calculation to the vicinity of the saddle point 1, of (3.1) requires that the divergence of this probability current vanishes,
since the surface integral of the current which crosses this point yields the “i.e. for the general class of models discussed in Section 111
nucleation rate. As a consequence it is natural to write the desired steady ' 3 oF 5 |
state distribution function as % a_1/7]\41.’. (ﬁp + kBTa_f;«) = 0.“ (4.25)
ply} = E{y}e~Fwr 4200 | ’ :
where one must obtain a solution for E{y}, which we do not discuss. It is A solution of (4.25) for p can be obtained in the vicinity of the saddle’
natural to expand F{y} around the saddle point . Thus for the general point, using (4.20) and (4.21). From the solution for p one then obtains
class of models discussed in Section III, one has (using the same notation { the probability current from (3.2). The nucleation rate / is calculated by
as in that section) - integrating this current across a surface which passes through the saddle
5 - oint. The final result can be written in the standard form
Fiyt = F+4 D u Mg, + . . ., (4.21) P
if

- ‘ I = Iye AFkeT (4.26)

Wh i = ;= i =
ere u; = ¥ — i, F= F{y} and| where
25 o )
My==L @2 | AF = F{ip} - Fiyo) (4.27)

T dwayly

It is again natural to diagonalize the quadratic form in (4.21), which requires\
finding the eigenvalues {A;} of the matrix M. For the purpose of our ]

and where Yy, denotes the metastable minimum (which would be ., for
the “y** model). The quantity I, is given by

subsequent discussion in Sections IV.D. and IV.E. we note that for the | x|
single variable, “y*” model defined in (4.3), (4.21) becomes Iy =5 5. (4.28)
. _ \
Hy}=F+ 5[[ d7 d7 'w(F)M(7, Fu(ry +.. (4.23) The quantities « and £, are often termed the dynamical and statistical“
where | prefactors, respectively. They have a very natural interpretation. The !
‘ dynamical prefactor | x| describes the initial exponential growth rate of the
- -, &F | unstable mode at the saddle point. In general it is the negative eigenvalue
M(r, 7)) = W i}‘ (4.24) of the matrix M. This eigenvalue equation for k is obtained by linearizing
‘ ' the nonlinear Langevin equation (3.5) about the saddle point ¥ (neglecting
and u(7) =yp(7) — w(7). We will discuss the solution of the eigenvalue ( the noise term).
problem for the “y*” model in Section IV.E. Here we only note two ' The statistical prefactor is
characteristics of the general eigenvalue spectrum of the matrix M in | \
(4.22). The first is that since ¢ is a saddle point there is one negative | Q=Y <2”k3 v (det(M0/2nkBT)>l/2 (4.29)
eigenvalue, say A, < 0. This reflects the instability of the critical droplet. | - |41l det(M'/27kpT) | .
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where M, is the generalization of (4.12), i.e.
&°F
oYidY;

and M is defined by (4.22). The prime in (4.29) denotes that the negative
eigenvalue A, and all zero eigenvalues are omitted. Equation (4.29) can be
written in terms of the eigenvalues {A%} of the matrix (M) defined in
(4.30) and the eigenvalues of M defined in (4.22) as

2rksT\V2 T/ (27kpT\ 12 A9 \1p
o (50 (3 T )
0 (IMI i A i \2mkgT (4.31)

(M) = (4.30)

b
Yo

The prime means the same as in (4.29). The product over the {A®}
eigenvalues arises from the partition function for the metastable phase
(given by (4.14) for the “y*” model). This partition function arises from
normalizing the stady state distribution function p (given in (4.20)) such
that its integral over the metastable region in function space be unity. This
is one of the Becker-Doring boundary conditions mentioned earlier. The
remaining factors in (4.30) arises from performing Gaussian integrals of
exp(—F{y}) (using (4.21)) in the vicinity of the saddle point. The contri-
bution of the zero eigenvalues is given by V. This is the volume of the
subspace of y space which is spanned by the set of configurations of
which leaves F invariant. ¥ is proportional to the volume V of the system,
as it must be since the meaningful measure of nucleation is I/V. Finally we
note that AF in (4.27) is just the excess free energy required to form a
nucleating droplet of the critical size R. (e.g. (4.18)) in a metastable state.

Equations (4.26), (4.27), (4.28) and (4.31) thus provide the basis of a
first principles statistical theory of nucleation for any system described by
the Fokker-Planck equations (3.1) and (3.2). It should be noted that this
derivation assumes that the degree of supersaturation is small (e.g. H is
small). As well, dynamics enters the calculation of the nucleation rate only

through x in (4.28). We discuss the calculation of x for fluids and fluid
mixtures in the next section.

D. Simple models of nucleation in binary fluids and liquid—gas
transitions

We now illustrate these formal ideas for the case of the liquid-gas and
binary fluid transitions, to obtain the nucleation rate near their critical
points. A hydrodynamic model of the liquid—gas transition was first studied
by Langer and Turski (1973), to discuss supercooling and condensation
near a critical point. Kawasaki (1975b) considered the same problem, as
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well as nucleation in a binary fluid, using similar hydrodynamic models but
a somewhat different calculational scheme. The Langer-Turski and
Kawasaki theories are equivalent if one corrects a small error made in the
original Langer—Turski analysis (J. S. Langer and L. A. Turski, private
communication; Kawasaki, 1975b; Turski and Langer, 1980). Since there
is a close parallel between the liquid—gas and binary fluid transitions, we
will treat both cases simultaneously below, using the notation for the binary
fluid. At the end of this discussion we compare the field theoretic predictions
with the appropriate form of the Becker-Doring theory. We will see that
although in principle the two theories make different predictions for the
nucleation rate, the difference is quite small unless one studies nucleation
extremely close to the critical point. We will discuss the agreement between
these theories and the experimental measurements on critical fluids in
Section X.

We begin by discussing a suitable dynamical model for the binary fluid.
As noted in Section III this is given by the analog of model H, eqns
(3.23)(3.26), with the order parameter being the local concentration
c(7). Kawasaki (1975b) has, however, shown that the nucleation rate
which one obtains from this model is the same as that obtained from a
simplified model. In this latter model one neglects the transverse velocity
modes, but replaces the bare mobility which enters (3.23) by a renormalized
mobility M. Correspondingly, one replaces the bare diffusion constant by
arenormalized diffusion constant D. Thus, to keep our discussion as simple
as possible, we will consider only this simplified diffusion model for the
binary fluid. Similar arguments apply to the gas-liquid system. Here the
important slow variables are the entropy density and the transverse velocity
modes. Therefore, if one begins with model H, which consists of an order
parameter y and transverse velocity modes for the v, one can simulta-
neously treat the binary fluid and liquid—gas systems, identifying 1 as the
local concentration in the former case and as the local entropy density in
the latter case (Kawasaki, 1975b). For the gas-liquid system the simplified
model includes only the order parameter, with the kinetic coefficient being
taken as the renormalized thermal conductivity (i.e. 4 — A in (3.23)).

We first sketch a calculation of the dynamical prefactor k, using the
simplified diffusion model of the binary fluid. Rather than giving a formal
analysis of the eigenvalue problem for x (Langer and Turski, 1973; Turski
and Langer, 1980), we present an equivalent, heuristic derivation which
reveals the basic physics involved (Langer, 1980; Langer and Schwartz,
1980). We restrict ourselves to the situation of small supersaturation, in
which case the initial growth rate of the unstable droplet will be small.
Thus we can use a quasi-stationary solution of the linearized diffusion
equations obtained from (3.8) and (3.9). This means that we look for a
steady state solution of the diffusion equation, V2c = 0. This gives a well
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known result for the instantaneous diffusion field (Reghavan and Cohen,
1975) in the neighborhood of a spherical droplet of radius R:

éc R,
c(r) =C0—R7(1 _E> (432)

Here ¢ .is the supersaturation ¢ — c and ¢ is the initial concentration,
as shown in Fig. 1. The term which involves R./R is a reduction in
supersaturation due to the Gibbs-Thomson effect at the curved surface of
the droplet. The diffusion flux into the droplet is

j=p%

5 (4.33)

r=R

Since this gives the growth rate of the droplet, Ac(dR/df), we obtain the
equation of motion:

d_R=295('1 _R
dt RAc R ) (4'34)

To obtaip the growth rate we linearize this equation around the critical
droplet size. Thus from 6R = —k6R, with 6R = R — R,, we obtain

Déc
| x|

R:Ac
It is convenient to express k and the nucleation rate in terms of a dimen-
sionless variable,

(4.35)

o2 o

= by P (4.36)
2 b¢

2/—31—5’ 4.37)

where .the critical amplitudes Acy and gy are defined in (10.3) and (10.4),
and B is about 1/3. The usefulness of the variable x is that for a constant
composition quench (4.37) becomes

x = 8T/¢T,, (4.38)

where 8T denotes the undercooling. One can express (4.35) in terms of

x and §by noting that in the “y*” model the critical radius (4.18) can be
approximated (Langer, 1980) by

R.=2&/x. (4.39)
Thus we can write x in (4.35) as

1 Dx®
| x| %P (4-40)
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An analogous argument can be used to obtain the initial growth rate of
a droplet of liquid in a supercooled vapor (Langer and Turski, 1973; Turski
and Langer, 1980). In this case the rate of growth is determined by the
rate at which the latent heat produced in the formation of a droplet of the
nucleating phase can be dissipated. This so-called thermal nonaccommo-
dation effect (Langer and Turski, 1973; Turski and Langer, 1980) clearly
involves the thermal conductivity A. Their analysis leads to an equation
similar to (4.34), but with the right-hand side replaced by

(2A0T/Pn;)(R — R.)/R.R*.

Here o, | and n; are the surface tension, latent heat and liquid density,
respectively. Thus

_ 2A0T
|l =723

where R, = 20/(Andu), with 8u being the difference in chemical potential
between the supersaturated vapor and the two-phase equilibrium state at
the given average density. The quantity An = n;— n,, where n, is the
density in the gas phase. For both the binary fluid and gas-liquid transitions
it can be shown that the growth rate of critical nuclei satisfies dynamical
scaling. That is, both (4.40) and (4.41) can be written in the form

ko< E3(E/R.), (4.42)

where £ is the interface thickness or, equivalently, the bulk correlation
length. Dynamical scaling implies that x = £ °f(R./ &), where f(x) is some
unspecified scaling function,

To complete the calculation of the nucleation rate for these fluid systems,
one must evaluate the activation free energy AF and the statistical prefactor
€, which are given by (4.27) and (4.31) respectively. The activation energy
AF of a critical droplet is given by (4.19). This can be rewritten as

(4.41)

AF= 4?” oR? (4.43)
by using (4.18) to eliminate the field. The evaluation of £ (which is a
generalization of the Zeldovitch (1943) factor) involves a calculation of
the eigenvalues {A{(”} and {A;}, which describe fluctuations with respect to
the metastable minimum and saddle point extremum respectively. This has
been done by Langer and Turski (1973) and Giinther et al. (1980) (see also
Affleck, 1980). For a binary fluid near its critical point the final result is

Qo = § (x?) " ey, (4.44)

where x is given by (4.38), C is a constant, and x, is a dimensionless number
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defined in (10.2). The value of x; is of order unity for all the systems so
far studied experimentally. It should be noted that the expression (4.44)
involves interpreting o in (4.42) as the true surface tension. Similarly, the
eigenvalues have been interpreted in terms of thermodynamic quantities.
This has not been justified in a self-consistent fashion, as pointed out by
Langer and Turski (1973). It should be noted that (4.44) also holds for the
liquid-gas transition, with an appropriate redefinition of x.

The nucleation rate per unit volume, 1/V, for the binary fluid then follows
from (4.26)-(4.28), (4.31), (4.40) and (4.44) as

I/V = Cx§ (g) (%))2/3 exp(—xo/x)?, (4.45)

where C; = 1/(2887V/3). it should be noted that this continuum theory
makes precise predictions about the prefactors, D/E and (x/x)¥>. The
x% behavior in particular differs from a detailed droplet model theory of
Binder and Stauffer (1976) (Section VII), which is an improved version of
the Becker-Doring theory. In principle this difference in the prefactor
could be measured, thereby clarifying the theoretical situation. In practice,
however, this distinction is so far unobservable. As a final remark about
the binary fluid expression (4.44) we observe that its validity is for small
values of x. However, Langer and Schwartz (1980) have suggested an ad
hoc scaling extension of this to large values of x, namely

7
et g () (10 ) e (4.46)
§ \x Xo
where ¢ = 10/3 + 1/8 and 4 is the exponent which describes the shape of
the critical isotherm. Equation (4.46) reduces to (4.44) for small x and is
used by Langer and Schwartz in their late time completion theory (see eqn
(10.13)).

An expression analogous to (4.44) can also be obtained for the liquid—
gas transition, using (4.40). A convenient way to write this for purposes
of comparison with the Becker-Doring theory, as well as with experimental
measurements, is ] T

Ly (L) 8 o-(ueom?
v ]O(éT)£ € . (4.47)
Here Jy and 7 are numbers which involve various critical point amplitudes
and 6 =92 — 28— ¥ + 1, using standard notation for critical exponents.
The Becker-Déring prediction (2.19), written in terms appropriate near
the critical point (Langer and Turski, 1973), is

D
V= (JBP)g” g~ (7Y (4.48)
where JBD also involves critical amplitudes.
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The usual test of nucleation theory is a prediction for the cloud point,
as discussed in detail in Section X. This requires obtaining an expression
for the degree of supercooling, 67, as a function of the nucleation rate.
This 6T, can be obtained from (4.47) by noting that a given nucleation
rate, I./V, will occur for 8T = 8T, so that

I/V = Joe?( T,/ 8T.) e~ (wdoTo? (4.49)
This equation can then be solved for 87T to yield
oT. _ a
& (1+bhme” (4.50)

where a and b are given in terms of the quantities %, Jo, V/I. and 8T,/ T..
A similar expression for 8T,/¢ can be obtained from the Becker-Déring
form (4.48), but with different values of a and b. It should be noted that
the ratio 67,/ is only weakly dependent on ¢, with the dependence being
somewhat stronger in the Langer-Turski theory than in the Becker-Ddring
formulation. An explicit comparison of these two theories was made by
Langer and Turski (1973, and private communication) for Xe and CO,,
for two different nucleation rates I./V = 1 and 10°cm3s™!, using the best
available estimates of the various parameters which determine a and b.
The results are shown in Table II. The rather disappointing conclusion is

TaBLE 1I. Values of the parameters a and b which appear in the
critical supercooling equation 87,/ = a/(1 + b n £)? (Langer and
Turski, 1973, and private communication).

Xe CO,

IL/V=1 IV =10° L/V=1 1V = 10°

Becker-Doring equation (4.48)

a (K) 36.41 39.49 28.47 31.39

b 7.43x107*  874x 107 7.34x107 8.62x1073
Langer-Turski equation (4.47)

a(K) 35.75 38.68 28.25 30.50

b 408x 10 478x107%  3.99x107°  4.65x107?

that despite all the statistical and hydrodynamic corrections which are taken
into account in the continuum theory, the nucleation rate differs only
slightly from the Becker-Doring theory. These differences would be
observable only for extremely small ¢. Thus, although from a theoretical
point of view there is no doubt that the continuum theory is a considerably
more accurate treatment of nucleation than the classical version, the
numerical results do not reflect this fact. We return to this subject again
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when we compare the existing theories with experimental measurements
on critical fluids in Section X.

€. The essential singularity at a first-order phase transition

Langer (1967) discussed the nature of the singularity to be expected at a
first-order phase transition, using the field theoretic model discussed here.
For simplicity we restrict our attention to the “ ¥*” model, but it is
straightforward to generalize the discussion to models discussed in Section
HII. Consider the problem posed in Section IV.B of obtaining the analytic
continuation of the free energy of the stable phase with H >0 and
() > 0 to the metastable phase with H < 0 and {y) = ¥, > 0. From what
we have said in Section IV.B, the leading contribution to the partition
function Z(H), eqn (4.4), is given by the partition function Z,(H), eqn
(4.14), for the metastable phase. However, there is an additional saddle
point contribution Z;(H), so that

Z,(H) }
2=z i + 20D, |
(H)=Zy(H) {1 Zo(H) , (4.51)
where from (4.23)
Z,(H) = FsT J Su &~ V2ABTIIG7dPu(F) M Dl + .. (4.52)

Care must be taken in evaluating those Gaussian integrals in (4.52) which
involve the modes for the negative eigenvalue A, and the d zero eigenvalues.
Formally one can write

Z,(H) — % e-AFkT (det(MO/ZJrkBT)>1/2 (4.53)
Zy(H) det M"/27kgT

where the double prime denotes that the zero modes are excluded and V'
denotes the contribution of the zero modes. It is clear from (4.53) that
Z,/Z is imaginary, due to the factor i|M|”2 which characterizes the
critical droplet instability. (A more detailed discussion of the integral over
the unstable mode in (4.52) corresponding to A, has been given by Langer
(1967).) Since ¥ is proportional to the system volume V,sois Z,/Z,.
Therefore to obtain the analytic continuation of the free energy of the
stable phase, defined as ~%/kgT = In Z, one must sum the series

()
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implicit in (4.51) to obtain a well defined thermodynamic limit V— o,
The result is that the imaginary part of % for this gas of critical droplets
is given by

Im & (H) _ ¥ <2kBT> 12 o-AFkT (det(Mo/2 kT ) 12
ksT l"'l ’ {.\det(‘;ﬂ,’;ﬁxkﬂi"}

(4.54)

where the prime denotes that the contributions from the negative and zero
eigenvalues is excluded. Although (4.54) has been obtained for the “y*”
model, it should be clear that it is also valid for the cases discussed in
Section III and Section IV.D, where Ay and M are matrices defined by
(4.30) and (4.22). If one now compares (4.54) with the result for I obtained
from (4.26)—(4.28) and (4.31), one obtains the interesting result (Langer,
1969; Affleck, 1981) '

_ |k Im F(H)

I T kBT

(4.55)

which we mentioned earlier.

To proceed further one needs to determine the eigenvalues of My and
M. This has been done by Langer (1967) and subsequently by Giinther et
al. (1980). The latter authors extended the analysis of Langer from three
dimensions to d dimensions. As well, they corrected a small error in the
Langer paper. The eigenvalues of M are of particular interest and can be
obtained by a perturbation calculation. This makes use of the fact that
(xu/r)oyY(r)/ar (u=1,2,. .., d) is an exact eigenfunction of M with eigen-
value zero, since this eigenfunction describes the translation of the critical
droplet. One can then show that Y{(%7) dy(r)/dr are approximate eigen-
functions of M, with eigenvalues

P G 1)(2’; d—1) {1 +vo(l;§2>}, 1=0,1,2,.... (4.56)

The Yf‘(-ﬁ) are the spherical harmonic functions in d dimensions, with the
angles denoted by 7. The mode / = 0 yields the negative eigenvalue 2,
while the d-fold degenerate zero eigenvalue corresponds to [ = 1.

The physical significance of this subset of eigenfunctions of M is that in
the case of interest (H{— 0, R.— =) they become a band of soft modes
which describe the surface excitations of the spherical critical droplet.
Indeed, the [ = 1 eigenfunction of A is the Goldstone mode associated with
the spontaneous breaking of translation invariance by the center of the
droplet. A more detailed discussion of these modes is given by Giinther
et al. (1980).
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The result of the calculation for the free energy (Giinther et al., 1980)
is that
F(H) PN (R \ @3
i r =) ()
|m[30 ksT u |H[Vu
{ P 5 A2 \a-1
X —_
exp ” [ (lHlulﬂ) +...]},
1<d<5,d#3, (4.57)
and v
F(H) ¥/ 2\
im =) )
IH—0 kgT u |H|Vu

X exp{ —% [B(w%y +.. ]), d=3, (4.58)

where A and B are dimensionless constants.

Equation (4.58) is the result of Langer (1967), which, however, erro-
neously had a factor of 8/3 instead of 7/3. Gunther et al. stress the uni-
versality of (4.57) and (4.58). The factors depend only on the geometrical
properties of the critical droplet and not on the detailed nature of the
double well potential.

Although an imaginary free energy is repugnant to some physicists, it
should be noted that this particular prediction is of considerable interest.
Namely, as can be seen from (4.55), an important, non-dynamical contri-
bution to the nucleation rate is given by (4.57) or (4.58). Thus a partial
test of Langer’s formal theory of nucleation can be made by examining the
validity of these equations. It should be noted that other predictions for
an essential singularity in %(H) have been made from various droplet
models (Sections II and VII) which differ from (4.58). The issue is con-
troversial and remains unsettled. Nevertheless, existing evidence seems to
support the validity of Langer’s theory. In particular, Lowe and Wallace
(1980) have shown that the numerical results of Baker and Kim (1980) for
the d = 2 Ising model are in excellent agreement with the | H| dependence
predicted in (4.57). An additional investigation of this singularity and the
“spinodal curve” has been made by Privman and Schulman (1982a, b),
using transfer matrix methods.

We conclude by noting several other features of this theory. First, if one
uses the explicit form of (4.58) for the three-dimensional binary fluid, one
obtains the result (4.44). Second, Giinther er al. (1980) have shown that

the effective Hamiltonian for the surface fluctuations of the critical droplet
is

Kot = Ko + K, . (4.59)
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The term ¥, describes the bulk free energy of the droplet,
¥, =~ @f dQ(R. + f)4 (4.60)
The second term describes the surface energy of the interface:
= [ @R+ N+ ARAN LT (6D

Here f(;y’) is a field which gives the radial displacement of the critical
droplet from its spherical form, where 7 denotes the angles or unit vectors
(with 2 = 1). The term L;; = x;(8/dx;) — x;(3/x;) is the angular momentum
generator of rotation in the (i, j) plane. The Hamiltonian ¥, (4.59), can
be shown to be invariant under a nonlinear action of the Euclidean group
on the field f(n).

V. Theories of Spinodal Decomposition
A. Thermodynamic theory: linear stability analysis

The first successful qualitative theory of the structure now thought to
characterize spinodal decomposition was developed by Hillert (1956, 1961).
He derived and solved numerically a nonlinear generalized diffusion equa-
tion for one-dimensional diffusion on a lattice. This equation is a one-
dimensional lattice analog of model B, eqns (3.8)—(3.11), without the noise
term £. Cahn (1961, 1962, 1966, 1968) subsequently developed a continuum
version of Hillert’s model and analyzed the early stages of spinodal decom-
position by a linearized theory which we summarize below. The theories
of Hillert and Cahn are deterministic in nature, in that the noise term
which occurs in (3.7) is not included. Also, the parameters which occur in
Cahn’s theory are interpreted in terms of measured thermodynamic quan-
tities. We postpone until the next section a more complete statistical theory
based on equations such as are discussed in Section III.

The validity of Cahn’s linearized theory is now considered by many
authors to be at best limited to very short times following the quench.
Nevertheless, this theory provides a very useful intuitive understanding of
the long wavelength instability. Cahn’s model is the generalized diffusion
equation (often called the Cahn-Hilliard equation) which results from
dropping the noise term { in (3.8) for model B and using (3.11) for the
free energy functional. The resulting continuity equation,

ac(7)
ot

=-v-7, (5.1)

Lo b
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is then given by eqn (3.14) for model B, but without the noise:
ac(7) _ 2| g2, Of
o = MV [ KVc+a—c]. (5.2)

Cahn linearized this nonlinear equation about the average concentration
o, to obtain

ou(? .
“gt’) - Mv2{—1<v2+ (g;’—;)} u(?), (5.3)
where
u(7) = (7) - co. (5.4)

For very short times following a quench, one would expect this linearization
to be valid, since the concentration fluctuations should be small. Note that
if one considers long wavelength fluctuations for which one can neglect
KV? in (5.3), one recovers a diffusion equation, but with a diffusion
constant
62

D= M(w R (5.5)
This diffusion constant is negative inside the classical spinodal region. For
this reason Cahn termed the initial stages of spinodal decomposition “uphill
diffusion”.

The Fourier transform of (5.3) yields

oa(k
3O — - wiionih), (5.6)
where 4(k) is the Fourier transform of u(7) and
w(k) = MKK(K* + K™ (8%/8c?).,). 5.7

Thus inside the classical spinodal region, where (8%/dc?),, <0, w(k) is
negative for k < k. (as shown in Fig. 11), where

ke = +K7(0F/36%) . (5.8)

Therefore such long wavelength fluctuations will grow exponentially with
time. This is the instability against infinitesimal, long wavelength fluctua-
tions mentioned earlier.

A quantity of experimental interest is the structure function S(k, t) =
(lak) ), discussed in the next section. As is well known, this structure
function is proportional to the small angle, diffuse scattering intensity
(Rundman and Hilliard, 1967). The Cahn prediction is that

S(k, £) = S(k, 0) e~2ek), (5.9)
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FiG. 11. The behavior of the initial growth rate as predicted by the linear theory
for both a metastable and unstable quench.

Thus the initial stages of spinodal decomposition should produce an expo-
nential growth in the scattering intensity for k < k., with a peak at a
(time-independent) wavenumber k., = k./V2. Cahn interpreted this k,, as
the wavenumber which characterizes the fine, uniformly dispersed precip-
itate seen in spinodal decomposition studies (Fig. 3).

As we will discuss in Sections VIII and XI, the behaviour predicted by
the linear theory, eqn (5.9), is usually not observed in Monte Carlo studies
nor in experimental studies of atloys and fluids. However, Marro and Vallés
(1983) have recently argued that the very early time Monte Carlo results
are consistent with Cook’s linear theory discussed below. Also, the linear
theory has been claimed to be verified in molecular dynamics studies of
fluids during a very short time following a quench (Abraham, 1979). This
time scale is, unfortunately, probably too short to be experimentally
observable (Goldburg, 1981). In general it is clear that it is necessary to
improve the linear theory in order to explain most of the observed experi-
mental results. In the next section, we will discuss several attempts to treat
the nonlinear problem including the noise term. (A study of the deter-
ministic model, eqn (5.2), has been made (Novick-Cohen, 1981; Novick-
Cohen and Segal, 1982) which deals in particular with the one-dimensional
case.) An estimate of the region of validity of the linear theory is given by
Skripov and Skripov (1979).

Before discussing the nonlinear theories for the stochastic model B, we
summarize several developments related to the Cahn theory. First of all,
Cahn (1961) has used it to take into account elastic effects associated with
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strains which occur in alloys undergoing composition fluctuations. The
result of including the elastic energy in (5.2) is to depress the classical
spinodal curve to a new curve known as the coherent spinodal. Thus
coherency stress can stabilize a solid solution against infinitesimal com-
position fluctuations for a significant undercooling below the classical
spinodal. This seems to occur in alloys such as Au-Ni. Cahn has also
extended the theory to take into account anisotropy (Cahn, 1962) and the
effects of an applied magnetic field (Cahn, 1964, 1968) and an applied
stress (Cahn, 1963). An excellent summary of the linearized theory, as well
as an interesting historical introduction, is given by Cahn (1968) in a review
lecture. Another very good review of this theory is given by Hilliard (1970).

Other important contributions by Cahn (1966) have to do with the role
of the nonlinear terms which were neglected in going from (5.2) to (5.3).
The first point has to do with the necessity of including the higher order
terms in the later stages of spinodal decomposition. This is clearly crucial,
since the linearized theory predicts an exponential growth of the fluctuations
which cannot continue indefinitely if the system is to reach two-phase
equilibrium. The second point is that near the classical spinodal the term
(9%/8c%)¢, is small and the third order term, (3%/dc®),,, characterizes the
decomposition process. As Cahn noted, the fluctuations in « are not at all
symmetric about u =0 and it is imperative to develop a calculational
scheme which can handle this asymmetry. So far the most successful attempt
to deal with these nonlinearities is that of Langer et al. (1975). As we
discuss in the next section this theory provides, however, only a partial
solution of the problem.

Finally, we note that Cook (1970) made an important contribution to
the theoretical development by observing that it is necessary to add a noise
term £, to Cahn’s equation (5.2), to have a correct statistical description
of the alloy dynamics. This, of course, leads to our original model equation
of motion (3.8). Cook’s observation was that, in addition to a flux produced
by the gradient of a local chemical potential, there is an additional flux
arising from the random thermal motion of the atoms. This is modeled by
the noise term ¢, in (3.8). Although Cook considered the effect of this
random force only within the context of the linearized theory, his intro-
duction of noise led to the stochastic model which Langer and others have
subsequently used.

B. Statistical theories: the Langer, Bar-on, Miller approximation
Many attempts have been made to develop a theory of spinodal decom-

position which is sufficiently powerful to handle the nonlinear effects
contained in the equation of motion (3.8). Since most of these attempts
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proved rather unsatisfactory, we describe here only the theory of Langer
Bar-on and Miller (1975), which is the best of the various calculational
schemes proposed so far. We begin by deriving an equation for the non-
equilibrium time correlation function,

Sﬂ? _?0|’t) =<u(?’t)u(?07 t))’ (510)

where u is defined in (5.4). The brackets in (5.10) denote an average with
respect to the probability distribution functional, p({u}, t), which satisfies
the Fokker-Planck equation given by (3.3) and (3.4). The reason for
considering S(|7 —7ol, f) is that its Fourier transform,

Sk, 1) = J e*7S(7, 1) dF, (5.11)

is directly proportional to the X-ray or neutron scattering intensity at a
wavenumber transfer k, as noted earlier.

The equation of motion for § can be obtained by multiplying (3.3) by
u(7)u(7o) and integrating over the function space of the variables u. We
assume that the free energy functional Fis given by (3.15) and expand f(c)
about the average composition ¢ . After some straightforward manipulation
one obtains the equation

+ 2MkgTk?, (5.12)

where the subscript zero denotes the derivatives of f, evaluated at ¢y. The
higher order structure functions which appear in (5.12) are the Fourier
transforms of the higher order two-point correlations

SAI7 =70y = N7, 0u(F", 0), (5.13)

with S(r, 1) = Sy(r, ). X

To complete this description of S(k) we would need to write down the
corresponding equations of motion for the higher order correlation func-
tions $,(k). This would lead to a typical hierarchy of coupled equations of
motion whose solution would require some approximate truncation scheme.
This is a problem that arises in many areas of many-body physics, the
difference here being that one is dealing with two-phase phenomena, far
from equilibrium. Thus standard many-body techniques involving single
peaked Gaussian approximations are not useful since they cannot describe
the two-phase equilibration process.

Before discussing the particular truncation scheme proposed by Langer,
Bar-on and Miller (LBM), it is convenient to summarize earlier approxi-
mations to (5.12). First, the Cahn theory is obtained by neglecting all the
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Sa(k) (n>?2) as well as the noise term (2MkpTk?) in (5.12). Second, the
Cook theory is recovered by neglecting the S,(k) (n > 2) but keeping the
noise term in (5.12). Third, a conventional single Gaussian approximation
can be made (Langer, 1973). This is of some interest in that it leads to a
prediction of coarsening, in contrast to the Cahn and Cook theories. In
this approximation one assumes that the distribution functional is a Gaus-
sian, centered at u = 0. As a consequence all $,(k) for odd n are zero. If
one keeps only the first higher order correlation function, given in this
approximation by

Sa(k) = 3u®)$(k), (5.14)

with
L
2x)’

one replaces (8%/dc?), in the linear theory by
[(8%f/ac*)o + 3(8°f/ 8c* Jol’(2))).

As a consequence, the characteristic wavenumber k. now decreases with
time, since (u?) is a positive, increasing function of time. Thus this single
Gaussian theory predicts coarsening, but clearly is of limited usefulness,
as noted above.

The LBM truncation scheme is an improvement over previous theories
in that it predicts coarsening, accounts for the absence of exponential
growth in observable systems and is qualitatitively accurate for early times
throughout the classical spinodal region. It has, however, several short-
comings which we summarize later. The basic physical approximation in
the LBM scheme is that the spatial dependence of the higher order cor-
relation functions is the same as that of the two-point correlation function
S(r). Specifically, the approximation leads to

(u")
(u?)
This results from assuming that the two-point distribution functional
pAu(7), u(7 )] which determines the S,(r) has a functional Taylor series
expansion
palu( ), u(7 )] = pifu( 7)) pilu(7 )]

1+g(7 =7 Du(F (7 +...}. (5.17)
Here p, is the one-point distribution. (In general, an n-point distribution
functional p, is obtained from the original p{u} by integrating p{u} over the

space of functions u, holding the values of u(7,), u(7,), ..., u(7,) con-
stant.) It is straightforward to show from normalization conditions on ol

(u?) = f dkS(k), (5.15)

Sa(r) = S(). (5.16)
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and p, that g(r) = (u?)725(r), so that (5.13) and (5.17) yield (5.16). While
the approximation (5.16) (or (5.17)) seems reasonable for large distances,
it is clearly less accurate for short distances. Further improvement of (5. 17)
would be quite useful. ’

Using (5.16) one obtains from (5.12) the approximate equation of motion

8_5:_3(;’9 = —2MK*(KK* + A(t))S(k) + 2MkpTk?, (5.18)
where
51w
AW = 2 D (Tc{’)o(uz)' ©-19)

It should be noted that in the LBM approximation the nonlinearity of
(5.12) is approximated by a single k-independent length, A~Y2(¢), given by
(5.19). The evaluation of (#") in (5.19) requires p;, whose equation of
motion can be determined from the Fokker-Planck equation (3.3) and the
use of (5.17). This equation is then solved by parametrizing p, in terms of
a sum of two Gaussians, whose parameters include the peak positions and
half-widths. By this process one then obtains a numerical solution of (5.18)
and (5.19) for $(k, £). An analytical form for $(k, ¢) is thus unavailable.

The solution of (5.18) and (5.19) also requires approximations for M
and f(c) which are discussed in the LBM paper (Langer et al., 1975). The
free energy f(c) is taken to be of the Ginzburg-Landau form (3.12), with
fo being the only system-dependent parameter. It is determined in terms
of known constants for the three-dimensional Ising model, by use of a
mean field approximation. It should also be noted that the coarse-graining
size is chosen to be a certain constant times the correlation length.

The calculation of LBM is limited to the critical region, so that they can
make use of known critical properties of the Ising model and achieve a
certain degree of generality in their analysis. Their results are therefore
expressed in terms of scaled variables, such as q < kE, 7o £7% and
9(q, 1) = §""S(k, £). We use conventional notation for the critical expo-
nents (Table I), with the dynamical exponent z = 2 + y/v. The results of
the LBM calculation are shown in Fig. 12 for a critical quench and are
qualitatively very similar to Monte Carlo and experimental studies. In fact,
the LBM theory is in quite good agreement with Monte Carlo results
(Marro et al., 1975) at the critical quench composition and T = 0.8 T.. This
good agreement is in fact rather surprising, since this temperature would
appear to be too low for the LBM critical region description to be accurate.
Langer et al. also evaluated the structure function at a quench composition
corresponding to the classical spinodal value. In contrast to the linearized
theory (which predicts the physically unreasonable absence of decompo-
sition), the LBM theory yields a behavior quite similar to the behavior
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shown in Fig. 12 for a critical quench. This is in qualitative agreement with
Monte Carlo and experimental studies, which reveal a gradual change in
S(k, ) as one moves across the classical spinodal region (Sections IX and
XI).

The agreement between the LBM theory and Monte Carlo data is,
however, less satisfactory for the off-critical quench than for the critical
quench, as is discussed by Sur et al. (1977). Nevertheless, it is clear that
the LBM theory is the most successful early time description of binary alloy
spinodal decomposition available.

30k
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FiG. 12. The scaled structure factor f(q) for a quench at critical composition at
various scaled times 1. The inset depicts the distribution function pi(y) at two of
these times. (From Langer et al., 1975.)

It should be noted that versions of the LBM theory have also been
applied to a model in which the order parameter is not conserved (Billotet
and Binder, 1979) and to a model of tricritical spinodal decomposition
(Dee et al, 1981). As well, an alternative calculation scheme based on a
“mean spherical” model approach has been proposed by Tomita (1978)
which yields results reminiscent of the LBM calculation.

The works of Billotet and Binder (1979) and of Binder ez al. (1978) point
out some of the difficulties associated with the LBM study. First, there is
an unfortunate dependence of certain results on the (arbitrary) choice of
the cell size L used in the LBM calculation. Namely, different choices of
the ratio L/ give different results, which should not be the case. Second,
there is in fact a spinodal curve implicit in the LBM theory, although its

3. Dynamics of first-order transitions 327

location is shifted from the classical curve and also depends on the choice
of cell size. Third and perhaps most important, Binder et al. conclude that
the LBM theory does not describe fluctuations due to nucleation and
growth. Nor does it really describe the expected transition from spinodal
decomposition to nucleation. These conclusions are based on the obser-
vation by Binder et al. that the LBM theory exhibits metastable states with
infinite lifetime in the region between the coexistence curve and the spinodal
curve. Finally, Binder (1977) has argued that the late time behavior of the
LBM equation is inconsistent with the Lifshitz-Slyozov > law which we
discuss in the next section. In fact, it appears that the LBM theory becomes
inaccurate for domain sizes which are a few times the correlation length.
Itis thus an early time theory. The above objections all serve to demonstrate
the intrinsic difficulty of developing a theory which correctly describes the
early time spinodal decomposition, the late stage coarsening and the gradual
crossover to nucleation. The LBM theory would seem to be an important
step in the right direction, but clearly much still remains to be done.

C. Hydrodynamic effects in binary fluids

The experimental observations of spinodal decomposition in binary fluids
near the critical point (Huang et al., 1974a, and additional references given
in Section X) opened the door to a rich area of experimental and theoretical
research. Careful experiments near a critical point are particularly appealing
to a theorist because the continuum model discussed in Section III is most
valid there. As well, one can make use of known results from critical
phenomena, including the concept of universality classes (Wilson‘ and
Kogut, 1974). Binary fluids also offer an advantage over alloys in that one
does not have to worry about anisotropic and elastic effects. On the other
hand, hydrodynamic effects related to fluid flow raise important new issues
and present new modes for phase separation. Since one does not yet have
a successful theory of spinodal decomposition even for the simplest model
of a binary alloy, it is rather clear that theoretical progress in fluids will
require considerable effort.

In this section we review some of the theoretical attempts to understand
the effects of hydrodynamics on binary fluids. We begin with the work of
Kawasaki and Ohta (1978a, b), who calculated the structure function for
a spinodally decomposing binary fluid. In principle the starting point is
given by the model H of a binary fluid discussed in Section III. However,
Kawasaki (1977) has argued that a simplified stochastic model can be used
to describe the dynamics of the order parameter c(r). His arguments lead
to a model (mentioned in Section IV.D) in which eqn (3.1) for the prob-
ability distribution function p({c}, ) takes the form (3.3) and (3.4) for a
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binary alloy, but with an additional term representing the hydrodynamic
effects in the binary fluid. Namely,

20D _ tejptiel. o, (5.20)

where
&L = Lafc} + Lup{c}. (5.21)

The operator £, is the one treated by Langer et al. (1975) in their model
of an alloy, ‘

£a= ‘Mf a7 acES?)V2 [&(zr) T 5%)]’

which follows from (3.3) and (3.4). The second term on the right-hahd
side of (5.21) is given by

(5.22)

P
5c(7)

x[ o) + 6F ] 503
sc(7) 6c() 6.2)

szm,{c}=2”d7d?' Vi(F) - T(F=7") - V'e(7)

This operator $yp, is an approximate representation of the hydrodynamic
effects and involves the Oseen tensor 7. The components of this tensor
are
171 1

T. ='8'5,[7 bop+ 31t . (5.24)
where 7 is the shear viscosity. The operator £yp describes the long-range
interactions of the order parameter, mediated by the velocity field. The
velocity fluctuations are assumed to be Gaussian and in equilibrium.
Kawasaki and Ohta (KO) then proceeded as in the LBM calculation to
obtain an approximate equation of motion for the binary fluid structure
function. This equation is identical to (5.18), apart from an additional term
which describes the hydrodynamic interaction. This new equation is then
solved numerically to obtain $(k, £). The qualitative conclusion that emerges
from their analysis is that the hydrodynamic corrections are of substantial
importance and significantly modify the LBM results. A more detailed
comparison of their theory with experiment is given in Section X.

We should also note two additional points concerning the Kawasaki—
Ohta calculation. First, since it is based on the LBM theory, its validity
is limited to early times. Siggia (1979) has in fact estimated that the validities
of both the LBM and KO theories are at best limited to times of the order
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of 100£%/D, where D is the approximate diffusion constant. Second, and
perhaps more important, is a possible inconsistency in the KO theory noted
by Binder (1980b). Their theory purports to take into account hydro-
dynamic effects, which should be important for k& < 1. However, the use
of the LBM theory restricts their calculation to the region k& = 0.3, where
k., denotes the position of the maximum in S(k, £). Thus it is not obvious
that their calculation properly treats the hydrodynamic interactions on the
desired length scale. In spite of this reservation, it should be noted that
their results are in reasonable agreement with the early time binary fluid
decomposition experiments.

An important paper by Siggia (1979) deals with the later stages of
spinodal decomposition in binary fluids, in which kn(£) §=< 0.1. In this time
regime the system should consist of well defined regions in which the
average order parameter is near one of its equilibrium values. In this late
stage of coarsening, one can conceive of regions of coexisting phases,
separated by sharp interfaces. In the case of binary alloys, for example,
this is the domain in which the Lifshitz—Slyozov growth theory, discussed
in the next section, should be valid. Siggia does not attempt to calculate
S(k, 1) for the binary fluid in this late time region, but rather examines the
influence of hydrodynamics on the coarsening rate. The paper is rich in
ideas and a tour de force in dimensional analysis. We limit ourselves to
summarizing the major conclusions and physical consequences.

Siggia has estimated the effects of several different coarsening mech-
anisms that can be exhibited in the late stages of phase separation in a
binary fluid. These mechanisms depend on the volume fraction v, of the
new phase. The simplest possibility for growth is the coalescence of spherical
droplets of radius R. The resulting growth law is

R® = 12DRot. (5.25)

As we will discuss in Section XI, Wong and Knobler (1981) have interpreted
their light scattering experiments in terms of Siggia’s theory. For this
purpose they use the estimate R = k!, where k, denotes the maximum
in the intensity of the scattering light. In this case (5.25) can be written
approximately as

gm’ = 1201 (5.26)
where g and 7 are the scaled variables
q=k§ (5.27)
and
7= Di/E% (5.28)

One effect of hydrodynamics is to modify (5.26). Namely, as the spheres
diffuse toward each other, fluid must be squeezed out from between them.
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An estimate of this effect leads to changing (5.26) to

3 16wt
T = 10(0.55/qm)

Another growth mechanism, which we discuss for the alloy in the next
section, is due to evaporation and condensation. This occurs for small
supersaturations, when v is small, and leads to the Lifshitz-Slyozov law

(5.29)

gn’ = 0.0537. (5.30)

It should be noted that the amplitude of this 7%* growth law is independent
of v, unlike (5.26) and (5.29). The value of the constant, 0.053, is obtained
by invoking universality and using data for xenon (given in Langer and
Turski, 1973).

The most novel growth mechanism discussed by Siggia occurs if the
volume fraction exceeds the percolation limit. A rough estimate of this
value is v, = 0.15. In this case, one has connected droplets and can have
growth driven by surface tension. The basic idea is to imagine a long
wavelength disturbance along the axis of a tube of radius R of the fluid.
This variation in the radius of the tube leads to a pressure gradient along
the axis. The net effect of this gradient is to drive fluid from the necks to
the bulges. An estimate of the growth rate leads to the relation

R=0.10t/n, (5.31)

where o and 7 are the surface tension and shear viscosity, respectively.
This then leads to the approximate result

gn' =031 (5.32)

(Wong and Knobler, 1981). This linear growth rate was also proposed by
J. W. Cahn and M. R. Moldover (unpublished). It should be noted that
the estimate of the amplitude in (5.31) is very crude (Siggia, 1979).

To summarize, for concentrated mixtures one should first see diffusive
growth, with g, o< T2, followed by a crossover to the 7! behavior given
by (5.32). An estimate of the crossover point can be made by equating the
two growth rates. A second crossover can also occur, in which gravity
dominates at later times. This effect has recently been seen in tricritical
*He-*He mixtures (Benda et al., 1982). A comparison of Siggia’s predictions
with the experiments of Wong and Knobler is given in Section XI.

Finally, we mention some recent work on spinodal decomposition in
one-component fluids. Koch et al. (1982) have solved the linearized hydro-
dynamic equations for the density, velocity and temperature fields, taking
into account the random fluctuations in the stress tensor and heat flux.
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They find good agreement between the resulting structure factor for the
density fluctuations and the molecular dynamics simulation study of the
one-component fluid (Mruzik et al., 1978; Abraham, 1979). However, as
noted earlier, these molecular dynamics studies involve times which are
probably too short to be observed experimentally.

D. Power law approximations

One method which has been used to analyze the behavior of S(k, ) as
well as of cluster growth involves power law approximations. We summarize
here various quantities whose behavior has been analyzed in this way.
First, for the structure function it is natural to examine the behavior of the
peak position, kn(f), the peak height $(kn(?),?) and the first moment
ky(r) of S(k,t) (eqn (8.7)). These have often been parametrized as

kl(t) :Al(l + Bl)—a’ (533)
ke(t) = Am(t + B) ™, (5.34)

and
S(ka(t), 1) = At + B)” (5.35)

The various constants A;, Ay, . . . , as well as exponents a, a’ and a”, are
determined by fitting the quantities of interest over some interval of time.
Quite typically, the exponents display a time dependence if the time interval
is chosen sufficiently large. In some cases, as for the behavior of k, (¢) for
binary fluids (Sections V.C and X), this time dependence has some physical
origin. For example, for a binary fluid which is quenched at a critical
composition, one expects to find a’(t) = 1/3 for early times (diffusive
behavior) with an eventual crossover to a’ = 1 for late times (hydrodynamic
percolation effects). In such a case a time-dependent exponent seems
sensible. In other cases, however, such as where no one growth mechanism
is dominant, a time-dependent exponent might well signal that a power
law approximation is simply a poor representation of the time behavior.
It would seem appropriate at this relatively early stage of theoretical
understanding of such dynamical phenomena that power law approxima-
tions such as (5.33)-(5.35) be treated with some caution. In some cases it
is possible that they might conceal more physics than they reveal (Langer
and Schwartz, 1980).

Another approximation similar to (5.33) has been used by Lebowitz er
al. (1982) in attempting to analyze their data in terms of Lifshitz—
Slyozov behavior. Namely,

k3()=A+Bt, t=1,. (5.36)
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We should also note that in some cases constants such as B; or By, in (5.33)
or (5.34) are set equal to zero.

We will discuss in Sections VII and IX the first and second moments
(I (¢) and L(¢)) of the cluster distribution function n;(¢). These also have
been analyzed in terms of power law behavior. For example,

L) ~ e, (5.37)
L(r) ~ 17, (5.38)

where /;(¢) and L(¢) are defined in (7.37) and (7.38). A scaling form for
the distribution function n;(¢) has been proposed which is characterized
by another exponent x defined in (7.25). Finally, one often discusses a
characteristic domain size R(t),

R(t) ~1 (5.39)

This quantity is not always precisely defined. Nevertheless, since R is a
characteristic linear dimension one expects that R ~k;y! ~ kz! . Also, for
a characteristic size /, one expects [ ~ R%. Therefore, one would expect
that the exponents a, a', a;, a; and x yield the same physical information
as m. Therefore, to a first approximation

m=a=a' (5.40)
and
dm=a,=a,=x. (5.41)

The exponents introduced above are summarized in Table III. This table
also includes exponents for the excess free energy Au(t) associated with
domain surfaces and for the cluster diffusion coefficient D, discussed in
Section VII. '

TaBLE III. Table of exponents which characterize the
assumed power law behaviour of various quantities
defined in the text.

Exponent Defining equation
ki(®) a (5.33)
ka(?) a’ (5.34)
S(ka(?), ) a’ (5.35)
h a (5.37)
L a; (5.38)
ni(r) x (7.25)
R m (5.39)
Au(t) b (7.27)
Dy o (7.29)
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V1. Late Stage Growth Theories
A. Lifshitz—Slyozov theory

The Lifshitz-Slyozov theory (Lifshitz and Slyozov, 1961; Wagner, 1961)
is one of the few reasonably well established results in the dynamics of
first-order phase transitions. In its original form the theory describes the
asymptotic (1— «) growth of droplets of a minority phase in a supersa-
turated phase of a solid solution. (These droplets are often called grains,
domains or particles in the literature.) The theory can be used, however,
to describe corresponding problems in other systems, such as binary fluids,
as discussed in Section V. The theory is derived for the limiting case of
small supersaturation, in which the volume fraction of the second phase
of, say, B atoms is small. A study of the effect of increasing the volume
fraction on the growth rate has been made by Weins and Cahn (1973),
which we discuss later.

Lifshitz and Slyozov calculate the asymptotic behavior of the droplet
distribution function, f(R, t), where R denotes the radius of a given droplet
of the minority phase. In particular, they show that the average droplet
size obeys the growth law, R « 3. The physics of this late stage growth
(or coarsening process) is that larger droplets grow at the expense of
smaller droplets. This results from an evaporation—condensation mech-
anism in which B atoms diffuse through an A-rich matrix from smaller
droplets that are dissolving to larger droplets that are growing. The late
stage growth is often called Ostwald ripening. An extensive discussion of
the Lifshitz—Slyozov theory is given by Lifshitz and Pitaevskii (1981).

The theoretical analysis is based on three coupled equations. These
describe the growth rate of a given droplet, the time rate of change of the
distribution function f(R, t) and the conservation of solute atoms, respec-
tively. The first equation is (4.20) and arises from the following consider-
ation. Since coarsening occurs only after a nearly equilibrium volume
fraction of the second phase has formed, diffusion gradients are quite
small. Thus changes in concentration occur quite slowly. As a first approxi-
mation one can consider the change in composition with time to be zero.
This means that the time-dependent diffusion equation

g DV, (6.1)
ot

which can be obtained from (3.8) and (3.9), can be approximated by the
steady state diffusion equation

Vic

I

0. (6.2)
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The solution of (6.2) which satisfies the appropriate boundary conditions
is given by (4.18). From this equation and the discussion subsequent to it,
one obtains the droplet growth rate equation

R D, Ky ,
dt RAc R/ (4.34)

For every value of the supersaturation 8c(f) there is a critical radius R.(¢)
for which a droplet is in equilibrium with the background phase. Droplets
grow or dissolve, depending on whether their radius R is greater than or
less' than R.(¢). This is the mechanism by which large grains consume small
grains.

The equation for f(R, ¢) is just the continuity equation

R
YR -2 o(®)(R)) ©3)

where v(R) is the radial velocity, given by (4.34). The final equation
expresses the conservation of solute atoms. Given some initial super-
saturation dc; (Fig. 1), the volume fraction occupied by the minority phase
droplets at the reduced supersaturation dc(¢) is given by

8ci—bc _4nm
Ac—6¢c 3

This equation, in which N is the number of droplets per unit volume and
(47/3)R? is their average volume, follows from the lever rule. It should be
noted that the time-dependent critical radius R.(¢) is related to the super-
saturation dc(t) by

RN (6.4)

R.() = of8c(1), (6.5)
where for binary fluids (Langer and Schwartz, 1980)
20

o= m (6.6)

The subscript A in (6.6) denotes the equilibrium concentration cy is the
surface tension.

The asymptotic solutions of eqns (4.20), (6.3) and (6.4) are shown
(Lifshitz and Slyozov, 1961; Wagner, 1961) to be

f(R, 1) =52~ R“D(R/R) (67)
and

R%o=gDm, (6.8)
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where A is a constant. The scaling function p(x) which appears in (6.7)
is given explicitly in the Lifshitz—Slyozov paper. The Lifshitz-Slyozov-
Wagner growth law given in (6.8) has been expressed in a scaled form for
the binary fluid near its critical point, in (5.30). As we discuss in Sections
VIII and XI, there is now reasonable confirmation of (6.8) from Monte
Carlo studies of the Ising model of a binary alloy and from experimental
studies of binary alloys and binary fluids. (The study of binary fluids (Wong
and Knobler, 1981) seems to be the most definitive confirmation of the
LS growth rate prediction.)

Two further points should be made concerning the effect of increasing
volume fraction on the growth law (6.8). First, Weins and Cahn (1973)
studied such effects, within the context of the steady state diffusion equation
(6.2). Their solution reduces to the LS growth rate only when the droplets
are very far apart. Otherwise they obtain deviations from the LS theory
which are significant even at moderate volume fraction. Other theoretical
studies of this dependence of “Ostwald” ripening on the volume fraction
include Ardell (1972) and Brailsford and Wynblatt (1979). These articles
also contain reviews of experimental studies of such effects in metallurgical
systems. The second point considers the possible effect of percolated
clusters in concentrated systems. Such an effect has not been studied
theoretically in binary alloys (in contrast to the work of Siggia for binary
fluids). Binder (1980c) has noted, however, that the growth rate of such
clusters need not be the same as for isolated droplets. Monte Carlo studies
(Section IX) have also considered such clusters.

B. Interface dynamics for models with nonconserved order
parameter

The late stage growth of droplets in systems such as binary alloys and
binary fluids is only one of many interesting examples of the dynamics of
unstable interfaces. A second case concerns the motion of curved antiphase
boundaries (APB), which arises in order—disorder transitions in alloys and
in paramagnetic-antiferromagnetic transitions in Ising-like systems. An
APB is an interface separating domains with identical properties in systems
with long-range order. The domains in crystals differ by some relative
displacement which is not a superlattice translation (Allen and Cahn,
1979a, b). The local order parameter ¥ is not conserved and as a conse-
quence the motion of APBs is not described by the Lifshitz-Slyozov theory.
Rather, the average radius of domains satisfies a "2 growth rate, as we will
explain below. Experimental studies involving the dynamics of a noncon-
served order parameter have been carried out in temperature quenches in
alloys such as CuzAu and NizMn (Collins and Teh, 1973; Hashimoto et al.,
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1976, 1978; Sato and Hirakawa, 1977). Allen and Cahn (1979a, b) have
also analyzed the time dependence of antiphase domain coarsening in
Fe—-Al. In addition, Monte Carlo simulations have been carried out at low
temperatures in a kinetic antiferromagnetic Ising model (Phani et al., 1980;
Sahni et al. 1981).

The theory of antiphase boundary motion has been most extensively
developed by Allen and Cahn (1979a,b). The starting point is a
Ginzburg-Landau model without noise for a nonconserved order parameter
y. This is model A, equation (3.16), so that the deterministic equation of
motion is

: OF 2, 9fC w)}
(] M F” M{ KV ay )’ (6.9)
where M is a mobility. The free energy f(y) is an even function of y. The
physical picture which underlies the Allen—~Cahn theory was originally
formulated by Lifshitz (1962). Namely, since the order parameter is not
conserved, local equilibrium is established rather quickly. Thus, in a rather

Fi1G. 13. Schematic evolution of domains and antiphase boundaries. (From Lifshitz,
1962.)

short time following a quench into an unstable state, the system develops
local ordered regions or domains, inside which the order parameter takes
on one of its possible equilibrium values (Fig. 13). Allen and Cahn con-
sidered the case in which the ground state is only doubly degenerate, so
that the equilibrium value of the order parameter is either .. (Lifshitz
(1962) and Safran (1981) have discussed the case in which the degeneracy
is greater than two.) Since the free energy is an even function of 1, these
domains are thermodynamically equivalent. Growth proceeds through the
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motion of the interface (APB) between two domains. Within this interface
there is a spatial variation of the order parameter, which produces a local
diffusion. This diffusion mechanism is, however, entirely different from
the Lifshitz—Slyozov long-range diffusion between droplets.

Allen and Cahn obtained an equation of motion for the velocity of a
gently curved interface. Their equation predicts that the diffusion which
results from gradients in the inhomogeneous interface region leads to a
translation velocity for the boundary which is proportional to its mean
curvature and independent of the interface free energy. Earlier theories
(Smoluchowski, 1951; Turnbull, 1951; Lifshitz 1962) had predicted that the
translation was proportional to the product of the mean curvature and the
interface free energy. The first step in obtaining the Allen—Cahn result is
to rewrite (6.9) in terms of the rate of change of v in the direction of §,
where § is a unit vector normal to the surfaces of constant . This yields
from (6.9)

where K; and K, are the principal curvatures of the iso-y surfaces. They
apply (6.10) to the case in which the interface has a profile given by y,(g)
at all normal sections at some particular time. In this situation one
can invoke the condition for the equilibrium of planar interfaces, i.e.
8F/8y = 0. This leads to a cancellation of the first two terms on the
right-hand side of (6.10), so that

(%)s — _KM(K, + K;) (‘;—Z’) (6.11)

Since the velocity v = dg/ot at a constant v surface in the interface region

is
gy __ /i’fi)
at)w at)g og . (612)

one then obtains the Allen—Cahn result

U= —KM(KI + Kz) (613)

As noted earlier, this expresssion is independent of the surface tension o.
One can immediately show that as a consequence of (6.13) the average
size R(t) of domains satisfies a 2 growth law, independent of o. This
growth law was shown by Allen and Cahn (1979a, b) to be obeyed in
experiments of domain coarsening in Fe—Al alloys. It has also been indi-
rectly established in Monte Carlo studies of the kinetic Ising model of an
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antiferromagnet (Phani er al., 1980; Sahni et al., 1981), although these

studies do not examine the issue of the independence of the growth rate
on o. Recently, Sahni et al. (1983a) have carried out Monte Carlo simu-
lations in two dimensions to study the temperature behaviour of the
prefactor of the /2 law. The prefactor is observed to depend strongly on
temperature for T = 0.6T., which they explain analytically (Safran et al.,
1982) by considering the effect of roughening (or thermal) fluctuations on
the domain growth. It should be pointed out that their study is relevant
to the problem of domain (or island) growth in surface science. Since the
effect of roughening (or thermal) fluctuations is known to be weaker in
d =3 than in d =2, a similar study in three dimensions is needed to
understand temperature effects on the domain growth dynamics in bulk
alloys.

It should also be noted that (6.13), supplemented by a noise term, has
been rederived by Bausch et al. (1981) and Kawasaki and Ohta (1982a).
Bausch et al. have used this to discuss the critical dynamics of the
Ginzburg-Landau model. Ohta et al. (1982) have used it to derive a scaling
relation for the structure function $(k, £) (Section VIII.C).

Another class of dynamical systems with nonconserved order parameter
has also been considered by Chan (1977). This concerns systems which
undergo only a first-order phase transition (without an associated
second-order critical point). The dynamical problem involves the decay of
a metastable state. In contrast to the above situation, the two sides of the
interface are not thermodynamically equivalent. Chan has shown by a
solitary wave analysis that in this case the growth law is R « ¢, in agreement
with an earlier argument of Lifshitz (1962). Chan’s approach can also be
applied to the problem considered by Allen and Cahn, in which case one
recovers their result. Indeed, eqn (6.13) for a shape-invariant interface
profile y1,(g) describes a solitary wave solution of (6.9). Kramer (1981a, b)
has also used such interface dynamics ideas in an analysis of relative stability
for dynamical systems whose equations of motion cannot be derived from
a potential.

Other systems with nonconserved order parameter for which the results
reviewed here are of relevance include displacive transformations in solids,
first-order phase transitions in liquid crystals, uniaxial ferroelectrics,
order—disorder structural transitions, anisotropic ferromagnets, transitions
in layers of adsorbed gas atoms, helix—oil transitions of polypeptides
(Schwartz, 1965) and the helix transition of polynucleotides (Poland and
Scheraga, 1970). Section XIII.A on nonlinear relaxation also discusses
features relevant to these systems.

We conclude this section by noting that Langer (1971) has deveoped a
variational procedure which can be used to calculate late stage growth.
Although his original work dealt with binary alloys, with a locally conserved
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order parameter, it can also be applied to the case of a nonconserved order
parameter (San Miguel et al., 1981). This latter work also contains a
discussion of model C, as mentioned in Section XII.

VII. Cluster Dynamics
A. Introduction

The theoretical description of first-order phase transitions in terms of
cluster models is a major area of research activity. In this section we outline
some of the important features of theories of cluster dynamics, which deal
with nucleation, spinodal decomposition, and growth mechanisms in sys-
tems far from equilibrium. One important approach to cluster dynamics
has been developed by Binder, in collaboration with Stauffer, Miiller-
Krumbhaar and others, which we review in this chapter. A second, closely
related, approach to cluster dynamics has been developed by Penrose,
Lebowitz and collaborators. This work has focused primarily on cluster
growth and is discussed in Section IX. Good reviews which cover various
aspects of the use of cluster models in theories of first-order phase transitions
include Binder and Stauffer (1976), Penrose (1978), Miiller-Krumbhaar
(1979), Penrose and Lebowitz (1979) and Binder (1980a, c).

Theories of cluster dynamics are a natural extension of the Becker—
Déring theory (Section IT). They involve a much more detailed description
of clusters than contained in the more macroscopic, field theory models
discussed in Sections III and IV. These theories deal with a wide range of
cluster sizes, which include very small as well as very large clusters. A
fundamental problem in such theories involves giving a definition of clusters
which is both precise and useful, as we discuss later. This problem has so
far impeded the development of a quantitatively successful dynamical
theory. In spite of this difficulty, cluster models have yielded many impor-
tant qualitative results in the theory of phase separation. These include a
scaling theory of nucleation (Section VII.D), an approximate understanding
of the smooth transition between nucleation and spinodal decomposition
(Section VII.G), dynamical scaling theories for the structure function
(Section VIII) and a qualitative explanation of the apparent breakdown
of classical nucleation theory (Section X).

Theories of cluster dynamics are based on kinetic equations which model
the detailed mechanisms that lead to the formation and evolution of clusters
of the different phases in phase separation processes. For example, a binary
alloy is described in terms of the average concentration () of clusters of
the minority phase, of “size” I. Atomic exchanges lead to the evolution of
the clusters. This evolution is modeled by a stochastic process which does
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not take into account the complications of real systems, such as grains,
boundaries and vacancies. Nevertheless, the model is thought to contain
the essential physics of phase separation on the same microscopic level as
Monte Carlo simulations. (Indeed, this cluster pattern evolution is what
is “seen” in the computer experiments.) A major difficulty with these
kinetic equations is the lack of knowledge of the equilibrium cluster dis-
tribution which occurs in them. This difficulty is closely related to the
problem of defining a cluster (Furukawa and Binder, 1982). In this respect
it is important to note that the word “cluster” means different things in
different contexts. At least three definitions of clusters are discussed in the
literature:

(1) Contour clusters (Binder and Stauffer, 1976). This is the simplest
definition of a cluster for a lattice with nearest neighbor interactions.
Namely, a contour cluster is a group of / atoms of the same species such
that each atom is a nearest neighbor of at least one other atom of the
cluster. These clusters represent order parameter fluctuations on the length
scale of the lattice spacing and are appropriate to the study of phenomena
at low concentrations and low temperatures (Fig. 14).
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FiG. 14. (a) Clusters of size / in the contour picture. (b} Stochastic interchange of
atoms leading to evolution of the cluster pattern. Condensation, dissociation and
diffusion processes are shown. (From Binder, 1977.)
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(2) Fluctuation clusters (Kadanoff, 1971; Stauffer eral., 1971; Binder
etal., 1975; Binder, 1976; Kretschmer etal., 1976). At larger concentra-
tions, or near T, the contour picture becomes invalid because of percolation
effects (Stauffer, 1979; Essam, 1980). Namely, a cluster containing an
infinite number of atoms appears. This clearly requires giving a different
definition of a cluster (Fig. 15). This can be achieved by redefining / to
measure the excess local order parameter. Such “fluctuation clusters” are
to be thought of as representing independent fluctuations of the local order
parameter on a length scale of the correlation length £. A cluster represents
a typical fluctuation in a volume of order &. These are clearly not very
precise statements. However, they make clear the fact that a spatial coarse
graining is needed to describe critical properties.
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F1G. 15. Clusters of down spins as defined in the contour picture, showing ‘‘bubbles”
and clusters inside clusters. At positions marked by wavy lines, an additional
prescription is used which cuts contours into parts to avoid the occurrence of
percolating clusters. (From Binder, 1976.)

(3) Mathematical clusters (Domb, 1976; Penrose et al., 1978). These are
defined via the low temperature expansion coefficients for the equation of
state (Mayer and Mayer, 1940). It should be noted that comparisons
between cluster theories and Monte Carlo studies usually use “contour
clusters”.
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Due to the problem of defining clusters, the most significant results of
the cluster dynamics approach have been obtained for those regions of the
phase diagram in which well defined clusters exist; that is, for low con-
centrations and low temperatures. This approach, therefore, does not seem
to be as appropriate in the critical region, since long-range correlations are
difficult to handle in the cluster picture. In this sense, the cluster dynamics
approach seems more useful in the region where field theories are less
reliable.

The outline of this chapter is as follows. Section VII.B summarizes the
most relevant models proposed for the equilibrium cluster distribution
needed to deal with the kinetic equations. Section VII.C presents the
possible mechanisms for cluster evolution and their representation in terms
of kinetic equations. Section VII.D discusses nucleation from the cluster
dynamics point of view. We discuss the relation with the Becker-Doéring
theory and summarize a scaling theory for the nucleation rate. Sections
VILE and VILF deal with cluster growth. We discuss how two different
mechanisms of cluster growth are included in the general kinetic equations.
In Section VIL.E we show that the predictions of the Lifshitz-Slyozov
theory (Section VI) can be obtained from the kinetic equations. In Section
VILF we summarize the Binder-Stauffer theory of cluster growth. Finally
in Section VII.G we present a very simplified model calculation which
exhibits a smooth transition from nucleation to spinodal decomposition.
We also compare the classical Cahn-Hilliard theory with a generalized
nucleation theory.

B. Cluster models

An important quantity in theories of cluster dynamics is the equilibrium
cluster distribution function ;. This is in general an unknown quantity for
systems of interest. In this section we discuss two phenomenological models
for this distribution function which have been used in existing theories of
cluster dynamics. One is the classical droplet model discussed in Section
II and briefly mentioned again here. The second is the Fisher droplet model
(Fisher, 1967a, b, ). In addition we summarize a more general phenom-
enological scaling theory for n; which has been used to obtain a scaling
theory of the nucleation rate near a critical point. Although our primary
aim in this section is to sketch the above theories in view of their use in
dynamical theories, we also briefly mention at the end some recent devel-
opments concerning clusters and cluster distribution functions. These new
results may well be of use in improving our current understanding of cluster
dynamics.

The classical droplet model predicts that the equilibrium cluster distri-
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bution function is given by (2.1) and (2.2). (Equation (2.2) is often called
the capillarity approximation.) Although one expects that the classical
theory becomes valid asymptotically for very large clusters at least at low
temperatures and small supersaturations (Binder, 1980a), it has several
inherent difficulties. One practical difficulty is that the surface energy o
which appears in (2.2) should have [-dependent corrections to the true
equilibrium surface tension for planar interfaces. Such corrections are not
included in (2.2) and are particularly important for small droplets. Second,
the separation of g into a bulk and a surface term is ambiguous for small
droplets. For these and other reasons (Binder, 1980a) many attempts have
been made to obtain more accurate droplet models. At the time when the
cluster dynamics work which we review here was being developed, the
Fisher droplet model was often used. Even though this model is now known
to be incorrect (from rigorous results such as those of Delyon (1979) and
Aizenman et al. (1980); D. Stauffer (private communication)), we review
it here due to its early use in cluster dynamics. Fisher attempted to obtain
a more accurate description of droplets, taking into account their different
sizes and shapes. By making an estimate of the entropy of droplets as a
function of their surface area, he obtained

n = qol “exp — {[2HI + b(1 - T/T)IP)/ksT}, (7.1)

where g and b are constants. The main differences between (7.1) and the
classical result arise from the two exponents 7 and p. The exponent p
specifies the shape of droplets for a given /. Namely, the mean surface
area S is parametrized as S = A/?, where (d — 1)/d < p <1. (Individual
clusters for which p <1 are called compact, while those for which p =1
are termed ramified. Fisher considered only compact droplets.) Although
the model is meant to be valid for low temperatures and small concentration,
Fisher also analyzed its behavior near the critical point. He found that p
and 1 are related to two critical exponents, § and &, via

p=(BS)", (7.2)
1=2+6"L (7.3)

For the two- and three-dimensional Ising models one then obtains p =
8/15 and p = 16/25, respectively, as compared with the classical model
values of 1/2 and 2/3 respectively. The Fisher model has many defects,
including the obvious one noted by Fisher that the value of p obtained
from (7.2) violates the inequality p = (d — 1)/d for d = 3. Thus one must
be careful when reading the cluster dynamics literature not to take this
model too seriously. Many attempts have been made to improve the Fisher
model (Kiang and Stauffer, 1970; Reatto, 1970; Stauffer et al., 1971; Stauf-
fer and Kiang, 1971; Reatto and Rastelli, 1972). Aninteresting modification
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was also proposed by Domb (1976) who estimated the effects of (a)
excluded volume interactions between clusters and (b) the contribution of
ramified droplets.

Another ansatz for n, is a scaling form developed by Binder (1976),
which is based on scaling ideas of Kadanoff (1971). Binder argued that
near a critical point the contour definition of clusters is not useful. Instead
he used a variable I’ = I” which is a measure of the fluctuations in the order
parameter of droplets whose length scale is £ The exponent y is an
additional, unknown exponent. He argued that the cluster distribution
function n, satisfied a scaling form

np = (1)@ a,(HI, €l V69, (7.4)

The above definition of !’ corresponds to the “fluctuation clusters” men-
tioned in Section VII.A. Binder also argued that (7.4) should agree with
the classical droplet model results (2.1) and (2.2) for very large droplets.
He thus found that a cluster of / atoms occupies a volume V; ~’(+9™) and
contains an excess “mass” I”. Binder has also discussed the interpretation
of the Fisher model within this scaling theory.

Equations (7.1) and (7.4) are the only results from cluster models which
we will need in our discussion of cluster dynamics. Nevertheless, it is
important to realize that there have been many significant developments
in cluster theory in the past few years. Much of this progress has come
from ideas developed in the study of percolation. An excellent summary
of clusters in the context of percolation is given by Stauffer (1979). His
review also contains discussions of the Fisher and Domb models and related
work. Since these recent developments should eventually be useful in
cluster dynamics, we review them very briefly below.

Recently, rigorous inequalities for the equilibrium cluster distribution
function for the Ising model have been obtained (Delyon, 1979; Aizenman
etal., 1980). These give upper and lower bounds on #, in various regions
of the thermodynamic domain. Although these results do not in themselves
provide a theory for ny, they are of use in ruling out various phenomeno-
logical models. A second interesting area of research has been in the
development of better cluster models. The work by Domb on ramified
droplets has led to many subsequent studies and refinements of his original
ideas (Stauffer, 1979). These include a model proposed by Coniglio and
Klein (1980) in which a microscopic definition is given for “fluctuation”
clusters for the Ising model. Stauffer (1981) has shown in Monte Carlo
studies that this model gives a more accurate description of the critical
behaviour of Ising systems than earlier cluster models. Also, Bruce and
Wallace (1981) have constructed a droplet theory of Ising systems which
is valid near d = 1. Their starting point is (4.62), with R, replaced by R.
By renormalization group arguments they are able explicitly to calculate
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the droplet distribution function and thereby provide a unified description
of droplets of all scale sizes near d = 1. Their explicit scaling form for n,
disagrees with the phenomenological form (7.4). This disagreement arises
from a sum rule which is satisfied by the Bruce-Wallace n;, but not taken
into account in the derivation of (7.4). The work by Bruce and Wallace
seems to be the most significant development in recent research on droplet
models. It should be very interesting to improve existing cluster dynamics
theories (Section VII.D) by incorporating their results, even if this would
be limited to d near 1.

It should also be noted that the Fisher and Domb models imply singu-
larities in the free energy which are different from that proposed by Langer
((4.57) and (4.58)). We do not discuss these here, but refer the reader to
a lucid summary by Domb (1976) of the predictions of both models. As
noted in Section IV, existing evidence supports Langer’s form for the
essential singularity. In view of the subtlety of this problem, the subject
will quite likely remain controversial and unsettled until rigorous results
are obtained. It should also be noted that attempts have been made by
Klein (1980, 1981) to incorporate both compact fluctuations and ramified
fluctuations in a renormalization group description of first order phase
transitions. Klein’s 1981 paper contains a discussion of both the Langer
singularity and spinodal singularities. Additional references dealing with
the essential singularity include Binder (1976) and Zia (1981). Binder
(1976) discusses a crossover from Fisher to classical droplet behavior as
the droplet size increases, as well as the relevance of this to the problem
of the essential singularity.

We conclude by noting that several Monte Carlo studies of various
aspects of cluster models exist. The relationship between the surface area
S and the size / (i.e. the Fisher parameter p) has been studied by Binder
and Stauffer (1972) and Binder and Miiller-Krumbhaar (1974). Related
questions such as the difference between a droplet interface and bulk
interfaces (Binder and Kalos, 1980) and the validity of using a mean
surface (rather than a distribution of surface areas) in cluster theories
(Binder and Stauffer, 1972; Binder, 1976) have been investigated. A recent
study of the interface free energy of clusters is due to Furukawa and Binder
(1982). Domb and Stoll (1977) have also examined the relative importance
of ramified clusters. Several studies of the validity of the Fisher model have
also been carried out (Stoll etal., 1972; Binder and Miiller-Krumbhaar,
1974; Miller-Krumbhaar, 1974a; Miiller-Krumbhaar and Stoll, 1976; Kalos
etal., 1978). It should be noted that the original conclusions concerning
the validity of the Fisher model for d = 2 (Stoll etal., 1972; Binder and
Miiller-Krumbhaar, 1974) are now thought to be incorrect (D. Stauffer,
private communication). Recent Monte Carlo studies of metastability have
been carried out on the Glauber model with “long-range” interactions
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(Heermann etal., 1982; Heermann and Klein, 1983). The latter study
reveals an interesting crossover from a classical to lattice animal behavior
associated with a percolation transition. Other interesting Monte Carlo
calculations have been carried out on spinodal decomposition for 50:50
mixtures on d-dimensional hypercubes at zero temperature (Levy etal.,
1982; Meakin and Reich, 1982). We finally remark that the discussion in
this section has been restricted to lattice clusters. We do not consider the
more difficult problem of characterizing clusters in fluids, such as occur in
molecular dynamics studies (Lee efal., 1973; Abraham, 1974b; Binder,
1975b; Abraham and Barker, 1975; Miyazaki etal., 1977, Binder and
Kalos, 1980).

C. Kinetic equations

We now summarize the dynamical theory of cluster formation as developed
by Binder and collaborators. One can envisage three different processes
that change a given cluster pattern: evaporation—condensation, dis-
sociation—coagulation and diffusion (Fig. 14). The evaporation—conden-
sation and dissociation—coagulation mechanisms are caused by “cluster
reactions” and imply a change of the size / of the cluster. Diffusion refers
to processes in which the size of the cluster does not change but the center
of gravity of the cluster does change. It is important to note that the
condensation process is a special case of coagulation of a cluster of size /
with a monomer (I’ = 1). If we ignore cluster diffusion, we can write an
equation for the evolution of the number of clusters of size I, n/(r), which
takes into account the processes of cluster reaction:

® -1

d

a@ [n(0)] = 121 Star, rmsr(f) — 4 121 NR0)
-1

+ 5121 Crr rne(O)ny-p(2) — =~ Crrn(O)n(1). (7.5)

The different terms of this equation can be understood as follows. The
first term gives the increase in the number of /-clusters due to dissociation
reactions (/ + I')— (I, I'). This is assumed to be proportional to the number
of clusters of size (/ + /") which are present, where S,  is the appropriate
proportionality coefficient. The second term represents the decrease of [-
clusters caused by dissociation reactions /— (I — I', I") and is again assumed
to be proportional to the number n; of I-clusters. The factor of 1/2 accounts
for overcounting pairs in the summation. The third term represents the
increase of /-clusters by coagulation of clusters of size I’ and / — I’. This is
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the reverse process of that represented by the second term. The fourth
term represents the decrease of [-clusters by coalescence reactions
(I, 'y~ (I + I'). This interpretation of eqn (7.5) is phenomenological and
is very similar to the law of mass action for chemical reactions. A “deri-
vation” of (7.5) can be given by interpreting n,() as the probability density
of having a cluster of size / at time ¢. One then postulates a Markovian
stochastic process in /-space governed by a master equation

"’—’ZSL) = ,2 w(l— I)nft) + IE o(l' = Dny(e), (7.6)
where w(!— I') is the transition probability for the state / changing to a
state /’. By an appropriate choice of transition probabilities w(/— !’) and
w(!' — I) one can obtain (7.5) from (7.6). It is important to note that the
underlying physics in (7.5) requires a specification of the coefficients § and
C. A more ambitious justification of (7.5) has been given elsewhere (Binder
etal., 1975; Binder and Stauffer, 1976). The underlying idea is to derive
(7.5) by appropriate approximations from a master equation (eqn (9.6))
which defines the kinetic Ising model. If one includes enough variables to
describe a cluster, one can, in principle, get information as detailed as that
given by the microscopic spin configuration. This may be thought of as a
change of variables. The quantity n(¢) is then interpreted as the average
number of clusters of size [, with the average taken over all variables (other
than I) which are necessary to specify the cluster completely. To obtain
eqn (7.5) two main assumptions are then made. The first is a mean field
treatment of the “irrelevant” variables. This involves a factorization of the
averages with respect to these variables. The second is the assumption that
the effective reaction rates in the restricted /-space are Markovian. This
is clearly an approximation, since generally speaking the elimination of
variables leads to non-Markovian effects.

It is worth noting that if one considers Glauber dynamics (Glauber,
1963) instead of the Kawasaki exchange dynamics (Kawasaki, 1972) appro-
priate for binary alloys, an equation essentially identical to (7.5) still holds.
The main mechanisms that lead to pattern evolution are still
dissociation—coagulation processes. In this case, however, the number of
particles in the clusters is not conserved by the cluster reaction (Binder
etal.,1975). Typical cluster evolutions for the conserved and nonconserved
(Kawasaki and Glauber) models are shown in Figs 16 and 17.

The next step in treating (7.5) is to assume detailed balance. This means
that the equilibrium cluster distribution #, is a solution of (7.5), with inverse
processes having equal rates. We assume these rates to be the ones gov-
erning the nonequilibrium process. The detailed balance condition is thus

Sisr sy = Crpngnp = W(L ). (7.7)
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This assumption is completely analogous to the one made in Monte Carlo
simulations (Section IX). Its validity is an open issue. It automatically
yields the correct equilibrium solution and also allows one to replace the
set of rates C and S by the single rate W and the equilibrium distribution
n.. We then have

_%(L) _ i ny . (1) |

-1
Ny SO
TR Al A IR P Y R RD

-1 «
3 OO g oy oS I OLLURIETS (7.8)

=1 onp oy =1 o ony \
(We use the same notation as in Section 11, with n; denoting the equilibrium
cluster distribution and n(¢) the time-dependent distribution.) Equation
(7.8) does not include cluster diffusion. The above treatment can be
generalized to include the center of mass X of the cluster as another
coordinate, so that with an appropriate diffusion constant D,

%n; G.1) = DVn(3, ) + (7.9),

where on the right-hand side one would include terms similar to those in

(7.8). By integrating over X in (7.9) one recovers (7.8). A discussion of

diffusion processes is postponed until Section VIL.LE. We note that (7.8) ‘
only includes the processes shown in Fig. 14. Thus, for example, reactions

which involve three or more clusters are excluded.

Also, as mentioned above, the whole treatment makes no sense when
the concentration of the minority phase is large enough for percolation to
occur. To avoid this difficulty one must interpret / in a sense different from
the strict contour picture that we are using here. Finally, it should be kept
in mind that (7.8) can also be applied to systems like liquid mixtures by
appropriate choices of W(l,1').

Equation (7.8) is the starting point for the different developments of the
cluster theory. An important thing to notice is that (7.8) contains infor-
mation about all the processes of evaporation—condensation and coagu-
lation. Therefore one can formally rearrange it (given some approxima-
tions) so that it displays explicitly a term corresponding to the classical
nucleation equation and another corresponding to the classical coagulation
equation. The equation one obtains is

___a”’(t)_i( ﬁﬂ(_t)) J’I it g g ) - (6)
at _al leal ny i [chW(l 0 ny nNi—y

_nd) [ " arwa, ™, (7.10)
ny Jg. ny
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where the kinetic coefficient R; is

A \

1
Ri=—2 (I"*W( - 1'),‘ (7.11)
nl=1

The first term in (7.10) is the Becker-D0ring nucleation equation (Section
IT). The last two terms correspond to the standard coagulation equation
(Friedlander and Wang, 1966; Dunning, 1973; Drake, 1973). To obtain
equation (7.10) from (7.8) one considers separately clusters of size I' <[,
and I’ > [, where [. is a cut-off such that the volume V; associated with
a cluster of size I is V;, ~&. The classical picture of nucleation considers
large clusters of size /> 1 reacting with small clusters of size I' <[.. The
density of these small clusters n,(t) is taken as the equilibrium concentration
of the one-phase supersaturated metastable state. Thus the first term in
(7.10) follows by expanding W (I —I',1') and n;.y(t)/n;«y around I' = 0,
with n(f) = np. For clusters with I’ >/, dissociation processes can be
neglected and sums can be replaced by integrals. These assumptions lead
to the coagulation terms of (7.10).

At this point it is necessary to consider the conservation law for the
number of particles. This can be written as

d%gl Indt) = 0. (7.12)

This conservation law is satisfied by (7.8) when the symmetry relation |
W, I'y=W(l',]) is fulfilled, but it is not satisfied by (7.10). In fact, in |
classical nucleation theory the conservation law is not imposed. This is so

because there one considers an equilibrium metastable phase at a given

supersaturation in which the droplets are formed. Obviously the formation

of droplets decreases the supersaturation (a depletion effect). Although

this may not be important at earlier times, it becomes crucial at later times

when the conservation law dominates the dynamics. This occurs in the

Lifshitz-Slyozov theory discussed in Sections VI and VII.E. One can

formally include the conservation law in eqn (7.10) by assuming a time-

dependent supersaturation through which n; and W (J, I') depend implicitly

on time. The same eqn (7.10) is then valid, but with a time-dependent

supersaturation which must be determined self-consistently (Binder, 1977).

Finally it is worth stressing that any information to be extracted from (7.10)

is based on some a priori knowledge or assumption about the functions

W(l,1'), R; and n;. In particular, an important quantity is the equilibrium

droplet distribution n;, as noted in Section VII.B.
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D. Nucleation theory

In this section we present a cluster dynamics theory of nucleation. At least
two main results have emerged from the theoretical study. One is the
concept that an experimentally significant quantity in nucleation is the
completion time (Binder and Miiller-Krumbhaar, 1974; Binder et al. , 1975;
Binder and Stauffer, 1976). This is a measure of the time it takes the phase
separation process initiated by nucleation to reach completion. We post-
pone our discussion of completion time to Section X, where we show its
usefulness in understanding nucleation experiments in binary fluids. A
second result is a scaling law for the nucleation rate near a critical point.
This prediction does not rely on a specific choice for n;, but does involve
scaling assumptions for n; and the cluster reaction rate R,. (The scaling of
the nucleation rate also implies a scaling form for the completion time.)
To obtain a specific form for the nucleation rate requires further, model-
dependent approximations for n; and R,. As we discuss below, the current
cluster theory for the nucleation rate per unit volume disagrees with the
field theoretic prediction, as given by (4.45). This disagreement is due to
the difference between the field theoretic and cluster dynamics descriptions
of droplets. ,

The starting point for the cluster theory of nucleation is the
nucleation-coagulation equation (7.10). The first step is to neglect the
coagulation terms in (7.10), which leads to the equation

gl o

This is formally the same as the Becker-Déring equation (2.14). However,
at this point one need not make the Becker-Doéring approximations (2.1),
(2.2) and (2.15) for n; and R,. Rather, one can use (7.13) to obtain a
general scaling theory for the nucleation rate per unit volume, I/V, in the
vicinity of a critical point. One first assumes that / in (7.13) is to be
interpreted in the “fluctuation cluster” sense as the measure of excess
order parameter in the cluster. (This means that [ is to be identified with
I' = I’ mentioned in Section VIIL.B.) Second, one assumes that n; has the
scaling form (7.4). Third, one assume that the dynamic coefficient R,
satisfies a dynamic scaling form

R, =U'R(dY% HI), (7.14)
where
r=(2-vz)/pé (7.15)

and z is the usual dynamical exponent. A scaling form for 7 then follows
by substituting (7.4) and (7.14) into the steady state solution (2.17), which
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yields (Binder and Miiller-Krumbhaar, 1974; Binder et al., 1975; Binder
and Stauffer, 1976)

‘—I/ = AdJ(H/ ) (7.16)

with
j=p(6+ 1)+ 1z (7.17)

The constant A is system-dependent, but J is a universal function for
systems which belong to the same dynamic universality class. Note that
the Langer-Turski and Langer—Schwartz forms (4.45) and (4.46) for the
binary fluid are examples of (7.16), but with specific predictions for J(x),
with H/ % — x. (Their D/E factor corresponds to ¢’ in (7.16).)

To obtain a specific form for J in (7.16) one needs to introducg a
particular cluster model. As noted in Section VII.B two different choice
have been made for n;. If one uses the classical model (2.1) and (2.2) and
evaluates (2.17) by the same procedure as used in obtaining (2.19), one
obtains for the scaling function :

J. ~ exp{—(x1/x)?"}. (7.18)

(We have omitted pre-exponential factors.) If one uses the Fisher model,
((7.1)~(7.3)), one finds by a similar method

where x; and x; are constants (Binder and Stauffer, 1976). Since (7.18)
and (7.19) are derived from (2.17) by “‘saddle point” approximations,
they are only valid for small supersaturation, x < 1. (In this domain x =
H/£” is proportional to the undercooling ratio 67/¢T., as in (4.38).) It
should be noted that very near the coexistence curve, with x— 0, it is
expected that (a) the classical droplet model should be correct and (b) the
prefactor in (7.18) would contain contributions from R, and from logar-
ithmic corrections to the activation energy g which are difficult to assess
(Binder and Stauffer, 1976). (Recently Furukawa and Binder (1982) have
performed Monte Carlo studies of the free energy of cluster formation.
They have found that the activation energy is appreciably different from
that given by classical theory. A better analytical understanding of these
results should lead to an improved calculation of the nucleation rate.)

A modified classical model has also been proposed, whose prefactor is
such as to satisfy scaling (Binder, 1980a). The universal function for this
model is

J(x) = x~U~YD/E-D expl—(x,/x)? ). (7.20)
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Thus the cluster theory prediction for the nucleation rate is (from (7.16)
and (7.20))

1 S
7= Aglx U VIE=D expt—(x,/x)4- 1}, (7.21)

If one compares (7.21) with the field theory prediction for the binary fluid,
(4.45), one sees that the exponential terms are the same (within some
multiplicative constant). Since (j — 1/2) = 5/2 and (88 — 1) = 9/16 for the
binary fluid, the prefactors in (4.45) and (7.21) are different. Although
this is a small numerical difference, the two theoretical predictions are
nevertheless different. A resolution of this discrepancy has yet to be given.
It should also be remarked that the Bruce-Wallace equilibrium results for
n; presumably modify Binder’s pre-exponential exponent in (7.21), at least
near d = 1 (Bruce and Wallace, 1981).

logig [¢2* /2 (1))

20 T AH
-2.08- 2 T
i | |

(4] 200 400 600

FiG. i8. Simulated cluster concentration plotted versus time ¢ in Monte Carlo
step/spins (MCS) for a d = 2 square Ising model at 7/T. ~ 0.96 and usH/ksT =
—0.015. The parameter of the curve is /. The variables 7 and 2% indicate the
equilibrium relaxation time and the nonlinear relaxation time respectively, discussed
in Section XIII. (From Binder and Stauffer, 1976.)

It should be observed that this discussion of nucleation theory based on
(7.13) has assumed that a single variable, /, is sufficient to characterize the
cluster. A generalization of (7.13) to a multi-coordinate description of
clusters has been given by Binder and Stauffer (1976). The resulting saddle
point calculation for I/V is very analogous to the Langer field theory
calculation (Section IV). Although a formal expression was obtained for
1/V, no explicit evolution (such as given by (7.21)) was carried out. We
should also note one particular attempt which has been made to determine
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the validity of a single-coordinate cluster equation such as (2.1§) (Binder
and Stauffer, 1976). This consisted of a numerical investigation of the
two-dimensional Glauber model. Although the results were in quite reason-
able agreement with such a description, an unequivogal answer cannot yet
be given. However, it is interesting to note the behaviour of n;(t) obtained
in the above study, which is shown in Fig. 18. It can be seen that after a
certain time (of the order of the equilibrium relaxation time), a platgau
is reached which corresponds to the quasi-stationary state nj, on which
(2.18) (together with the boundary condition (2.16)) is based. A true
steady state solution does not exist. Eventually »;(¢) departs from'lts plateau
value when droplet growth of macroscopic domains becomes important.
The resultant decrease in n;(¢) is due to the effects of coagulation and
decrease in supersaturation which are not included in the approximate
equation (7.13) (see also Section IX.E).

E. Lifshitz—Slyozov theory

In the following we sketch a derivation (Binder, 1977) Qf the Lifshitz—
Slyozov prediction for domain growth, based on (7.10). This complements
the discussion of Section VI. We recall that the Lifshitz—Slyozov theory
consists of an asymptotic, t— %, solution of a continuity equation for the
cluster distribution, supplemented by a conservation law. The drift velocity
in such an equation is obtained by considering a diffusive growth of‘ large
spherical droplets. With these ideas in mind it is clear how to obtain the
Lifshitz—Slyozov result from a cluster dynamics theory. We first t}eglect
the coagulation events in (7.10) which are not considered in Fhe
Lifshitz-Slyozov theory. This yields (7.13). We also neglect the d1ffusmn
part (8%/8l%) of (7.13) with respect to the drift part .(6/1_91). This last
assumption makes sense for late times. The resultant equationis a continuity
equation, in which the equilibrium distribution n, is taken to be given by
the classical droplet model appropriate for large droplets. In addlt.lon we
introduce a time-dependent field H in order to satisfy the conservation law
for the number of particles. We then have

O~ 2 o), =
v = R)[2H(f) + ol/ksT. (7.23)

We must now specify R, to determine the drift velocity. The appropriate
choice for diffusive growth is R; ~ [1~%? (Chandrasekhar, 1943; Penrose
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and Lebowitz, 1979). Then for d = 3 one has

i [ (]i) s 1] (7.24)

The critical size /¢ is, from (7.23), inversely proportional to the field H(),
in the same way that R. is inversely proportional to H in (4.18). The form
(7.24) is the LSW velocity (4.34), while (7.22) is the continuity equation
(6.3), The LSW result for the growth rate can then be obtained from
introducing a time-dependent scaling solution of (7.22),

n(t) = oAl ™), [— o t— o, (7.25)

From (7.25) and the conservation law (7.12) one obtains y = —2x. Equation
(7.25) is a solution of (7.22) if x = d/3, which is the LSW growth law.
Equation (7.25) is the scaling solution (6.7). In Section IX we discuss the
t¥3 growth law and the scaling function 7 in the context of Monte Carlo
studies.

The solution (7.25) can also be used to obtain the asymptotic time
dependence of the excess energy associated with the surface of a droplet,
using the relation

Au(t) = u(f) — u() = 2 wny(2). (7.26)

If one assumes that the droplets are spherical, then uyoc ;o 1-14 Thys
from (7.25) one obtains

Au()~1™, b =1f3. (7.27)

We conclude by summarizing the differences between the LS theory of
diffusive droplet growth and the Becker-Doring theory of nucleation. The
LS theory neglects the diffusion term, satisfies the conservation law
(through the introduction of a time-dependent field H(¢)), and assumes

that R, ~I'"%4  rather than the Becker-Déring  assumption
R/~ 8~ 1@~-1/,

F. Binder-Stauffer theory of cluster growth

We now discuss an approximate solution of (7.10) which yields the phenom-
enological Binder-Stauffer (1974) theory for cluster growth at intermediate
times. As we discuss below, the validity of the detailed Binder-Stauffer
predictions for finite temperatures is unclear. Nevertheless; it is evident
that the mechanism of cluster growth considered in their theory is impor-
tant. What is not clear at the moment is its relative importance as compared
to other mechanisms. Since the Binder-Stauffer theory has often been
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used in analyzing Monte Carlo and experimental results, we discuss it here
in some detail. We begin by summarizing the physical ideas involved.
Their basic assumption is that there exists an intermediate time domain
in which clusters of intermediate size diffuse without changing size, until
eventually two such clusters coalesce. This coagulation is the Binder—
Stauffer growth mechanism and results from the diffusion of clusters. There
are at least four mechanisms for diffusion, as shown in Fig. 19. In Fig. 19(a)
an atom moves at the surface without any cost of energy. In Fig. 19(b) a

00QO0O0000O0 OO0O00O0O00O0

(a)

(b)

O OCO0QOO0OC0OO0O0O
o coo oooofeo

Fic. 19. Schematic illustration of four different mechanics of cluster diffusion.
(From Binder and Kalos, 1980.)

monomer evaporates and condenses again in the cluster. The clusters are
considered to be diffusing, free Brownian particles. Thus the diffusion
constant can be estimated to be D; = co(AxG)Z, where Axg is the shift in
the center of mass position produced by a given process and w is the rate
at which such processes occur. The center of mass is defined as

;;G:%Zzi, (7.28)

where the sum runs over the atoms of the cluster. (We have used the fe}ct
that the total mass of the cluster is proportional to its volume V;, with
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Vi~ Il for low temperatures.) The net effect in each of these two processes
is that an atom changes its position by a few lattice constants, so that
Axg~ 171 The rate of these processes is proportional to the number of
surface sites, which for low temperatures is given by S, ~ /'~ V4, Therefore

D;~1"  a=1+1/d (7.29)

In Fig. 19(c) diffusion results from an interior displacement of one of the
atoms of the species forming the matrix in which clusters diffuse. These
“bubbles” inside the cluster of course become more important at higher
temperatures. By a reasoning similar to that given above, one obtains

D,~1"1, (7.30)

The difference between (7.29) and (7.30) arises from the fact that the
number of sites that can participate in the process is proportional to V; ~ [.
Finally, in Fig. 19(d) diffusion occurs by condensation of one monomer
and evaporation of a second monomer on the other side of the cluster. In
this case the displacement of the center of gravity is of order /™*1/4 dye
to the fact that the change in the coordinate x; of the atom that has changed
position is of the order of the linear dimension of the cluster, I'/4. The
number of possible participating sites is proportional to S, so that

D;~171*1/d (7.31)

For large [ this particular mechanism therefore would appear to dominate
those illustrated in Fig. 19(a), (b) and (c). However, one also has to take
into account the fact that for low temperatures it is much more probable
that the configuration for the processes illustrated in Fig. 19(a) and (b)
occurs than the configuration illustrated in Fig. 19(d), which involves mono-
mers. As a consequence, one expects (7.29) to hold at very low temper-
atures. At larger temperatures D; will behave as in (7.29) for small /, but
for larger / it will cross over to the behaviour given by (7.31). The effective
exponent of D; will therefore vary with temperature. This crossover
behaviour seems to be in agreement with Monte Carlo data (Binder and
Kalos 1980; Fig. 20).

We now return to a discussion of the Binder-Stauffer theory of cluster
growth, which considers a diffusion constant given by (7.29). The cluster
size evolution can be obtained from this form of D, by noting that coalesc-
ence of two clusters will produce a change in size of order A4, where A
is the mean distance between clusters. If one estimates the time needed
for a cluster to diffuse (with a diffusion constant given by (7. 29)) over a
distance A (the only characteristic length in the problem), one easily obtains
that the characteristic size / is proportional to t#¢*9_ It is interesting to
note that, in contrast to the Lifshitz-Slyozov mechanism, this mechanism
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is of local character. It is due to the cluster diffusion which results from
evaporation and condensation of monomers as dictated by the local
geometry and not by global diffusion currents. Since the (¥¢+4 growth
law is based on the estimate (7.29) for the diffusion constant, the theory
neglects the other possible processes leading to diffusion shown in Fig. 19.
Since it is not at all clear that (7.29) represents the dominant diffusion
mechansim, the validity of this growth law remains unclear. In fact, it could
very well be incorrect to try to describe growth by a single power law
behavior in a regime where there are several competing mechanisms for
growth.
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Fi6. 20. Log-log plot of cluster diffusivity D; versus . Straight lines indicate various
estimates for the exponent a(D; ~ I=*). The dashed curves represent the crossover
behavior discussed in the text. (From Binder and Kalos, 1980.)

We now turn to the derivation of the Binder—Stauffer theory from the
basic equation (7.10). This is done by using the basic assumptions discussed
above. Namely, we first neglect the evaporation-condensation term in
(7.10) (the first term) and keep the coagulation terms. The underlying
picture is that the evaporation-condensation processes are taken into
account via a diffusion constant for free clusters and the cluster “collisions’
are taken into account by the coagulation terms. A scaling form for the
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rate W(/,1') is then assumed for the coagulation terms in (7.10),

W) = nnel "W). (7.32)

This scaling assumption presumably reflects the existence of a single char-

actristic length in the problem. With this form of W the equation for n(t)
is now solved by (7.25) with

x==2y=(01-v)"" (7.33)

The remaining task is the determination of the exponent v (Binder, 1977).

This is done by relating v to the behavior of D, (as a function of / ) by the
two following obvious identifications:

Am

= 1 (De/ APy () (7.34)
AT':’n,(:) =W, 1) ”’T(I')”’n—ft) (7.35)

Here Am is the mass incorporated per unit time At into a cluster / by
coalescence with clusters I’ whose average distance from the cluster /
is A.

From eqns (7.32), (7.34) and (7.35) one obtains different values of v for
the different diffusion mechanisms described by (7.29)~(7.31). From (7.33)
one then obtains x. For T— 0 (7.29) leads to x = d/(d + 3), which is the
original Binder—Stauffer (1974) prediction. For intermediate temperatures
below T¢, (7.30) and (7.31) lead to x = d/(d + 2) andx = d/(d + 1). (These
predictions were not in the original Binder-Stauffer theory.) Each of these
three values of x is for intermediate times, with the late time behavior
given by the Lifshitz—Slyozov value of x = d/3. An estimate of the crossover
time corresponding to the transition from the intermediate time behavior
to the late time behavior is given by Binder (1977).

One can also obtain the exponent b’ which characterizes the energy
Au(t) in (7.27). One finds that for T— 0, b = 1/(d + 3), whereas for finite
T one again has at least three possibilities, b’ = 1/(d + 1). 1/(d+2) or
1/(d + 3), corresponding to the three diffusion mechanisms described
above. Finally, we note that Binder and Stauffer also proposed a scaling
form for the structure factor which follows from (7.25). We discuss this in
Section VIII, but note here that their T— 0 predictions for the exponents
a’ and a" (eqns (5.34) and (5.35)) are @’ = 1/(d + 3) and " = d/(d + 3).

G. Spinodal decomposition as a generalized nucleation theory

We now summarize some results for #,(¢) that have been obtained by a
numerical integration of the general kinetic equation (7.8). The validity
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of some of the assumptions involved in this calculation is quite difficult to
assess. As well, the quantitative results are probably not very accurate."
However, a qualitative picture emerges which is quite interesting. For
example, the cluster distribution function n;(t) changes smoothly as one
varies the quench composition from the coexistence curve to the critical
composition. There is thus no evidence of any sharp distinction between
metastable and unstable states. In fact, one could imagine the process of
spinodal decomposition as being a generalized nucleation phenomenon,
as we indicate in more detail later.

To integrate (7.8) one needs a priori knowledge of three quantities: (1)
the initial condition n,(0); (2) the equilibrium droplet distribution n;; (3)
the reaction rate W(l, I’). The choices given by Mirold and Binder (1977)
and Binder et al. (1978) are the following. First, the initial condition is
determined from data for the “site percolation problem” (Coey 1972; Sykes
and Glen 1976; Sykes et al., 1976; Stauffer, 1976; Quinn et al., 1976). (This
is reasonable, since the initial condition chosen corresponds to a high
temperature, disordered phase in which the distribution of B atoms i
completely random. This is site percolation.) One also sets n,(0) = 07Yor
clusters larger than some cut-off size. Second, the equilibrium droplet
distribution n, is the Fisher form (7.1). This is in principle an incorrect
choice (Section VIL.B) but in practice probably does not qualitatively alter
the results. Third, W(/, 1) is chosen to be

WY = ey (I')° [(_117)1—2/4 + (;,)‘“'ﬂ. (7.36)

¢ is a proportionality constant that sets the time scale. This form of W is
based on the scaling ansarz (7.32) and is a simple interpolation between
the asymptotic behavior for large and small values of /. (The former is
given by the (J/I’)'~% term and follows from the assumption R, ~ [!~%¢
used in the LS theory. The latter term then follows from the symmetry
condition W(l,I') = W(',1).)

For the case of binary alloys at low temperatures, one chooses v =
—3/d, as discussed in Section VILF. (Although liquids have also been
considered (Binder et al., 1978), we do not discuss this case here.) Results
for the binary alloy were obtained for a d = 2 square lattice at the con-
centration cg = 0.1 and the temperatures T = 0.6T,, 0.77; and 0.87, and
also at ¢cg = 0.2 and T = 0.87.. Reésults were also obtained for the d = 3
simple cubic lattice for ¢cg = 0.1 and T = 0.6T.. The qualitative behavior
is similar in all these cases. Figure 21 shows a representative example. Both
a minimum and a maximum are observed whose positions are shifted to
larger values of [ as time goes on. The minimum occurs at the critical
droplet size, I, for nucleation. (Droplets smaller than /. belong to the
supersaturated, A-rich phase.) Droplets larger than . are nucleated droplets
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Fic. 21. Cluster size distribution for solids at cy = 10% and T/T, = 0.6. (F
Mirold and Binder, 1977.) B © JT. = 0.6. (From

vyhich are undergoing growth. They have a rather broad distribution in
size.

One can also obtain information from ny(t) about the approximate
behavior of the time evolution of (a) the typical cluster size and (b) the
excess energy of a cluster of size /. The typical cluster size can be defined
in terms of the first or second moments of n(t):

L() = l>210 In{t)/ 1}210 (o), (1.37)
L(t) = 1>210 lznl(t)/bzlo n(t) (7.38)

(where the cut-off [, essentially excludes equilibrium droplets). The excess
energy Au(z) follows from (7.26). These quantities were analyzed in terms
of power law approximations, eqns (5.37), (5.38) and (7.27).

The values which were obtained for T = 0.67. and a concentration of
10% are a; = 0.35, a, = 0.38, b’ = 0.20 for d = 2 and a; =0.28, a; =0.17,
b'=0.08 for d=3. These results are roughly consistent with the
Binder-Stauffer predictions of Section VILF, as well as with the Monte
Carlo results discussed in Section IX. The results for higher temperatures
and larger concentrations are in less satisfactory agreement with theory,
particularly for d = 3. "

We now turn to a numerical evaluation of the structure factor defined
in Section IV. Since the probability that 7' is a site of an l-cluster is by
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definition Iny(?), the correlation function{c(7 ')c(7 ' + 7)) is related to the
cluster distribution by

(e e + 7)) = 2 Im(Dei(7), (7.39)

where g/ 7) is the conditional probability that the site 7' +7 is occupied
by a B atom if 7' is within an /-cluster. Therefore, one needs to know
g(7) in addition to n/(f). Binder et al. (1978) made a very simple approxi-
mation for g(7), shown in Fig. 22. This assumption leads to she correct

T 1.0

9|{’)

0.5 }—

Cg b ——— =t ——————

i B RS

(] ry r,(l) S

Fi6. 22. A simple model of the conditional probability gi(r). Here r,(/) denotes an
effective cluster radius and ry({) an effective radius of its boundary region. (From
Binder et al., 1978.)

behavior (c(7 ')c(7' +7))— ck for large r. The values of () and ry(J)
are fixed such that $(k = 0, ¢t = 0) = 0 independently of n,(f). This satisfies
the local concentration conservation for the initial random phase. The
clusters are assumed to be spherical and of volume Vyl. This choice of g,(r)
implies also that

Sk, t) = K2, S(k,t) - k2 (7.40)
k—0 k—

Using the n,(f) discussed previously, numerical data for $(k, 7) have been
obtained both for solids (Fig. 23) and fluids. The behavior of the structure
factor at ¢g = 0.1 is qualitatively the same as the one discussed in Section
IX for symmetrical quenches. In spite of the crude approximation involved
in this calculation, the results very clearly show the smooth transition
between the nucleation and spinodal decomposition regimes. In particular,
the form of the structure factor displayed is qualitatively similar to that
obtained from Monte Carlo simulations in the spinodal region.

We conclude by presenting a physical picture for the gradual transition
from the metastable to the unstable domain described above. We first
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FiG. 23. Structure factor $ (k, t) plotted versus & for various times after the quench

from infinite temperature to T = 0.67. for a d = 3 Ising model at cp = 0.1. (From
Binder et al., 1978.)

recall the classical Cahn—Hilliard (1958, 1959) theory, which assumes the
existence of a classical spinodal curve. Their analysis predicts that in the
metastable region the activation energy barrier for droplet formation
decreases monotonically from infinity to zero as the concentration of the
minority species increases from zero to the classical spinodal value (Fig.
24). In addition the radius of the critical droplet, R., is predicted to diverge
both at the coexistence curve and at the classical spinodal. In the Cahn
linear theory of spinodal decomposition, the characteristic length k! (eqn
(5.8)) also diverges as one approaches the classical spinodal from the
unstable region. Thus in the classical pictures of nucleation and of spinodal
decomposition, there is a sharp transition between metastable and unstable
states as characterized by the classical spinodal curve. On the other hand,
more recent work (Binder and Stauffer, 1976; Binder, 1977; Mirold and
Binder, 1977) suggests a considerably different picture. First, the activation
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energy never becomes zero, but rather becomes of the order kgT at the
classical spinodal curve and throughout the unstable region. Secondly, the
critical radius, R., smoothly decreases as the concentration increases to a
finite value (of the order of the correlation length £) at the classical spinodal
and throughout the unstable region. (The critical droplet of course becomes
more diffuse as the concentration increases.) Finally, the length which
characterizes the instability against long wavelength fluctuations in the
unstable region remains finite at the classical spinodal. These two different
pictures are shown in Fig. 24. We note that this work of Binder and
T t _I,Quench atTime 0
Tet-1---- il

Coexistence Curve
&

(B)

(©)

_,CB (%)

FiG. 24. (a) The schematic phase diagram of a binary mixture; (b) the behavior of
the activation energy g, and (c) two characteristic lengths R. and A. = 2xk:!. In
(c) the broken lines correspond to the Cahn-Hilliard theory and the full line to the
theory discussed in the text. (From Binder et al., 1978.)
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collaborators suggests that spinodal decomposition could be viewed as a
generalized nucleation, in the following sense. In the metastable region
the density of critical droplets is very small, due to the larger energy barrier.
When this energy barrier becomes very small (of the order ksT), a high
density of unstable fluctuations develops. These fluctuations are limited
only by the conservation of concentration. Namely, in the vicinity of a
localized fiuctuation, the formation of other clusters is prevented by the
depletion effect (decrease of supersaturation). In this sense, these large
clusters form a nearly periodic variation of concentration. Thus the long
wavelength fluctuations which characterize spinodal decomposition can be
considered as an extreme version of nucleation, involving a very low
activation energy. It should be remarked that existing evidence discussed
in this review strongly supports the validity of this qualitative picture,
rather than the classical Cahn-Hilliard theory. This picture is also com-
pletely consistent with the renormalization group results discussed in Sec-
tion III. Namely, no unique coarse-grained spinodal curve exists. There-
fore, there is no reason to expect a sharp distinction between metastable
and unstable states.

VIll. Scaling Theories for Structure Functions
A. Introduction

The structure function S(f’? t) as defined in (5.10) and (5.11) for the binary
alloy is a fundamental measure of the nonequilibrium properties of the
system. Analogous nonequilibrium order parameter correlation functions
,can also be defined for other systems in which phase separation is observed,
such as binary fluids, glasses and antiferromagnets. It is therefore of
considerable interest that these order parameter structure functions seem
to exhibit a simple scaling behavior somewhat reminiscent of the scaling
behavior observed in critical phenomena. Although some theoretical atten-
tion has been given to this nonequilibrium scaling, the subject is not as yet
well understood. Renormalization group theory may be useful here.

The basic idea underlying the scaling of S(k, ) is that after some initial
transient time following a quench, a characteristic, time-dependent length
scale, k7!(f), is established. Various choices of definition of this length
exist. For example, one could define k() as ky(t), the first moment of
S(k, 1). Alternatively, one could choose k() as kn(f), the position of the
maximum in S(k, ). If there is only one time-dependent characteristic
length for the system, either choice will suffice. In Monte Carlo studies it
is convenient to use ky(7), partly because it is difficult to determine k.,
accurately. In other cases, such as binary fluids, it is common to use kn(9),

3. Dynamics of first-order transitions 367

since its position can be determined rather accurately. For systems in which
the order parameter is not conserved, as in antiferromagnets and order—
disorder transitions, k,, = k; = 0, but one can choose x(f) = Vk;(t), where
k, is the second moment of $(k, #). In all cases it is assumed that x~(¢) is
a measure of the size of the ordered regions Which are developing in the
system. .

It is convenient to introduce a normalized structure function (Marro et
al., 1979)

. Sk, 1)
Sk, t) = m(—k:t—) . (8.1)
such that
; KS(k, 1)

is independent of time. The sum on k is over the first Brillouin zone for
a binary alloy. One then introduces a function

F(x; 1) = x%(t) S(k, 1), ' (8.2)

for a given x(f), where

x = k/x(r). (8.3)
The scaling ansatz is that after some transient time £y
Fx;0) = F(x), t=1, (8.4)
so that from (8.2)
Sk, ) = xUOFx), =1, (8.5)

where the “scaling function” F(x) is independent of time. It should be
noted that recent Monte Carlo studies of the Ising model use a slightly
different definition of $(k, ¢) in (8.1). Namely, the function S(k, t) which
appears in (8.1) is replaced by a structure function Si(k, ) = A[S(k, 1) —
S.(k)], where A is a normalization constant and Sc(k) is the equilibrium
structure function on the coexistence curve. The motivation for such a
background subtraction is discussed by Lebowitz et al. (1982). We will
neglect this subtraction in our subsequent discussion, since in many cases
it makes no practical difference.

The scaling ansatz (8.5) is certainly quite plausible. Nevertheless, it
should be noted that the existence of a single dominant length scale does
not necessarily imply that F(x: ¢) is time-independent. (See, for example
a theory of the quenched time-dependent Ginsburg-Landau model:
Kawasaki ef al. (1978).) One could expect that there are “corrections to
scaling” such that F(x; ¢) is weakly time-dependent. In this case one might
consider (8.5) as a first approximation, in which correction terms should
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also appear. Such effects have not been studied to date. What has been
investigated in Monte Carlo and experimental studies is the behavior of
the ratio

k(1)

r(t) = %, (8.6)

where the nth moment of S(k, 1) is defined as

Sk'S(k,t)  Zk™S(k, 1)
38k, ) 8k, 1)

If (8.5) is correct, then r(r) should be strictly independent of time for ¢ = .
Monte Carlo studies of the three-dimensional Ising model (Lebowitz et al.,
1982), two-dimensional tricritical model (Sahni et al., 1982c) and experi-
mental studies of binary fluids (Knobler and Wong, 1981) all reveal a very
slow time dependence of r(?) in their scaling regimes. Although this appears
to be a rather small effect, it does suggest that there are weak corrections
to (8.5), or possibly that the asymptotic scaling regime has not yet been
attained. This point certainly requires further experimental and theoretical
study.

The apparent validity of (8.5) as a good first approximation for the
structure function in the “late time” region of the phase separation poses
an interesting challenge to theoreticians. There is clearly a need for a
theory which predicts the form of F(x) as well as the dynamical behavior
of x(¢). This scaling function is not a universal function, in that it seems
to depend on the thermodynamic variables which characterize the quench
position. For example, the scaling functions for binary alloys and binary
fluids depend on the temperature and the concentration, albeit somewhat
weakly. It should also be noted that if (8.5) is correct, then various
quantities such as the peak position kn(f) and peak height S(ku(?), £) are
related. For example, if one chooses k{(f) = kn(?), then (8.5) implies that

S(ka1), 1) = ka¥())F(L). (8.8)

If one assumes that the peak height and the peak position are parametrized
by power law behavior with exponents a'’ and a’, as discussed in Section
V, then (8.8) implies that a’' = da’.

kn(t) =

(8.7)

B. Scaling for systems with a conserved order parameter

The first theoretical prediction that the structure function should scale was
made by Binder and Stauffer (1974) who considered phase separation in
alloys and liquid mixtures. Their work primarily dealt with predicting the
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growth rate of clusters in terms of the cluster-reaction model summarized
in Section VIL. In addition, an explicit scaling form was given for S(k, )
for a model of binary alloys in which phase separation proceeds by the
diffusion and coalescence of large clusters. Sufficiently long after a quench,
ordered regions of typical size R(¢) have formed. Assume that the dominant
dynamics governing the growth of such clusters is diffusive, with a time-
dependent diffusion constant D(f) which depends on the average cluster
size. Binder and Stauffer then approximate the long wavelength behavior
of $(k, £) by

Aqfé(f)d_z

Lt S0 S _ a—AaD(Ok% k< ]é—l < E. 8.9
C+RI@LTC b e, B2

Stk 1) =
where A, and A, are constants which depend on the average concentration
of B atoms. The origin of the various terms in (8.9) is the following. The
prefactor on the right-hand side of (8.9) is an Ornstein—Zernike-like descrip-
tion of the coexistence of two phases. The factor R(£)?~? is necessary to
satisfy the sum rule

;s(k,z)=1,

assuming that the contribution from small k gives a dominant term to the
sum. The other factor in (8.9) describes a diffusive relaxation toward
equilibrium. The behavior of D(t) can be estimated by arguments given
in Section VII, which we do not reproduce here. To obtain an explicit
scaling function from (8.9) one need only note that the maximum in $(k, f)
should occur at kn(f) * R, so that

R™D(0) = Ax™, (8.10)
where Aj; is a constant. Thus from (8.5), (8.9) and (8.10) one has
= A e <R 8.11
FBs(X) 1+ xz {1 [ }, x=<1 /E, ( . )

where we have neglected the normalization factor in (8.1). The low tem-
perature (T— 0) growth law for R(Y) is, from Section VII, R~ (%, g’ =
1/(3 + d). To our knowledge no test of this scaling function has been made
in the Monte Carlo or experimental studies. Binder and Stauffer did not
predict the concentration dependence of A; and A3, so there would be two
adjustable parameters. However, it seems likely that this scaling theory is
too simplified to be accurate.

Binder et al. (1978) subsequently gave a more fundamental discussion
of $(k, #) based on the cluster model approach discussed in Section VII.
Their starting point is eqn (7.49), which expresses S(k, f) in terms of the
cluster distribution function n¢) and the conditional probability g/(7). As
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noted in Section VII, this equation can be used to obtain a qualitatively
successful, generalized nucleation theory of spinodal decomposition. It can
also be used to obtain a general scaling expression for $(k, £). This formal
expression for S(, ¢) is the sum of two terms, the first being a Lorentzian
(Ornstein-Zernike) expression which approaches the equilibrium corre-
lation function as t— . The second term represents the effects of droplet
formation and has a scaling form (8.5). The scaling function F is given in
terms of an integral involving the product of the scaling function for the
droplet distribution and the conditional probability function g,(r). Since no
analytical expression is given for g(r) or for F, we do not discuss this
approach further. It does seem, however, to provide a useful starting point
for a cluster model calculation of the scaling function.

Another interesting, more detailed phenomenological scaling theory for
binary alloys and fluid mixtures is due to Furukawa (1978, 1979, 1981).
This work also deals with the growth of clusters that occurs after the early
time spinodal decomposition process. Furukawa discusses a phenomeno-
logical model for the structure function $(k, ¢) in which he incorporates
certain of the cluster growth ideas of Binder and Stauffer within the
framework of nonlinear Langevin equations. The results are numerical
predictions for the structure functions of binary alloys and binary fluids.
These predictions agree reasonably well with experiments. However, the
theory involves three adjustable parameters.

Both the formalism and details of his theory are somewhat complicated.
However, the basic ideas and approximations are relatively simple, as we
summarize below for the case of the binary alloy. The extension of his
approach to binary fluids is given at the end of this discussion. Furukawa
begins with a nonlinear Langevin equation of the form (3.16) (Furukawa,
1981, eqn (3.19)). He approximates this equation by a renormalized, linear
Langevin equation which is assumed to describe the late stage growth of
a gas of free clusters. The effects of the linearization are included in a
renormalization of the random force, mobility and free energy functional
which appear in the Langevin equation. The major assumption in this
linearized model is that the free energy functional which describes the gas
of free clusters is not the Ginzburg-Landau form (3.15). Rather, it is taken
to be

inzk:xillck|2+ o(c}), (8.12)

where ¢, is the Fourier transform of the local concentration and y; is a
positive “susceptibility”. This susceptibility is supposed to be determined
by the cluster shape and cluster configuration. Thus there is no vestige in
(8.12) of the negative susceptibility, (3%f/dc?), which is crucial for the early
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stage decomposition. The equation for the structure function then takes
the form

ag(ali"t) = —2MksTK%i'S(k, 1) + 2ksTMK?. (8.13)

Furukawa argues that the mobility which appears in the above equation
can be taken as the bare mobility which enters the original nonlinear
equation. Given this approximate equation of motion, the remaining task
is to determine y. He assumes that S(k, ) has the scaling form (8.5)
(neglecting the normalization in (8.1)), with the scaling length being the
average cluster size, R. This requires that x scales. Furukawa then takes

Xt = akg[(k/ka)” + B, (8.14)

where ky = /R denotes the peak position of §(k, t). This form, in which
@, B and y are three adjustable parameters, is suggested by a mean field
calculation (Furukawa, 1977). (The mean field calculation yields yi' =
O(R?) for k < ky, and x;' = = for k > km:g Estimates of y can be obtained
by assuming, as Furukawa does, that S(k,?) =y for k=k,. At lo?v
temperatures and small supersaturations one obtains y=d + 1. This
reflects the expected behavior of S(k, #) for large k, which arises from the
form factor of compact droplets. For this reason any sensible theory for
the scaling function F(x) should predict that F(x) ~x~* for x > 1, in the
low temperature, small supersaturation domain. Away from the coexistence
curve the clusters become less compact and y should differ from d + 1.
Furukawa estimates that y = 2d for extremely entangled surfaces, near the
center of the miscibility gap.

The behavior of R is assumed to be governed by the Binder-Stauffer
diffusion-reaction mechanism, with R ~ /%2 The three parameters in
(8.14) are determined from experimental data and have different values
at different quench points. The resultant form for S(k, t) is found to be in
good agreement with Monte Carlo data for the three-dimensional Ising
model of a binary alloy at T = 0.597 and one-to-one composition (Marro
et al., 1975) and at T = 0.59T. and one-to-four composition (Sur et al.,
1977), with the best fits occurring for y = 6. Furukawa also found reasonable
agreement with the results of an off-critical quench of Au-Pt (Singhal et
al., 1978).

The same ideas can also be applied to binary fluids. In this case the
renormalized mobility which enters (8.13) is estimated to be proportional
to R?, with R ~ 14. These differences between fluids and alloys arise from
hydrodynamic effects. A parametrization of y;! which takes into account
hydrodynamic effects is employed for the binary fluids. The agreement
between theory and experiment is shown to be reasonable for an off-critical
quench in isobutyric acid plus water (Wong and Knobler, 1978).
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Two final remarks should be made regarding Furukawa’s analysis. The
first is that the theory does not describe the asymptotic time domain in
which the Lifshitz-Slyozov-Wagner growth law is correct. The second is
that it is difficult to judge the significance of Furukawa’s scaling theory,
due to the various approximations and adjustable parameters which are
involved. In particular, the agreement between the theory and experiment
seems somewhat forced. Furukawa basically requires that $(k, 7) be fit by
(8.14) for k = k. Since the correct behavior of S(k, £) at k = 01is guaranteed
by the local conservation law implicit in (8.13), there is not too much room
left for disagreement. On the other hand, his observation that the
Ginzburg-Landau free energy functional does not provide a useful starting
point for the description of the late stage behavior of S(k, f) seems a useful
insight. The same point has also been made by Siggia (1979).

Finally, we note that a simple phenomenological theory for the scaling
function also has been given by Rikvold and Gunton (1982). Their theory
assumes scaling and is based on a model which describes a gas of spherical
droplets of the minority phase, surrounded by depletion zones. A simple
approximation is made for the pair correlation function for droplets, some-
what similar to the approximation of Binder ez al. (1978) discussed in
Section VII.G. The scaling function is obtained by averaging over a dis-
tribution of droplet sizes assumed to be given by the Lifshitz-Slyozov
distribution function (Section VI). The only parameter which enters this
theory is the volume fraction v of the minority phase. The agreement with
the results for the kinetic Ising model (Section IX), and binary alloys and
binary fluids (Section XI) for v < 0.2 is quite reasonable. The approaches
of Furukawa (1981) and Rikvold and Gunton (1982) are somewhat com-
plementary, in that Furukawa obtains dynamical information, but no
explicit analytical form for the scaling function, whereas Rikvold and
Gunton obtain an explicit scaling function, but no dynamical information
(since they do not determine the time dependence of the scaling length).

We conclude this section by remarking that the best first principles
starting point for a theory of scaling in binary alloys and binary fluids seems
to be provided by the recent theory of interface dynamics developed by
Kawasaki and Ohta (1982a). Also, the physical basis for scaling is obvious
from Fig. 3. One can imagine that by a suitable scale transformation a
given configuration, e.g. (e) can be reduced to a preceding one (e.g. (d)).

C. Scaling in systems with a nonconserved order parameter
Scaling is perhaps better understood in systems with a nonconserved order

parameter than for systems such as binary alloys and binary fluids. Indeed,
there is a recent derivation (Ohta etal., 1982) of a scaling function F(x)
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which seems to explain the scaling results found in Monte Carlo studies
of the two- and three-dimensional Ising antiferromagnet (Phani ez al., 1980;
Sahni etal., 1981). In addition, two other theoretical treatments of the
time-dependent Ginzburg-Landau model described by eqn (6.9) (with a
“y" free energy and supplemented by a noise term) have predicted a
scaling of S(k, ). Each of these three theories predicts that the time
dependence. of the characteristic length is k'(¢) ~ £*2, in agreement with
the Monte Carlo results. Each theory yields a scaling function, but only
the recent work by Ohta et al. (1982) has been compared with the Monte
Carlo results.

One study is an adaptation of the LBM theory to the nonconserved case
by Billotet and Binder (1979). Since the main ideas of such an approach
have been summarized in Section V, we do not discuss this work here.
Billotet and Binder obtain a numerical solution for a scaling function from
their theory. This function is clearly in qualitative agreement with the
Monte Carlo results. A second study by Kawasaki et al. (1978) involves a
solution of (6.9) which is based on a singular perturbation theory. In this
calculation a certain weak coupling (u— 0), long time (r— «), large
distance limit is taken, such that a natural time variable y(f) remains finite.
(This variable y is proportional to ut™#%M5 ™, where u is the coefficient of
the “y*” term in the Ginzburg-Landau free energy functional.) Closed
form scaling solutions are obtained for the probability distribution func-
tional and the structure function $(k, ). The scaling function, however,
has an explicit time dependence. The limitations of this calculation are
twofold, the first being the restriction to the weak coupling limit. The
second is that the short wavelength fluctuations (y; k > £7!) are included
in (6.9) only via the renormalization of various coefficients which enter the
equation. As a result, the theory seems incapable of describing the short
wavelength fluctuations appropriate for the interface dynamics.

The most recent studies of the time-dependent Ginzburg-Landau model
are by Kawasaki and Ohta (1982a) and Ohta etal. (1982). The work of
Kawasaki and Ohta is complementary to that of the singular perturbation
theory in that an explicit discussion of the interface dynamics is given. A
derivation of a Euclidean invariant Langevin equation is presented which
describes the random displacement of an interface. This equation reduces
to the Allen—Cahn equation (6.13) if one neglects noise. An equivalent
formulation is also given in terms of a Fokker—Planck equation for the
probability distribution functional for the interface displacement. Kawasaki
and Ohta (1982b) extended this treatment to other models. Ohta etal.
(1982) have subsequently succeeded in obtaining an approximate solution
for the scaling function for the Allen-Cahn equation which is in satisfactory
agreement with the Monte Carlo results of Phani etal. (1980) and Sahni
etal. (1981). It also appears that there is a very close relationship between
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the scaling functions of Kawasaki eral. (1978) and Ohta etal. (1982)
(Kawasaki et al., 1983).

IX. Monte Carlo Studies
A. Introduction

In this section we will discuss the Monte Carlo methods which have been
used quite successfully to study the kinetics of various model systems of
first-order phase transitions. The most extensive work has been done on
simple models of binary alloys by Lebowitz, Kalos and their collaborators
(Bortz etal., 1974; Marro etal., 1975; Rao etal., 1976; Sur etal., 1977,
Kalos et al., 1978; Penrose et al., 1978; Lebowitz et al., 1982). Some work
has also been carried out on magnetic binary alloys by Kawasaki (1978,
1979), mainly to understand the effects of magnetic interactions on the
phase separation process. In this section we will review only the work on
simple models of nonmagnetic binary alloys. The most comprehensive
summary of this work is contained in the recent scaling studies by Lebowitz
etal. (1982). It is worth pointing out that one of the distinct advantages
of Monte Carlo computer simulations is that in contrast to real experiments
one can work with simple systems and avoid the complexities that are
usually present in real systems.

For studying the phase separation process in a binary A-B alloy, we
consider a lattice where each site may be occupied by either an A atom
(CA=1,CP = 0) oraB atom (C? =1, CA = 0), where C* and C? are local
concentration variables. The Hamiltonian describing this binary alloy sys-
tem is given by

% = 2;7 [CACPan(F3) + 2CACPPaR(T ) + CBCPpi(7 )]
-~ Z Chua(F) + Z CPup(7) + %o, 9.1

where ua(7) and ug(7) are the local chemical potentials. The pair poten-
tials, ¢aa(7;), depend only on the relative distance 7 =F; — 7; between
the atoms. The background term ¥, contains the kinetic energy of the
atoms. One assumes a perfect rigid lattice without vacancies. The rigidity
of the lattice eliminates elastic distortions which are generally present in
real binary alloys and affect the morphology of A-rich and B-rich clusters.
It is convenient to introduce a spin representation in terms of the variable
0; = = 1 using the relations

Ch=Q1+a)2, CP=(1-o0)2, 9.2)
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which leads to the Ising model Hamiltonian

% = — 2 J(Fy)oio— 2 Ho + %, (9.3)
i#f : i
where the “exchange constant” is given by
2(#y) = ¢an(7y) — Hoan(Ty) + ¢ua(F )] (9.4)
and the “magnetic field” is
2H; = ; [¢88(7) — Paa(F)) + pa(7) — us(7). 9.5)
j#i

One usually considers nearest neighbor interactions, with J(7;) = J =
constant. The term % in (9.3) is the renormalized background which
includes 7¢;. . ‘
The Ising Hamiltonian defined above does not have any dynanpcs of its
own. The microscopic description of the time evolution of a given con-
figuration of atoms {c(7)} (or spins {a}) is based on the fact that the atoms
(or spins) have to overcome potential barriers to exch.ange positions (or
exchange spins). The energy for this exchange is supphesi b-y the thermal
vibrations or phonons which are assumed to be in equilibrium at a tem-
perature T to which the system is quenched. The phonons thus act as a
thermal reservoir or heat bath which brings the system to equilibrium at
atemperature 7 by inducing random exchanges between neighboring atoms
(or spins). Since the strength of the phonons depends upon the temperature,
it determines a time scale for the evolution. Furthermore, “memory effects”
are only important on the time scale of lattice vibrati(?ns. Thus one may
ignore them as far as the evolution of a configuration is concerned, since
this occurs on a much slower time scale. In that case the evolution of a
state is described in terms of a Markovian equation for the probability
distribution function P({a}, ) (where from now on we use spin language):

d , |
4 [Poh 0] = = P}, ) ZW({o} (")
+ {2} W({o'}— {a})P({0'}, 1) (9.6)

where W({o}— {0’}) is the transition probability from a configuration {c}
to a new configuration {¢'}. We consider only those transitions which
permit the interchange of a spin o; with a neighboring spin 9 (Kaw?sakl
dynamics: see Kawasaki, 1972). It is worth pointing out that in real binary
alloys the exchange of any two atoms occurs indirectly via vacancies rather
than directly as has been assumed in the above discussion. Despite the
above oversimplification of the model, the agreement between computer
simulation studies of this model and experiments on real binary alloys is
quite good. We discuss this point further in Section XI. A.
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When the system is in equilibrium at a given temperature T, the detailed
balance condition for the transition probabilities implies

W(o}—>{o)

W({o'}—{o})

where A is the change in energy produced by an exchange {0} — {0’}

This relation does not specify W uniquely. One simple choice consistent
with eqn (9.7) is

= exp( — A¥/ksT), 9.7)

1 A¥
W({o— {o'}) 2:[1 tanh 2kBT}. 9.8)
The arbitrary time constant 7 sets the time scale in the problem. tis a
strongly temperature-dependent function. In principle, it can be estimated
by considering the thermally activated diffusipn process of an A atom in
a sea of B atoms (Lebowitz eral., 1982). Generally, one sets 7= 1, thus
measuring time in units of “one Monte Carlo step/spin” (MCS).

In computer simulations, one quenches a high temperature, uniform
state of a given magnetization to a point inside the two-phase coexistence
region and carries out the spin exchanges using standard Monte Carlo
procedures (Metropolis et al., 1953; Binder, 1979). At suitable time inter-
vals, one records the spin configurations and computes the various physical
quantities of interest. When this procedure is repeated for “many” runs
with different initial configurations, then the average of a physical quantity
at a given time over different runs corresponds to its ensemble average.
Sometimes, in order to minimize the scatter in data, one carries out a “time
averaging” at a given time ¢ by averaging over all the data in the time
interval between (f — A7) and (¢t + A1), where At is generally chosen to be
less than 10 Monte Carlo steps.

The size N of the lattice is generally restricted by practical computational
limitations, even though one would like to have as large a lattice as possible
so that it simulates a real macroscopic system. The actual simulations have
been performed on square lattices by Flinn (1974), Bortz eral. (1974) and
Rao eral. (1976) with N =55 x 55, 80 x 80 and 200 x 200 sites. Similar
studies have also been carried out by Marro eral. (1975) and Sur et al.
(1977) on a simple cubic lattice, with N = 30 x 30 x 30 and 50 X 50 X 50
sites. Periodic boundary conditions are used in order to avoid edge effects
due to free surfaces. Nevertheless, one has to worry about finite size effects,

especially when some characteristic physical length such as a domain size

is comparable to the linear dimension of the system.

In Fig. 25 we display the phase diagram of the three-dimensional Ising
model of a binary alloy which is obtained using the low temperature series
expansion by Essam and Fisher (1963). The value of the critical temperature
T. is known accurately for this system (4J/ksT. = 0.88686). The dotted
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curve corresponds to the classical spinodal curve. This is shown for con-
venience to allow one to distinguish in a loose sense between metastable
and unstable regions. The points P; for which Monte Carlo simulations
have been carried out by Marro etal. (1975) and Sur etal. (1977) are
depicted by black dots in Fig. 25. The points P,—Ps correspond to T =
0.59T. and concentrations ¢ = 0.05, 0.075, 0.1, 0.2, 0.5, respectively. The

G ® »
~
~
® P5
) |
og 0.5

4

F1G. 25. The phase diagram (T versus ¢) of the three-dimensional Ising model of
a binary alloy. The solid line corresponds to the coexistepce curve (dra\yn accqrdlng
to low temperature series expansion) and the broken line is the classical spinodal
line. The quenches from very high temperatures to the phase points P; =
1,...,11) are discussed in this review (From Lebowitz et al., 1982.)

points PP to ¢ = 0.5 and 7/T. = 0.78, 0.89, 1.07, respectively, and Py to
¢=10.2 and T = 0.89T.. In the following two sections we will discuss the
results for the structure factor and energy per site. We will present the
results in detail for three-dimensional simulations and only briefly point
out the qualitative differences between the two- and three-dimensional
studies, since most of the qualitative features remain the same for these
two cases. We should also add a caveat concerning the data analysis done
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in these Monte Carlo simulations. Most of the data has been fitted to
simple power laws (Section V.D) and estimates for the exponents have
been obtained. It is, however, possible to fit the same data with other
functional forms (Lebowitz et al., 1982), thus making it difficult to draw
definitive conclusions. Further theoretical progress is necessary before one
can be confident about the interpretation of Monte Carlo or experimental
data. In spite of this note of caution, however, the power law approxi-
mations have led to a reasonably consistent description of the observed
phenomena.

Finally, we note that Monte Carlo methods suffer from one major
limitation in that usually one cannot study the very late stage behavior of
a system due to limited computer time. Therefore most Monte Carlo
simulations carried out to study the dynamics of phase separation so far
provide information for times much before final equilibrium is reached.

B. Structure function

A _guantit.y which is of primary physical interest is the structure factor
S(k, t) which has been discussed in Section V. This is the Fourier transform
of the pair correlation function G(7, ):

G, 1) = % 2 (et = [e(Fi+ 7,0) ~e]), (9.9),
Sk, 1) = % *G(F, 1) = %{< ‘; eFH(c(Fi 1) - ) 2> (9.10)

Here ¢ is the average concentration which remains constant during the
evolution, 7 and 7; run over the N lattice sites, and k ranges over the first
Brillouin zone. The angle brackets () denote the ensemble average which
is realized in the computer simulations by making several independent
runs. According to this definition we have the sum rules

1 —
N'Zk: Sk,t)=1-¢% (9.11)

Sk =0,1)=0. 9-12)

In addition, corresponding to the random initial configuration present at
t = 0 (immediately following quenching), one has ‘

SE+#0,0)~1-é (9.13)

Ir{ order to improve the accuracy and the presentation of data, one deals
with a spherical average of $(k, f) over a number of shells,

E
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N ! 2]m |
Sk, f) = 2 S(k,t)/E L k=

where n=0, 1,2, ..., (V3/2)N*>. Each sum Z’ in eqn (9.14) for a given
value of n is over a spherical shell defined by

(9.14)

13 \
n—-is(l;,—n)|k|<n+%.

Generally, one truncates n at some convenient integer n < (V3/2)NV3,
beyond which the structure factor is so small that it is hard to distinguish
its value from the typical errors encountered in the Monte Carlo
experiment.

Before we discuss the behavior of the structure factor in detail at various
points of the phase diagram for both two- and three-dimensional models,
we summarize a few of its very general features. First, at all points studied
so far within the coexistence region, the structure factor S(k, t) develops
a peak at a finite value of the wavenumber ky(#) which decreases with time.
Also the intensity of the peak increases with time. Second, the original
papers reported that there is no observed time regime in*Which S(k, 1)
grows exponentially, in contrast to the linear theory. (This conclusion may
be incorrect, however, since Marro and Vallés (1983) have recently argued
that the very early time Monte Carlo results are in agreement with Cook’s
extension of the linear theory (Section V.A).) Third, S(k, ) exhibits a
“late time” scaling behavior which is of both experimental and theoretical
interest. Thus the kinetic Ising model displays the same qualitative features
as other systems discussed throughout this article.

We now discuss some of the detailed results. The behavior of the structure
factor $(k, t) at P4 (Fig. 26(a)), which lies close to the classical spinodal
curve just inside the nucleation regime, is quite similar to that observed
at Ps (Fig. 26(b)), which lies in the middle of the spinodal region. The
behavior at P, is contrary to the linear Cahn theory, which predicts no
decomposition at all for this case, as noted in Section V. Langer etal.
(1975), on the other hand, predict a broad but well defined peak at P, for
S(k, 1), of lesser intensity as compared to that at the point Ps. They also
predict a “common tail” for large k which is not seen at P,. Both at P4 and
Ps, a “crossover” phenomenon for k > k(t) has been observed as predicted
by LBM theory for the symmetric case Ps. The qualitative behavior of the
structure factor .f(k, t) is the same for the points Pg and P; as that of Ps,
except that the intensity of the peak at a given time decreases with increasing
temperature.

The point Py lies well inside the classical metastable region of the phase
diagram. The observed S(k, t) for this point as shown in Fig. 27(a)) is
rather similar to that displayed in Fig. 27(b) for Ps. The latter point lies
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F16. 26. Time evolution of the spherical averaged structure function $ (k, ?) versus
k at (a) Py (T = 0.59T, ¢ = 0.2) and (b) Ps (T = 0.597,, ¢ = 0.5). The times listed
in each figure correspond to different curves from the bottom of the picture to the
top. Due to the finite sizes of the lattices used in these simulations, the data for
S(k, 1) is obtained at discrete values of & and is connected by straight lines. Time
is measured in MCS units. ((a) From Sur et al., 1977, (b) from Marro ez al., 1975.)

just outside the coexistence curve in the one-phase region, where significant
“local ordering” can still take place. Here one finds that after an initial
growth for large values of k, $(k, f) quickly decays to a steady value, giving
rise to a common tail for k > k.., Which can be approximately represented
by an Ornstein~Zernike form. The behavior of S(k, 1) at P,-P, (in the
classical metastable regime) is also qualitatively similar to the one discussed
above for Pg and Py except that one observes larger fluctuations for the
points closer to the coexistence curve. This is particularly true at ¢ < 0.03
and T =0.59T,, where it is difficult to express the data in any useful
manner. Short runs have also been carried out at the point Py (¢ = 0.127,
T = 0.84T.), very close to the coexistence curve, where the system reaches
a stationary state quite soon. Also the early time behavior of the structure
factor S(k, ) at Py, (¢=0.2, T = 1.07T.) shown in Fig. 27(c) is qualitatively
similar to that for Py (Fig. 27(b)), but the intensity is lower and more
comparable to that observed for ¢ = 0.5 and T = 1.57T, (Marro et al., 1975).
It is believed that at points outside the coexistence curve, the late time
values of $(k, 1) are those of the equilibrium system. '
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In Fig. 28(a), (b) and (c) $(k,1) is plotted as a function of time for
different values of k for the points Ps, Py and Py, respectively. A study of
these figures shows that there is no time regime where S(k,) grows
exponentially. We see that at Ps $(k, ¢) initially grows with time, reaches
a peak, and then decays at successively earlier times as k increases. This
leads to the crossover phenomenon discussed earlier. For very small k
values, the peak is never reached during the course of the simulations. On
the other hand, at the points Pg and Py, $(k, f) continues to grow as time
increases until it reaches a maximum value at ¢', and then appears to
remain stationary. This maximum value as well as the value of ¢’ decreases
as k increases. This explains the common tail seen in Fig. 27(b) and (c).

In two dimensions, the evolution of the structure factor was studied in
detail by Bortz et al. (1974) and Rao et al. (1976) at T = 0.586T, and
¢ =0.5 and 0.2 respectively, on an 80 X 80 lattice. The behavior at these
points is qualitatively similar to Ps and the crossover phenomenon is
observed at both points. Another point at ¢ = 0.5 and T = 1.17, was also
studied and found to exhibit behavior similar to Pg. For large k, the
common tail of §(k,t) quickly equilibrates to a simple functional form
S(k) ~ k2. This is consistent with the calculations of Fisher and Burford
(1967) of the equilibrium S(k) for the two-dimensional Ising model
above T..

One important difference between the different quenches is the time it
takes (in units of 7) for the system to achieve a certain amount of segregation
as reflected in the development of S(k, t). Comparison of the structure
functions at P; and Ps suggests that the speed of segregation increases as
one moves from near the coexistence line towards the middle of the
spinodal region. The same is true as one moves down from P; to Ps. Very
close to T, the system will be in the region of critical slowing down. This
results in an extremely slow segregation rate which cannot be seen in
computer simulations.

Two important parameters which characterize the time evolution of
S(k,t) are the location of the peak kny(f) and the height of the peak
S(kn(t), 1), as mentioned in Section V.D. Due to the finite (small) size of
‘the systems studied in computer simulations, one can only measure wave-
numbers k which are widely spaced. This leads to a difficulty in determining
these parameters precisely. Using a parabolic fit to three values of k around

Fic. 28. The development of the spherical averaged structure function S(k, f) as
a function of time (measured in Monte Carlo steps) for different values of wave-
numbers k at Ps, Pg and Py, respectively. The corresponding n = N¥*k/2x is shown
at the) end of each curve. ((a), (b) From Marro et al., 1975; (c) from Sur ef al.,
1977.
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km, one finds an approximate fit with the following formulas (see eqns (5.34)
and (5.35)):

km(t) ~ (¢ +10) 77, (9.15)
S(km(D), t) ~ (¢t +10)%. (9.16)

The arbitrary additive constant 10 is simply included to display the early
time behavior of the system properly on a log-log plot and is irrelevant for
the determination of asymptotic power laws and hence exponents. The
exponents a’ and @” have been shown to be approximately equal to 0.2 and
0.7 for points P,~Pg, respectively, but their values for Py are somewhat
smaller, being 0.16 and 0.4, respectively.

However, the more reliable and smooth quantities are the first and the
second moments k;(f) (i = 1,2) of $(k, t), defined as

ke ke
ki(t) = kgok"s‘(k, ) Lgos(k, 0, (8.7)

where k. = 27m./N'. Different values of the upper cut-off n. have been
used for different sizes of the lattices. For example, for d = 3, n. = 10 for
NY3 =30 and n. = 14 for N** = 50. The first moment k; (¢) behaves more
smoothly than kn,(f) and its asymptotic behavior is well described (see
eqn (5.33)) by

ki(t) ~t7" 9.17)

After the very early transient times, the value of the exponent a is reported
by Marro et al. (1979) to change from a =0.2 near the center of the
spinodal region to a=0.33 at low concentrations of one component.
Recently, the data has been reanalyzed by Lebowitz et al. (1982) for very
late times and a good fit has been obtained with the form eqn (5.36), in
agreement with the Lifshitz—Slyozov theory. In Table IV, the values of A
and B for eqn (5.36) are listed for different points P;. Our guess is that the
latter is indeed the correct description of the phenomena for “late stages”.
It is worth pointing out that very close to the coexistence curve, at T =
0.597, and &= 0.035, short evolutions gave extremely small values of
a < 0.04 but one should not attach any significance to them. We should
also mention that the exponent a is influenced by the value of the cut-off
n. used. For example, at P3, a = 0.22 for n, = 14, a ~ 0.19 for n. = 10 and
a=0.18 for n, = 7. As a rule, one should go on increasing the value of n,
until one finds that the exponent does not change significantly by increasing
n. any further.

On the basis of cluster dynamics ideas discussed in Section VII, Binder
and Stauffer (1974) have predicted that @’ = 34’ and a’' = 1/6 at low tem-
peratures, a’ = 1/4 for T=T.and a’ = 1/2 for T > T., d = 3. Only the first
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TasLEIV. The exponent a defined by a simple power law (k; ~ *) and the adjustable
parameters A and B of the linear fit ofki*® with time at different points P-P;. Here
%, is the approximate time beyond which the data is analyzed and scaling of the
structure function is observed according to eqn (9.20).

Maximum ki*=A+Byl0°, t=1t
duration ky~r*
Phase of run
point (MCS) a A B t
p {0-59Tc} 14000 0.35 8.8 1.5 6800
1
5%
, {0.S9Tc} 10200 0.23 75 15 4000
7.5% ,
P, {0.59Tc} 7300 0.21 3.6 1.5 2500
10%
P, {0.597‘ c} 3900 0.19 23 1.7 1500
20%
P5{0-59T=} 650 0.19 1.2 3.0 350
50%
Pl {0.78Tc} 1700 0.23 1.4 3.9 1000
50%
P,{0-89Tc} 6600 0.25 3.5 3.9 1000
50%

one of these predictions is in reasonable agreement with the results of Py,
Psand Pg. Also the result of the LBM theory (Langeretal., 1975),a’ = 0.21,
is consistent with the Monte Carlo results at Ps—P;. In two dimensions,
simulations on an 80 X 80 lattice at T = 0.586T and ¢ = 0.5 give a’ =0.2
and ¢” = 0.6. The BinderStauffer theory predicts a’ = 0.2 and ¢" = 0.4 for
d =2, for T— 0. (Note that a” = da’ is a scaling relation, as discussed in
Section VIII.A.) It should be stressed that in view of the current uncertainty
concerning both theoretical and numerical results, meaningful comparisons
between theory and “experiment” are difficult to make at the moment.

C. Scaling results

Experiments and theory always deal with systems of macroscopic size. which
correspond to the limit N— . In this limit k becomes a continuous
variable and $(k, ) becomes a continuous function of k. The sum rule
(eqn (9.11)) goes over to the integral

1l
— k2S(k,t)dk =1 — &2, 9.18
anjo (k. 1) 9.18)



386 J. D. Gunton et al.

where kg denotes the maximum wavevector within the first Brillouin
zone and S(k, t) is the sphericalized “macroscopic’” structure factor, about
which one would like to obtain information from the computer simulations.
To understand the late time behavior of S(k, f), one considers the quantity

Si(k, £) = S(k, £) — S eg(k). (9.19)

where Se (k) denotes the equilibrium structure factor for a macroscopic,
fully segregated, two-phase system. Correspondingly, one defines an anal-
ogous quantity Sy(k, 1) for finite systems by subtracting Se,(k, T) from
S(k,t). The value of the equilibrium structure function § q(k, T) is
obtained by quenching to a point at a temperature T on the coexistence
curve and waiting for the system to reach equilibrium. At low temperature
Seq(k, T) is negligible compared to S(k, ) for small values of k, after some
initial time, so that S, (k, t) = $(k, ). However, at high temperatures (e. g.
at P;), § eq(k, T) is large at relevant k values and should not be neglected.
Next, one looks for those features of the discrete structure factor S, (k, t)
which will smoothly go over to the “macroscopic” structure factor $, (k, t).
For example, one considers the first and second moments which are
obtained using eqn (9.16), replacing S(k, ) with S;(k, ¢). In Table V, the
ratio r(t) = k/k% eqn (8.6)) is listed at selected values of time for several
points, as obtained by Lebowitz er al. (1982). This table indicates that r(¢)
is to a good first approximation independent of time. This suggests that
the discrete structure factor S,(k,¢) is related to a scaled function such
that (as in eqn (8.5))

Si(k, 1) = k() F(k/ (1)), (9.20)

where F(x) is a continuous function describing S;(k, ) and k(t) is some
characteristic wavenumber. In order to check the validity of the scaling
hypothesis and to find the smooth function F from the computer simulations,
Lebowitz et al. (1982) define a function of two variables x =
k/k1(¢) and time ¢ (as in eqns (8.1) and (8.2))

F(x, 1) = S0 (K, 1), (9.21a)
ke
S\(k, 1) = sl(k,z)/gokzsl(k, ) (9.21b)

and see whether for late times F(x, )= F(x), a smooth function of x
independent of time. The normalized structure factor S, (k,t) defined in
eqn (9.21b) is used so that the sum rule for the function F(x) is

f " PF() de = 1. (9.22)
0

TaBLE V. The ratio of the second moment to the square of the first moment as the function of time for points Pr=P-.
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The function F(x, t) obtained from computer simulation by Lebowitz et al.
(1982) is shown in Figs. 29-31 for “deep”, “intermediate” and “‘shallow™
quenches, respectively. There is reasonable evidence that the scaling
hypothesis is correct. While these curves appear somewhat similar, one
can notice, nevertheless, differences between the scaling function F(x) at
different quenches.
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FiG. 29. The scaling function F(x) versus x in the case of “deep” quenches. The
triangles (A) correspond to a quench to Py (T = 0.59T, ¢ = 0.2) for times ¢ = 1500,
the asterisks (*) to Ps (T = 0.59T., ¢ = 0.5) and ¢ = 350 and the circles (O) to Ps
(T=0.78T., ¢ = 0.5) and ¢t = 1000. The dashed line represents the shape of the
function at an early time (z = 110 in the case of P4) when scaling does not hold.
The dotted line corresponds to a fit with a function F~' = a3 + axx* for the data in
the interval x, < x < xo(f), suggested by the work of Furukawa (1979, 1981). (From
Lebowitz et al., 1982.)
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FiG. 30. The scaling function F(x) versus x in the case of “intermediate” quenches
to P; (T = 0.59T, ¢ = 0.1). The data in the time interval 2500 < ¢ < 7300 is denoted
by different symbols (0, 1, 2, 3, . . .), where circles (O) corresponds to an early time
t=12500 and crosses (X) correspond to the late times ¢ = 7300. The dashed curve
is the behavior of F(x) at an early time (z = 228) where scaling does not hold. The
dotted line is a fit F! = a; + axx* to the data of F(x) for x > x,,. (From Lebowitz
etal., 1982.)

D. Surface energy

Another quantity which is monitored in these computer simulations is
u = N ap/N, the number of A—B bonds per lattice site. This is related to
the total energy U of the system through the simple relation U=
NJ(2u — 3). At t=0, the quantity u = 6¢(1 — ¢) and decreases rapidly



390 J. D. Gunton et al.
: |
o
} o
. 3
0.75F ] E
He e
OA .
@ L.
3 Agg
o A
@ -_AO
o ..l
] .
0.50+ AN T
| < Sger E
F ,”; 1\\ : -]
' %
i .
.") & .-‘\
4 AS % #‘\\
£ K \\
% \\ .
0.25¢t 5 4 L
: ;
i E5
3 ‘ .
o
._f’m
1o/ c ) SR i L iind A Subsgnn.
0.0 1.0 2.0 3.0

FiG. 31. Same as in Figs 29 and 30 in the case of “shallow” quenches to Py (T =
0.597T, é = 0.05), P. (T = 0.59T., ¢ = 0.075) and P, (T = 0.89T, ¢ = 0.5). The data
included in the scaling analysis at P; (triangles), P, (asterisks) and P; (circles) is
beyond # where % is equal to 6800, 4000 and 1000, respectively. The dashed line
is for Py at t = 209. (From Lebowitz et al., 1982.)

(after a quench in the two-phase region) to approach asymptotically the
finite equilibrium value u« (¢, T). Unfortunately, there exists no reliable
estimates of u.(¢, t) for T < T, since the interfacial energy gives a non-
vanishing contribution to u«(¢, T) for the finite systems studied in computer
simulations. Marro et al. (1975) have estimated an approximate value of
u«(¢, T) for T < T, by setting

Uo(€, T) = u=(¢,0)0(T) + uy(T), (9.23)

where o( T) is the surface tension (with 0(0) = 1 and o(T > T,) = 0). They
used the value of o(T) for 0 < T < T, obtained from Monte Carlo com-
putations by Leamy ez al. (1973). The quantity uy(7) is the equilibrium
energy in the pure phase. It satisfies #,(0) = 0 and has been estimated
theoretically by Baker (1963) and Binder (1972).
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Assuming an asymptotic behavior for u(¢) of the form

u(t) ~t7°, (9.24a)
@) ~ue(T)) ~ 17", (9.24b)
(u(t) —up(T)) ~ 7%, (9.24c)

Marro et al. (1975) and Sur et al. (1977) have obtained estimates of b, b’
and b" which are listed in Table VI. It should be noted that the exponents
for some points are in approximate agreement with the predictions of the
Binder-Stauffer (1974) theory which gives b’ =1/6 for d =3 (Section

TaBLE VI. The exponents b, b’ and b" as defined in eqn
(9.24) for different phase points.

Phase

c T/T.  point b b’ b"
0.59 P 016 022 018
05 0.78 P, 0.10 022 016
: 0.89 P, 0.06 021 013
1.07 P, 0.02 079  0.79

0.59 P, 0.16 0.28 -

0.2 0.89 P, 0.02 0.14 _

1.07 Py 10-1.1 -

0.1 0.59 P, 0.33

VILF). At other points, deviations from this theoretical value are very
large. Studies of u(¢) for the two-dimensional case have also been made
by Rao et al. (1976). Values for the exponents are given in this paper. It
should be noted, however, that definitive statements about u(#) cannot be
made at the moment in either two or three dimensions. Existing estimates
for exponents such as b, b’ and b" should therefore be viewed with
considerable caution.

E. Cluster growth

We next present some results for cluster growth, to shed some more light
on the dynamical evolution of a system undergoing a phase separation
process. This cluster approach is especially useful in helping to understand
the transmission electron microscope (TEM) experiments on real alloys.
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Kalos et al. (1978) and Penrose et al. (1978) have carried out extensive
computer simulations and have monitored the growth of clusters at low
concentrations. In their Monte Carlo simulations they have characterized
a cluster by two parameters (or cluster coordinates). These are the size /,
defined as the total number of A (or B) atoms in a given cluster, and the
surface area s, defined as the total number of A—B bonds. This is an
example of the cluster picture discussed in Section VII. It is quite easy to
monitor the above two parameters in computer simulation studies. They
have also monitored the cluster distribution n,(¢) from which they have
obtained the average cluster size /, the average surface size § and the energy
per site u as a function of time. We first discuss some qualitative features
of the cluster growth at different points on the phase diagram (Kalos et al.,
1978). We then summarize a quantitative analysis of the cluster growth
due to Penrose et al. (1978).

Kalos et al. (1978) and Sur ez al. (1977) have studied the cluster distri-
bution function n;(f) at points very close to the coexistence curve and at
P,-P,. These simulations were performed on simple cubic lattices of
50 x 50 x 50 and 30 x 30 x 30 sites using periodic boundary conditions.
For values of concentrations close to the saturated vapor density
¢s = 0.0146, but less than ¢ = 0.035 at T = 0.59T, the cluster distribution
function n,(r) rapidly (¢ =< 100) settles down to a stationary value charac-
teristic of a metastable state. Between the points P, and P, the distribution
of small clusters still rapidly approaches a quasistationary distribution which
corresponds to metastable states. However, there is now a measurable rate
at which larger clusters develop (i.e. there is a finite nucleation rate). A
detailed quantitative analysis of cluster growth and its distribution at point
P, (¢ = 0.075, T = 0.59T.) based on the ideas of the Becker-Doring (1935)
and Lifshitz-Slyozov (1961) and Wagner (1961) theories is summarized in
the concluding part of this section. The results of this analysis are also
applicable to all points between P; and P;.

As the concentration ¢ is increased further to the region 0.1<¢=<0.2
at T = 0.59T,, Kalos et al. (1978) observed an early appearance of relatively
large, loose clusters which coexist with very small clusters (! < 10). The
number of A atoms and their relative distribution in small clusters is close
to what is observed in the A-poor (*‘gas”) phase in a system existing in the
two-phase equilibrium state and becomes time independent. However, the
system shows a slow process of coagulation of the larger clusters into still
larger compact clusters which will eventually lead to a fully segragated
A-rich (“liquid”) phase.

On further increasing the concentration ¢ beyond P,, the system under-
goes percolation, i.e. an “infinite” size cluster appears. This happens in‘
the Ising model at approximately ¢ =0.31 at 7= o« (the value of the
uncorrelated percolation threshold for a simple cubic lattice). As the‘
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temperature is lowered, the correlation between atoms become important
and results in decreasing the percolation threshold value. The percolated
clusters have been noticed by Sur et al. (1977) at concentrations as low as
¢=0.2at T=0.59T..

A detailed quantitative analysis of the cluster growth at P, has been
given by Penrose et al. (1978). The time evolution of the clusters following
quench can be divided into three stages. In the first stage, which lasts for
about 10 MCS (¢ =< 10), the distribution of clusters changes rapidly. The
initial distribution in which nearly all the atoms are in monomers evolves
toward one with many more large clusters (! = 2) and fewer monomers.
During the second stage (10 <t < 100), the number of large clusters (/>
30) continues to grow, but the distribution of small clusters (/< 10) has
more or less stabilized. In the third stage (¢ = 100) the number of large
clusters decreases slowly, whereas the individual clusters increase in size.
It should be noted that even at the latest times studied, however, the
system is never near equilibrium. There are about 20 large clusters present
(of variable size 25-750), rather than one single large equilibrium cluster
of 1 =7500.

Penrose et al. (1978) base their quantitative analysis of the cluster growth
at P, on the ideas of the Becker-Doring and Lifshitz-Slyozov theories
discussed in Sections II, VI and VII. In particular, their discussion is based
on the formal Becker-Doéring equation (7.13), together with the conser-
vation law

]

121 In () = ¢ = constant. (9.25)

They discuss their analysis in terms of an adjustable parameter @ which
physically corresponds to the instantaneous ‘“‘vapor pressure”, which
changes with time as the cluster distribution changes. For a cluster of size
1, this parameter is given by an approximate empirical formula

C
= w1+ . .
w; = W, [ m] (9 26)
In (9.26) C acts as a surface tension and depends upon the temperature
(Buhagiar, 1980) and the saturated vapor pressure

w, = lim ;= 0.010526 for T =0.59T.

-

The physical basis for writing eqn (9.26) is that the “‘vapor pressure” of a
spherical droplet of size / exceeds that over a plane surface by an amount
proportional to the curvature (I~%?) of the surface of the droplet. Using
eqns (9.25) and (9.26), Penrose et al. obtain a cluster distribution n;(f)
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TaBLE VII. Comparison of steady state distribution of small clusters obtained from (a) computer simulations, (b) empirical
75,67

Also the ratio @/w; is listed as a function of time. The factor w, (the equilibrium value of w) is equal to 0.010526 at T

formula (9.26) and (c) numerical solution of Becker-Ddring equation (third row) at P3 (T
0.597..
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which is in reasonable agreement with the results of Monte Carlo simu-

o0 o \O 00 N O o) O > oC < < noo s 4l :

5@ 5@% § a a § § § 5 § § § 5 ﬁ !atlon. Fur.thermore., th_ey show thgt the critical size of the cluster, [,
increases linearly with time as predicted by the LS theory. However, we
should point out that their analysis and the computer simulation results

oo e e T e are not in the asymptotic time domain of the LS theory. A discussion of
this fact is given by Penrose et al. (1978).

Finally, we note that Buhagiar (1980) has solved the Becker—Ddring

eogm wwes ooo aaa aada kinetic equation (7.13) numerically at P; (T = 0.59T, ¢ = 0.1). The initial
data for T = « was provided by computer simulations. He obtained both

dmT e s e oo the cluster distribution n;(f) and the parameter w(t) at different times.

AR — ; These results are shown in Table VII, together with the results of the

: Monte Carlo study at P; (Marro et al., 1975). As can be seen, his results
©XQ Mm@ME, www wnn TN agree quite well with the simulation results.

NRQ X8 Ymm ¥EE CE&S X. Studies of Nucleation in Near-critical Fluids
A. Experimental results

LY H3FF Q] 2RE =2xR ' ,

: In 1962 Sundquist and Oriani found that the binary fluid perfluoro-

NN 28E S99 988 Nnn ' methylcyclohexane (PMCH) plus methylcyclohexane (MCH) could be

cEe nPe I¥y moaa oo supercooled in the vicinity of its critical point to an extent very much
greater than predicted by classical nucleation theories of the Becker-Déring

29Y AT 8 VIT =3I (1935) or Langer-Turski (1973) type. This result attracted considerable

e e attention in the field, since it seemed to signal a major breakdown in our
theoretical understanding of nucleation. Subsequent experiments on a

ER% D08 KRR BRR 81737 variety of binary mixtures and one-component systems confirmed that near
the critical point metastable fluids seemed unusually stable (Dahl and

et T A e O Moldover, 1971; Heady and Cahn 1973; Huang efal., 1974b, 1975);

C88 #2898 33 A8s Yo Schwartz et al., 1980; Howland et al., 1980). These experiments were orig-
inally interpreted as implying that the nucleation rate, of the form (4.14),

TBET @eT =TT SBRT =55 was much smaller near a critical point than the existing theories predicted.

T T T e e i Furthermore, the effect seemed dramatic, since the rate seemed smaller

- . - . - ‘ by a factor of about 10? (Langer, 1980). Thus, several theories were

o % 2 = > proposed which tried to explain the experimental results in terms of effects

- = & = which would significantly decrease the nucleation rate, either by increasing
the activation energy or decreasing the kinetic prefactor in (4.14) (Mou

‘é E g (% g and Lovett, 1975; Sarkies and Frankel, 1975; McGraw and Reiss 1979).

= b i 3 = Such theories, however, proved to be unsuccessful (Howland et al., 1980).
It now appears that these experiments have not observed a breakdown of

% o - pss - nucleation theory, but rather an effect of the critical slowing down of

S i % % S droplet growth. An account of this theoretical explanation, which involves

oL = & 3 Ay both the nucleation and growth of droplets, is given in Section X.B.
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Before discussing this theory, we summarize the experimental results.
These experiments do not measure the nucleation rate 1. Rather they
determine the cloud point temperature. As noted in Section I, this is the
temperature at which, on the time scale of the experiment, there is a
sudden clouding of the system due to the appearance of droplets. One
technique for determining this cloud point involves temperature quenches
at constant pressure. In this case one lowers the temperature by constant
increments of 1-5 mK, say, waiting for some period of time between each
step, say 1 min. The cloud point is then taken to be the lowest temperature
determined before the intensity of transmitted light dramatically decreases.
An alternative quench method in binary mixtures involves altering the
pressure at constant temperature. This produces both a change in the
coexistence curve and in T,, with AT, = (dT./dp)Ap, where T (p) is a

. pressure-dependent line of critical points (Wong and Knobler, 1978). A
typical estimate of the cloud point is shown in Fig. 32 (Howland ezal.,

Intensity
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Fic. 32. Transmitted intensity in arbitrary units versus pressure for a quench from

AT = 7mK. The quench was begun at P; and P, is taken as the cloud point. (From
Howland ez al., 1980.)

1980). It should be noted that in these pressure quenches the speed of the
quench is limited only by the velocity of sound and the size of the sample.
Thus an effective temperature shift can be attained in only a few milli-
seconds. This is several orders of magnitude faster than a conventional
bath quench.

The location of the cloud point is rather precisely predicted by classical
nucleation theory. Thus experimental measurements of the cloud point can
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be used to test nucleation theory. The theoretical determination of the
cloud point is based on the fact that the nucleation rate has a sharp
dependence on the degree of supercooling. This supercooling is expressed
in terms of the natural variable x defined in (4.36). For a constant com-
position quench it is given by

x = 8T/eT., (4.37)

where we use the notation indicated in Fig. 1. The natural variable which
enters in the Langer-Turski expression (4.45) is

y = x/xo, (10.1)

3 e o

To estimate I/V in (4.45) one needs to determine xo and other quantities
whose asymptotic behaviour near the critical point is given by the following
set of relations (as in Table I):

where

Ac = Aceé; (10.3)
*G 4

28 = e (10.4)

E = Eog_"; (10.5)

g= o’og“; (106)

D = Dy, (10.7)

where G is the Gibbs free energy. Experimental estimates of these quan-
tities for two mixtures, PMCH + MCH, and isobutyric acid plus water
(IW), are given in Table VIII (Howland etal., 1980). Using these values
one can then estimate from (4.31) that /V changes from 1 cm™ s~ to
10° cm™? 57! as the supercooling is increased from y = 0.13 to y = 0.15.
Thus the Langer-Turski theory gives a quite precise prediction for the
location of the cloud point. (A very similar prediction follows from the
Becker-Déring theory, eqn (4.35).) As noted in Section IV, the general
prediction for the critical supercooling is of the form (4.36). However, as
can be seen in Fig. 33 (Howland eral., 1980), one sees strong deviations
from this relation as the critical point is approached. It is this deviation
that was originally interpreted as implying a failure of classical Becker—
Déring or Langer—Turski type theories.
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TaBLE VIII. Critical parameters.

W PMCH + MCH

T.(K) 299 399

o (dyn cm™!) 26 21.9

Acy (cm™?) 3.06 x 107 3.12 x 10%
Dy (cm?®s™?) 1.51 x 1076 1.6 X 1073

& (cm) 1.8 x107°% 22x10°8
go (erg cm?®) 1.5 x 107 1.0 x 107®
Xo 1.2 1.3

v 0.62 0.62

B 0.31 0.33

However, it now appears that the correct explanation of this phenomenon
is one originally proposed by Binder and Stauffer (1976). They first observed
that a cloud point is not an intrinsic, time-independent property of a system.
It in fact involves time, since it is the temperature at which, on the time
scale of the experiment, the sample becomes cloudy. They suggested,
therefore, that a more meaningful quantity in these experiments is the
“completion time”, which is the time required for the reaction to go to
completion. This completion time clearly involves not only the rate at
which droplets are born, but also the rate at which they grow. Binder and
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FiG. 33. Comparison of several supercooling experiments. Squares and triangles,
IW; closed circles, PMCH + MCH; open circles, methanol + cyclohexane; inverted
triangles, LW. (From Howland et al., 1980.)
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Stauffer thus suggested that effects of critical slowing down were responsible
for the apparent deviations from classical theory. The slowing down of the
growth rate is a consequence of the fact that in fluid mixtures growth is
controlled by diffusion, but the diffusion constant vanishes as T— T (eqn
(10.7)). Therefore experimentalists were unable to see clouding of the
system simply because the droplets had not grown to an observable size,
rather than because they had not formed. A detailed version of this simple
idea is summarized and compared with experimental results in the next
section.

Before concluding this discussion of experimental results, it should be
noted that these experiments are quite difficult and involve a choice of
several different experimental procedures. Although all the experiments
measure cloud points, there are significant differences in the details among
the various experiments. A nice discussion of these differences and their
significance in the interpretation of results is given by Howland et al. (1980).

B. Theory of completion time

Langer and Schwartz (1980) have developed a detailed theory which
describes the nucleation and growth of droplets in metastable, near-critical
fluids. Their work is an extension of the original calculation of Binder and
Stauffer (1976) which we summarize later. The Langer-Schwartz theory
is not a first principles theory of nucleation and growth, due to the difficulty
of extending the field theoretic formalism of nucleation theory (Section
IV) to the late-stage growth regime. Nevertheless, their simplified model
seems to describe reasonably well the present experimental results. No
definitive test of their theory exists as yet, however.

The basic equations of the Langer-Schwartz theory are those of Lifshitz
and Slyozov (Section VI), supplemented by a source of droplets which
describe the nucleation events. The droplet growth rate equation is

dR D (& 2do)
—==|—-= 10.
dt R (Ac R/’ (108)
which is (4.20), rewritten in terms of a capillary length do,
g
= . 10.9
%= Boronhon (109

If one uses a Ginzburg-Landau “c*” model for the free energy, one can
estimate dg to be

. do = &/6. (10.10)
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The second equation is (6.4), which expresses the conservation of solute
molecules. The third equation is the continuity equation for the droplet
distribution function f(R, t), modified by a term j(R) which describes a
source distribution of droplets:

f (R, 0 _ _

a .
2 = — 2 R + (R (10.1)

The nucleation rate per unit volume, J = I/V, is given by
J=1] j(R)dR. (10.12)
Re

Since the experiments on critical fluids involve relatively large supersatur-
ations for which no field theory yet exists, Langer and Schwartz assume
that J can be described in terms of the imaginary free energy, via eqn
(4.55). They approximate this (unknown) free energy (see (4.46)) by

1 o A x0>7'3 ( X)¢ <x0>2
T Im %(x) 53 (x 1 %o exp K (10.13)

where ¢ = (10/3 + 1/8) = 3.55. This form for Im & reduces to (4.44) for
small supersaturation, x < 1, and satisfies the scaling form

F=(-x)"Y x>l (10.14)

The nucleation rate is then determined from (4.55) and (10.13).
Equations of motion for dN/ds and dR/dt are then obtained by taking
the time derivative of

N=|[ f®R)dR (10.15)
R¢

and

R=nN"1 f “F(R)R dR, (10.16)
R

using (10.11). (It should be noted that (10.15) differs from that of Lifshitz
and Slyozov in that only droplets with R > R. are considered as part of the
B phase.) The equations of motion which Langer and Schwartz thus use
are the conservation law (6.4), (10.15) and (10.16).

Their theory is based on a truncation of these equations of motion which
involves some rather ad hoc approximations which we do not discuss. They
also impose a boundary condition that the late stage growth agrees with
the Lifshitz—Slyozov result (6.8). The resulting equations are then solved
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numerically for the relative supersaturation y, given by (10.1), as a function
of the scaled time T,

Dx3
T= i@t, (10.17)

for different initial supersaturations y; = x;/xo. One quantity of interest is
the scaled completion time 7., defined as the time at which the reaction
has gone half-way to completion, i.e.

y(%) = 1. (10.18)

Their results are shown in Fig. 34. A Binder—Stauffer estimate of 7. as well
as a scaled version 7y, of the conventional nucleation time #y, are also
shown in this figure. This latter quantity is defined as 1/J, where J is the
nucleation rate obtained from (4.45) and (10.13). Then 1y is defined
through (10.17), with ¢ = .

Before discussing Fig. 34, we briefly summarize a version of the
Binder-Stauffer theory, using the nucleation and scaling forms assumed
by Langer and Schwarz. The first approximation in the Binder-Stauffer

8 1] T T T
e ]
o= ' '|. -
e |
§ 3t 1
-
'l \
= Y N
2 ; \
\
| \
= \ e
. ~
\‘h
l s
o ] | | I I
g 0.1 0z 03 04 05

Initial relative supersaturation y;

FiG. 34. Half-completion time 1. as a function of initial relative supersaturation.
The solid line is the Langer-Schwartz theory. The dashed curve has been computed
using the Binder-Stauffer approximation and the dash—dot curve is the conventional
nucleation time. (From Howland et al., 1980.)
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theory is that one can neglect the capillary corrections to the growth rate,
given by 2dy/R in (10.8). This is reasonable as the reaction goes to com-
pletion because the droplets become very large. The other approximation
is to neglect the time dependence of the supersaturation in the equations
for dR/dt and dN/dr. In this approximation new droplets are formed at a
constant rate during the process. The prediction of this theory for 7. is
shown in Fig. 34. We can see from this figure that the Langer-Schwartz
and Binder—Stauffer theories are in reasonable agreement for small super-
saturation y; < 0.2, as should be the case. The other significant point is
that the nucleation curve shown in Fig. 34 is distinctly to the left of the
completion curves for the physically accessible values of 7.. The location
of this nucleation curve is very nearly independent of temperature and
relatively insensitive to the choice of .

An interesting prediction of the Langer—Schwartz theory which can be
compared with the experimental results is that if one chooses a fixed
completion time ¢, (e.g. 1 min) typical of a given experiment, then the
dynamical scaling relation

_ Dxit.  Doxdte ,
) =8 = ag ¢ (10.19)

yields a relation between the initial (relative) supersaturation y, and the
rescaled temperature, where

3 14
= (%‘g)m e (10.20)
Thus
& = ()t (10.21)

The only system-dependent parameter which occurs in (10.21) is xo, but
the dependence of 7. on this parameter should be relatively weak. There-
fore, if a given group of experiments on different systems has a fixed
observation time ¢, all the measurements of the maximum relative super-
saturation y; should lie on a single curve y;(&). This curve is given implicitly
by (10.21).

We can now compare the experimental work on critical fluids with the
Langer-Schwartz theory. This is done in Fig. 35, where it can be seen that
the agreement between theory and experiment is quite reasonable, given
the relative uncertainty in experimental determination of f. and other
parameters which enter the theory (Langer and Schwartz, 1980; Howland
etal., 1980). Therefore the deviations from the classical cloud point curve
seem to be due to the effects of critical slowing down on the droplet growth.
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FiG. 35. Completion time curves for 1, 10, 100 and 1000s. The ordinate is the
relative initial supersaturation y; = xi/xo and the abscissa is defined by eqn (10.20).
Dashed curve represents simplified theory for t. = 15. (From Howland et al., 1980.)

However, a corollary of this conclusion is that one still has no direct test
of nucleation theory itself.

An ambitious experimental program, aimed at examining in more detail
nucleation and growth in critical fluids, has been initiated by Khrishna-
murthy and Goldburg (1980). They studied with a microscope the formation
and growth of nuclei in metastable 2,6-lutidine and water close to its critical
point. They were able to confirm quite convincingly the simultaneous
occurrence of nucleation and growth, and thereby establish that the basic
idea of Binder and Stauffer is correct. In addition, they measured the
droplet size distribution function, density of droplets and average droplet
size as a function of time. Unfortunately the rate of droplet formation
depends so strongly on the supercooling that their results were only repro-
ducible within an order of magnitude from one quench to another. There-
fore they were unable to test quantitatively the predictions of the
Langer-Schwartz theory. Nevertheless, this work clearly establishes the
direction of future research in this area, in that a detailed experimental
determination of the phase separation of a fluid now seems feasible.

Finally, we should note that not all experimental results are in agreement
with the Langer-Schwartz theory. In particular, in a measurement of
metastability in CO, (Huang et al., 1975) at a reduced temperature, &=
3.15 x 10~? and supersaturation x; = 0.16, the system remained stable for
4 h without showing any detectable latent heat. Thus the system showed
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no detectable nucleation, in disagreement with theory. Also the work of
Krishnamurthy and Goldburg (1980) revealed a considerably greater num-
ber of droplets at the relative supersaturation y; = 0.1 than the theory
would predict. A satisfactory explanation of such phenomena remains to
be given. Thus one should still consider the issue of anomalous undercooling
in near-critical fluids as only partially resolved. Further experimental and
theoretical studies of this phenomenon seem necessary. However, at the
moment there is no convincing evidence to suggest that homogeneous
nucleation theory needs major revision.

XI. Experimental Studies of Spinodal Decomposition|

A. Binary alloys

As mentioned earlier, the first experimental and theoretical studies of
spinodal decomposition were carried out on alloys. This field is now a
major area of research and several excellent reviews of the experimental
work exist. In particular, a review of recent X-ray and neutron small angle
scattering (SAS) experiments (Gerold and Kostorz, 1978) contains a
detailed summary of experimental work since the pioneering X-ray SAS
experiments on an Al-Zn alloy. Also, de Fontaine (1979) has reviewed
the thermodynamics of phase separation as it relates to aotmic ordering.
Tiapkin (1977) has discussed the microstructural aspects of decomposition
and given an extensive list of the experimental studies. Ditchek and
Schwartz (1979) have surveyed the experimental and theoretical work and
in particular have discussed various applications of alloys undergoing
spinodal decomposition. Another review which includes a discussion of
other systems such as mixed oxides and geological systems has been written
by Jantzen and Herman (1978). In view of the existence of such compre-
hensive reviews of the metallurgical literature, we primarily will content
ourselves with discussing quite recent experimental work which shows the
scaling behaviour first observed in Monte Carlo studies.

A classical example of phase separation in binary alloys is Al-Zn. This
system has been extensively investigated, beginning with the original X-
ray, SAS studies of Rundman and Hilliard (1967). They originally inter-
preted their results as a verification of the linear Cahn theory (Section IV).
However, Gerold and Merz (1967) argued that this interpretation was
incorrect. Further experiments were performed, which have led to a general
consensus that the observed early time behavior of Al-Zn is not described
by the linear theory. (This is reviewed by Gerold and Kostorz (1978).)
Rather, the behavior is in qualitative agreement with the LBM theory.
Exponential growth of $(k,¢) is not observed. Instead, a peak in the
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scattering intensity develops and grows with time. Coarsening is manifested
by a continual decrease in the position of the peak height, ky (t). A partial
list of these experimental studies of Al-Zn inlcudes Agarwal and Herman
(1973), Junqua et al. (1974), Bartel and Rundman (1975), Laslaz ez al.
(1977a, b) and Laslaz (1978). It should also be noted that in addition to
diffraction studies, other experimental methods exist for studying the
process of phase separation in a less direct way. These are described by
Ditchek and Schwartz (1979) and include measurements of electrical resis-
t1v1ty, thermoelectric power and magnetic measurements. Since these do
not give information about S (k, t) directly, we do not discuss them here.

The most definitive study of Al-Zn seems to be the recent transmission
electron microscope (TEM) and neutron SAS experiments by Hennion et
al. (1982) and Guyot and Simon (1982). The SAS studies are the first phase
separation experiments performed on single crystals. The use of single
crystals allowed these authors to study certain anisotropic effects and to
avoid discontinuous precipitation phenomena which occur at grain bound-
aries. The simultaneous use of TEM and SAS methods allowed them to
compare cluster growth and structure function measurements.

The experiments have been carried out for several points in the slightly
supersaturated region of the Al-Zn phase diagram, as shown in Fig. 36.
Measurements of the coherent scattering cross-section per unit volume,
d=( k t)/d€, directly yield the structure function via the standard expres-
sion (Hennion et al., 1982)

d{ﬁg 0 - (b= b, 0, | (a1.1)

where v, is the average atomic volume, ba and bz, are the scattering
lengths for Al and Zn, respectively, and % is the scattering vector. The‘
magnitude of k is related to the scattering angle 6 by

k=4r sin(%)/l, (11.2)

where A is the neutron wavelength. The use of long wavelength neutrons
allows one to reach small k values not attainable in X-ray studies. (Neutron
wavelengths in the range 0.67-1.86 nm were employed.) Results for the
average scattering cross-section are shown in Fig. 37. These exhibit the
qualitative behavior which has already been described.

The moments of $(k, ¢) can be obtained from the measured dx/dQ,
using (11.1) and the definition

ky ky
kn(t) = %‘,k"ﬁ(k, t)/kZ_S(k, t),‘ n=1,2, (11.3)
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where k, and k, are the minimum and maximum observable values of k.
These cut-off wavenumbers occur in all numerical and experimental studies
of $(k, t) and introduce an error in the determination of the moments. In
particular, the existence of an upper cut-off, ky,, makes any precise deter-
mination of the moments for n > 2 difficult. :

An analysis of $ (k, ¢) and its scaling behavior has been given by Hennion
et al. (1982) and Guyot and Simon (1982). To begin with, an attempt was
made to model the time dependence of kn(¢), k,(¢) and Sk, t) by power
law approximations. Typical results are shown in Table IX. These must be

TasLE IX. Power law approximation.

Alloy concentration T (°C) a a’ m
5.3at% Zn 20 0.2-0.3  0.9-1.0 0.3
6.8 at% Zn 20 0.25-0.3 1.0 0.3
90 0.3 0.6 0.150.3
110 0.1-0.3 — —
133 0.250.3 1.0 0.2-0.3
12.1at% Zn 20 0.3 1.0 0.15-0.3
130 0.15 0.45 0.15
150 0.15 0.45 0.15
169 0.15 0.45 -

viewed with caution, given the ambiguity involved in such fits. The pos-
sibility that $(k, £) might scale after some initial transient time is studied
by first determining the behavior of r(#), defined by (8.6) and (11.3). It
was found (Hennion ef al., 1982) that this ratio is a slowly varying function
of time for the different quenches studied. Typical variations are shown
in Fig. 38. Since to a first approximation this ratio is constant, one can try
a scaling analysis, as discussed in Section VIII. The results of this for the
different quenches are shown in Fig. 39. The agreement with a scaling form
after a certain transient time seems quite reasonable. The authors also
claim that the scaling function F(x) shows no significant variation with
either temperature or alloy composition. A more conservative viewpoint
would be that a weak dependence on these variables is observed. The latter
conclusion would be more in accord with the results of the analysis of data
from Monte Carlo and binary fluid experiments. The overall agreement
of the binary alloy experiments with Monte Carlo results is in fact quite
good, as we discuss later.

Several qualitative features of the Al-Zn study should be noted. The
first is that the phase separation process depends on the degree of super-
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FiG. 38. The quantity r(f) = k(e)ki(r) as a function of time for (a) Al 5.3 at% Zn,
T, = 20°C; (b) Al 6.8 at% Zn, T, = 20°C.
~~

saturation, as one would expect. In particular, both ky(t) and S(k,t)
decrease as one decreases the supersaturation. Secondly, the late stage
growth rate seems to satisfy the Lifshitz-Slyozov 2 law for small super-
saturation, as can be seen from Table IX. (To our knowledge, however,
no experimental confirmation of the amplitude predicted by this theory,
eqn (6.8), has been made.) The growth rate at Al 12.1at% Zn does not
seem to satisfy the Lifshitz-Slyozov law. Guyot and Simon (1982) interpret
this as possibly indicating a coagulation growth mechanism, of the type
proposed by Binder and Stauffer (1974, 1976). Thirdly, the study shows
no evidence of any sharp distinctiog between metastable and unstable
states in the region of the phase diagram which has been studied so far.
The authors also note that the TEM studies of polycrystalline samples are
consistent with their SAS results. (This comparison involved invoking a
modeling of $(k, ¢) in terms of a cluster distribution which involves a hard
sphere correlation function.) In addition, Guyot and Simon (1982) report
that the time dependence of the number of droplets per unit volume which
is observed in the Al-Zn studies is in good agreement with the Langer—
Schwartz theory of nucleation and growth discussed in Section X. It should
be noted, however, that this comparison involves using the theory at
temperatures considerably below the critical point, where the Langer—
Schwartz scaling approximations are presumably invalid (P. Guyot, private
communication).

An interesting theoretical problem which has been raised by the Al-Zn
experiments is the important role played by vacancies in real alloys. In

alloys such as Al-Zn, the interchange of A and B atoms occurs through
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vacancies, rather than through the direct exchange employed in the
Kawasaki exchange dynamics model used in Monte Carlo studies. There
are two kinds of vacancies in the Al-Zn experiment: quench vacancies,
which are present in the initial high temperature, disordered state, and
thermal vacancies, which are in equilibrium at the quenched (aging) tem-
perature. Hennion et al. (1982) have observed that it is the quench vacancies
which are responsible for the initial stages of phase separation in their
experiments, since these have a much larger diffusion constant than thermal
vacancies. These quench vacancies are gradually eliminated from the system
by being trapped at zone interfaces or removed at sinks. Thermal vacancies
then take over. Thus the time unit, which is the time separating two
successive interchanges of A and B atoms, changes during the experiment.
When quench vacancies are important, the time unit is proportional to
exp(Un/ksT), where Uy, is the migration energy of the vacancy. When
thermal vacancies take over, however, the time unit is proportional to
exp((Un + Us)/ksT), where u; is the formation energy. A simple estimate
(Wgnnion er al., 1982) of these two time scales for Al-Zn at 20°C is -
10755 and 10° s respectively. Such an effect has not been taken into account
in theoretical or Monte Carlo studies.

In spite of this difficulty with making a precise comparison of time scales
between Monte Carlo and experimental studies, the scaling functions
obtained by these two methods are remarkably similar. Hennion et al.
(1982) have shown, for example, that their scaling function for Al 5.3 at%
Zn, T/T. = 0.49, is very similar to the Monte Carlo data at the points P,
P, and P, if they rescale the vertical axis. As well, quite good agreement
is also obtained with the results of P;, P, and Pg for Al 6.8at% Zn at
T = 0.64 when both have been rescaled. Lebowitz et al. (1982) have also
shown that the data for Au 60 at% Pt (Singhal et al., 1978) is in good
agreement with the Monte Carlo data at P, and Ps if the vertical axis is
rescaled (Fig. 40). Thus the Kawasaki model seems to describe the phase
separation process in these binary alloys reasonably well.

B. Binary fluids

Another class of systems in which spinodal decomposition has been exten- |
sively studied is binary fluids. It was initially believed that experimental‘
studies of spinodal decomposition in these liquid mixtures were not feasible,
since the interdiffusion constant D is normally several orders of magnitude

F1G. 39. The scaling function F(x) for the various concentrations of Zn and different
aging temperatures T, shown in Fig. 37. (From Guyot and Simon, 1982.)
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Fic. 40. Comparison of computer simulation data (empty symbols) with the experi-
mental data from Singhal et al. (1978), for Au 60 at% Pt alloy quenched to
T =0.6T.. The full circles are for t = 900s and the stars for t = 360's, both lying
on the same curve, except perhaps for x = 1.8. The broken line 1 is for r = 0 (the
initial sample was already decomposed to some extent) and the broken line 2 is
for ¢ = 30 s. In both cases scaling does not yet hold. The empty circles correspond
to the computer simulation at Ps while the empty squares are for P;. Only the
vertical scale of the computer simulation results needed to be changed in order to
obtain this fit. (From Lebowitz et al., 1982.)

larger than in alloys or glasses. Thus the time scales for spinodal decom-
position are typically very small for such fluids. However, Huang er al.
(1974a) were able to circumvent this difficulty by making measurements
very close to the critical point, where D vanishes (egn (10.7)).

In this critical region spinodal decomposition occurs on an experimentally
observable time scale. Since the pioneer work of Huang et al. (1974a) on
cyclohexanemethanol, several other binary fluids have been investigated.
These include 2,6-lutidene plus water (LW) (Schwartz eral., 1975; Goldburg
et al., 1978a,b; Chou and Goldburg, 1979, 1981; Goldburg, 1981) and
isobutyric acid plus water (IW) (Wong and Knobler 1978, 1979, 1981;
Chou and Goldburg 1979, 1981). We discuss these experiments in some
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detail below, since they seem to provide some of the most detailed tests
of scaling. As well, of course, they reveal interesting hydrodynamic effects.

A typical experiment consists of illuminating the fluid sample with a laser
beam, following a temperature or pressure quench of the system to an
unstable state. The scattered light forms a ring which brightens and
decreases in diameter as the system evolves, as mentioned in Section 1.
From measurements of the scattering intensity, I(k, f), experimentalists
can determine the time dependence of the ring diameter k,(f) and peak
intensity I(km,t). (The wavenumber k is related to the scattering angle
6 by (11.2), where A = Ao/n, with A and n being the vacuum wavelength
and refractive index of the mixture, respectively.) When multiple scattering
effects can be ignored I(k,t) is proportional to the structure function
S(k, 1), and a direct test with theory is then possible. The results of a
typical scattering experiment are shown in Fig. 41 for an IW mixture
quenched at the critical composition (Chou and Goldburg, 1981). It can
be seen there that the intensity maximum, I(kp, t) rapidly increases as the
ring collapses. Since such experiments are in the critical region, it is natural
to use the scaled variables

q=kE (5.27)
and
7= Di/&, (5.28)
7 O I-W
i AT = 3.4£0.3mK
1035— ﬁt: 170 sec E s
ik b =
i ol l/.ﬂ\'\t = B4 sec 1
LB ./‘ '\ =l
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Fic. 41. The scattering intensity I(k,f) versus k at different times in IW. The
quench depth ATy = 3.4 mK. (From Chou and Goldburg, 1981.)
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where § and D are given by (10.5) and (10.7) respectively. (Note that
(5.28) differs slightly from the scaled time introduced in (10.17).) It should
be observed that these light scattering experiments span several decades
in the scaled time 7, for the small values of reduced temperature ¢ =
(Tc— T)/T. which are studied. For example, in IW one has
7=4.6 X 10° £* (¢/s). The experiments by Chou and Goldburg (1981)
explored the regions 3 X 107 < <2 x 1075 and 6 < 7= 1000.

1.0
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Fic. 42. The scaled peak position gm as a function of the scaled time 7 for a critically
quenched IW mixture. (From Chou and Goldburg, 1979.)

The earlier experiments on the binary mixtures IW and LW clearly
showed the important effects of hydrodynamics in the spinodal
decomposition/coarsening process. For example, Fig. 42 shows the behavior
of the scaled peak position, g,(7), as a function of the scaled time 1 for
a critically quenched mixture of IW (Wong and Knobler, 1978; Chou and
Goldburg, 1979). These two experiments yielded almost identical results,
even though the temperature quench rates of Chou and Goldburg (of about
10s) were several orders of magnitude larger than the much more rapid
pressure quenches of Wong and Knobler. What is clearly evident in Fig.
42 is the important role played by hydrodynamics in the critical quench.
The growth rate gn(t) ~ 7% crosses over from an early stage diffusive
behavior of a’ = 1/3 to a late time behavior of a’ = 1. The latter behavior
is in agreement with the prediction by J. W. Cahn and M. R. Moldover
(unpublished) and Siggia (1979) (Section V) that a’ = 1, where flow in
percolated droplets dominates the dynamics. It can also be seen from Fig.
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4?2 that the LBM theory (Section V) for binary alloys is inapplicaple for
binary fluids, as is to be expected. On the other hand, the Kawasakl_—Ohta
(KO) theory (Section V), which extends the LBM approach to give an
approximate treatment of hydrodynamics, describes rather well the early
time behavior of gy (7). It does not, however, yield the crossover to the
a’' = 1 behavior.

A more challenging test of theory is provided by the experimental
measurements of the peak height behavior. As shown in Fig. 43, the
experimental results for IW cannot be explained by the KO theory. A
power law approximation was used to fit /(gm, r) by Wong and Knobler
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F1G. 43. The scaled ring intensity as a function of the scaled time 7 for a critically
quenched IW mixture. (From Chou and Goldburg, 1979.)
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(1978) and yielded an exponent a” which increased from ¢"=1.2 to a" =
2.3. Chou and Goldburg (1979) noted that the late stage behavior was
consistent with an exponent a” = 3, but no definitive determination seems
available yet. It should also be noted that experiments on LW by Chou
and Goldburg (1979) yielded results for the scattering intensity which are
essentially identical to the behavior of g, (7) and I(gn, 7) discussed above.
This confirms the dynamical universality one might expect near a critical
point, even in systems which are far from equilibrium.

The most detailed investigation of droplet growth in binary fluids is the
recent work of Wong and Knobler (1981) on IW. They determined the
behavior of the peak position ky, (#) by measurements of I(kp, t) for several
critical and off-critical quenches. This allowed them to examine the influ-
ence of the volume fraction v of droplets on k(). In particular, they were
able to test the predictions of Siggia (eqns (5.26), (5.29), (5.30) and (5.32))
which are based on a consideration of various growth mechanisms possible
in binary fluids. Wong and Knobler’s analysis is based on 10 sets of quench
data, shown in Table X. They determined the volume fraction v from

TabLE X. Initial relative temperatures AT;, temperature jumps
8T, and corresponding volume fractions v.

6T (mK)

Set T; (mK) 1.45 2.89 5.79 11.6 232
1 0 0.50 0.50 0.50 050  0.50
2 0.01 0.39 0.41 0.43 0.44 0.45
3 0.14 0.26 0.31 0.34 0.37 0.40
4 0.55 0.16 0.22 0.27 0.31 0.34
5 1.5 0.10 0.14 0.20 0.25 0.29
6 3.0 0.06 0.09 0.14 0.19 0.24
7 6.0 0.03 0.06 0.09 0.14 0.19
8 10.2 0.02 0.04 0.06 0.10 0.15
9 17.1 0.01 0.02 0.04 0.07 0.12

10 24.7 0.01 0.02 0.03 0.06 0.09

measurements of the initial and final (quenched) temperatures 7; and T;.
Using the lever rule they obtain the relation

v=[1- (AT/AT)?]2,

where B is defined in (10.3) and ATi=T.— T;, ATy =T - Tt.

The behavior of the scaled peak position, gm(7), is shown as a function
of for several typical quenches in Fig. 44. Figure 44(a) shows the crossover
from a 72 to a 7! behavior predicted by Siggia for large v. This 7!
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behavior seems to be restricted to the region v = 0.10. For shallower
quenches, in which v is small, this crossover to 7' disappears, as can be
seen in Fig. 44(e). This is again in qualitative agreement with Siggia’s
theory. A detailed comparison of Siggia’s predictions for g, (7) was made
by Wong and Knobler, in particular (5.26) and (5.30), which we write as

9=(7) = At. (11.5)

The results of their analysis for the sets 8, 9 and 10 of Table X are shown
in Table XI. One noteworthy result is the confirmation of the Lifshitz—
Slyozov theory for v =< 0.02, eqn (5.30), in which A should be independent
of v and approximately equal to 0.053. A second result is a semiquantitative
confirmation of the behavior (5.26), in which A should be 12v. This
behavior of A is confirmed only within a factor of two.

TABLE XI. Coefficients of 7 for quenches exhibit-
ing 7% behaviour without crossover.

Set AT¢ (mK) A Afv
8 1.5 0.055 o 3
2.9 0.98 24
5.8 0.76 13
9 1.5 0.041 4
29 0.016 8
5.8 0.67 17

11.6 0.10 1.4
10 1.5 0.052 5
2.9 0.052 3
5.8 0.22 7
11.6 0.85 14

Two concluding remarks should be made about the Wong-Knobler
study. The first is that the observed crossover to the 7! behavior is only
in qualitative agreement with (5.32). The observed amplitude differs from
that in (5.32) by about two orders of magnitude. The second remark is
that a crucial assumption in the Wong-Knobler analysis is that the droplet
size R which occurs in Siggia's unscaled equations is taken to be R =
kz'. However, Chou and Goldburg (1979) have found that the ratio of the
average droplet size /() to k;'(f) was in the range 5-10 in the late stage
droplet growth. Thus it is not clear (as Wong and Knobler note) that
R = k;,l is an exact identification. They find, however, that the best overall
agreement with Siggia’s theory is obtained with this particular choice.

3. Dynamics of first-order transitions 419

Finally, we discuss the issue of the scaling of the structure function in
these liquid mixtures. The first observation of scaling in such systems was
by Chou and Goldburg (1981). They analyzed the behavior of the scattering
intensity I(k, t) for three critical quenches for LW and four critical quenches
for IW. After making corrections for the background intensity and multiple
scattering effects, they showed that a scaling of the form (8.5) was satisfied.
The scaling wavenumber k(f) was chosen to be the peak height position
ka(t). This scaling was shown to hold in the range 6 < 7= 1000, with the
scaling function F(k/kn (1)) exhibiting no dependence on time. The absence

- of in} trmmsient region in which F(x) depends on 7is quite different from

the Monte Carlo and neutron scattering experiments on binary alloys. As
noted earlier, strong transient effects have been observed in these systems.
Chou and Goldburg also found that their scaliflg function was quite similar
to that of Lebowitz et al. (1982).

A more detailed investigation of this scaling behavior has recently been
carried out by Knobler and Wong (1981) for IW. They analyzed the
behavior of a normalized structure function $(k, #) which was defined in
terms of the scattering intensity as

Sk, 1) = I(k, 1) / f ® k(K. 1) dk (11.6)

The range of integration extended from k, = 0.3 km to ky = 3.0ky,. The
normalization was essentially unaffected by increasing the range of inte-
gration. They also evaluated the moments

kn(t)=f:"kn1(k, z)/f:"z(k, nd, n=12 (117

to examine the behavior of r(r) defined in (8.6). The scaling wavenumber
was chosen as k(f) = kn(#). The analysis was carried out for six critical
quenches (labeled A-F) and 11 off-critical quenches, seven in the water-
rich phase (G-M) and four in the isobutyric acid-rich phase (N-Q). Cor-
rections similar to those of Goldburg and Chou were made for multiple
scattering and background effects.

Typical results for the scaling function F(x) are shown in Fig. 45 for an
off-critical quench K and a critical quench A. The 15 scans included in Fig.
45(a) cover a period of 38-1070s after the quench. The unnormalized
intensities at k, vary by a factor of approximately 30. Knobler and Wong
concluded that within the precision of the data a (time-dependent) scaling
behavior is obeyed. In Fig. 45(b), the scaling ansatz seems less accurate.
In Table XII the behavior of the scaling function F(x) is given in terms
of its peak values and full width at half-maximum Ax,, for all the quenches
which they analyzed. Table XIII shows the behavior of r(t).
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Fi1G. 45. The scaling function F(x) for two different quenches in IW: (a) an off-
quench K for 15 scans; (b) a critical quench A for nine scans. (From Knobler and
Wong, 1981.)

TasLE XII. Properties of scaling functions F(x).

Quench FQ) Ax ky/k}

A 0.87 + 0.10 0.76 1.13 £ 0.05
B 1.28 = 0.25 0.55 1.10

C 1.21 = 0.08 0.49 1.12 2 0.02
D 0.99 + 0.10 0.70 1.12

E 0.68 + 0.13 0.73 1.19 = 0.07
G 0.46 = 0.05 1.10 118 £ 0.02
H 0.38 = 0.06 1.56 /21 +0.03
| 0.42 = 0.06 1.14 123 +£0.02
J 0.60 = 0.06 0.92 1.19 +0.04
K 0.44 + 0.04 1.12 1.19 +0.02
M 0.52 = 0.06 1.00 1.22 = 0.03
N 0.69 % 0.13 0.94 1.14 +0.01
(o) 0.73 + 0.08 0.88 1.14 = 0.01
Q 0.60 = 0.05 1.04 1.17 = 0.02
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TabLE XIII. Variation of r =k;/k} during a quench.

Quench J Quench K Quench N
/10° r r/10° r r/10° r
0.69 1.14 0.26 1.15 1.35 1.14
0.97 1.17 0.40 1.16 1.18 1.13
1.25 1.17 0.53 1.16 2.30 1.12 »
1.54 1.18 0.67 1.16 2.8 1.13
2.04 1.17 0.90 1.17 3.2 1.12
2.6 1.18 1.14 1.19 3.6 1.14
3.1 1.18 1.39 1.19 5.2 1.13
43 1.19 1.85 1.18 6.3 1.14
5.3 1.20 2.33 1.19 8.8 1.14
6.3 118 ,..2.% 1.19 11.7 1.15
7.3 1217+ 3.3 1.20 16.5 1.15
8.3 1.22 3.8 1.21
10.2 1.23 . »47 1.21
12.0 123 55 1.22

7-2 1.23

It is clear from Table XII that the scaling function is much narrower for
critical quenches than for off-critical quenches. The values shown there
should be compared with the critical quench results of Chou and Goldburg
(1981). These are F(1) =1.5+0.1 and Axy; =0.45+ 5% for LW and
F(1)=1.6+0.3 and Axy, =0.5 = 10% for IW. It should also be noted
that the Monte Carlo results (Lebowitz et al., 1982) are F(1) =0.9 and
Axy, = 0.7 for the quenches Py, Ps and Pg. The quench Pj has F(1)=1
and Ax,, = 0.7. Therefore, as noted in Section IX, no significant difference
between the half-widths was seen in the Monte Carlo work, in contrast to
the conclusion of Knobler and Wong for IW.

Glasses

Extensive experimental and theoretical studies have dealt with spinodal
decomposition in glass systems. Experiments have involved both TEM and
X-ray SAS measurements. A review of spinodal decomposition in glasses
has been given by Jantzen and Herman (1978). They cite several prior
reviews of phase separation in glasses and give detailed references to the
experimental and theoretical literature in this field. We therefore restrict
our attention to a recent experiment which shows a scaling of the structure
function in the quasi-binary glass B,0:-PbO(A1,05) (Craievich and San-
chez, 1981). Before summarizing this work we first note that spinodal
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decomposition has been of particular interest in glass-forming systems
because of their inherent isotropy. This is an advantage over most crystalline
systems such as Al-Zn, whose structure functions exhibit considerable
anisotropy. The glass on which the most detailed experimental studies of
spinodal decomposition have been carried out is Na,0O-SiO,, as discussed
by Jantzen and Herman (1978).

Recent small angle X-ray scattering studies of B,Os~PbO(AL;03) have
shown that the structure function $(k,¢) satisfies a scaling of the form
(8.5), with the characteristic wavenumber being x(t) = k;(¢). A quench
was carried out at a critical composition of 80:15:5 (wt%) and a temper-
ature T=0.65T, (where T.=657°C). The structure factor $(k, ) was
determined in a time range of about 12-400 min. During that time r(¢) =
ky/ k3 remained approximately constant and equal to 7 = 1.39. The structure
factor exhibited a behavior quite similar to that shown in Fig. 37 for Al-
Zn. The glass data was shown to be consistent with the scaling form (8.5)
ih the observed time range. The exponent a which describes the first
moment k;(t) (eqn (5.33)) was determined to be a ==0.23, which is in
reasonable agreement with the Monte Carlo results for the binary alloy
(Section IX). Craievich and Sanchez note that with the increased availability
of highly collimated, very intense X-ray sources, more accurate determi-
nations of $(k, f) over an interesting range of time and length scales will
become possible.

XIl. Tricritical systems
A. Theory

Several recent studies consider nucleation and spinodal decomposition
phenomena in tricritical systems. In this section we review theoretical
investigations of such phenomena. In Sections XII.B and XII.C we discuss
Monte Carlo studies of two-dimensional tricritical models and experimental
studies of *He—*He mixtures respectively.

Tricritical systems are characterized by a line of critical points associated
with an order—disorder transition, ending at a tricritical point. Below the
tricritical point both ordering and phase separation occur simultaneously.
Thus two order parameters, ¥ and c, are necessary to describe tricritical
phenomena. A typical phase diagram for tricritical systems is shown in Fig.
46. In the usual situation 1 is a nonconserved variable (the superfluid order
parameter for *He-*He), while c is a conserved variable (the local con-
centration of *He for *He—*He). These variables are dynamically coupled
in the field theoretic equations which describe such systems (Section III.A).
This coupling makes it more difficult to obtain a theoretical description of
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dynamical phenomena in tricritical systems than in simple critical systems
such as an Ising model of a binary alloy. On the other hand, one might
expect a richer dynamical structure to exist as a consequence of this
additional order parameter. It should also be noted that the upper critical
dimension for tricritical models is d = 3. Thus, apart from logarithmic
corrections, mean field theory gives an accurate description of much of the
static tricritical behavior. A comprehensive review of the theory of tricritical
points is given by Lawrie and Sarbach (1983, forthcoming article in Vol.
9 of this series).
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Fi1G. 46. Schematic temperature—concentration phase diagram for *He-*He mix-
tures. The line of critical points T and the tricritical point at temperature T, are
indicated. A quench from the normal phase into the coexistence region is shown.
The spinodal lines C; and C, are also indicated. (From Hohenberg and Nelson,
1979.)

The first theoretical studies of spinodal decomposition in tricritical sys-
tems appear to be due to Allen and Cahn (1976, 1979a, b). They discussed
the coherent spinodal curve (1976) and aspects of domain growth (1979)
for alloys such as Fe—Al. The first detailed theory of spinodal decomposition
which dealt with the dynamical coupling of two order parameters is due
to Hohenberg and Nelson (1979). They developed a linearized theory of
spinodal decomposition for *He—*He mixtures, based on a dynamical model
of Siggia and Nelson (1977) (eqns (3.27)-(3.34)). Their analysis revealed
two unusual features associated with “tricritical spinodal decomposition”
in *He—*He mixtures. The first is that the inverse susceptibility 7~ which
is responsible for the initial stages of phase separation of the *He phase
is rather different from that for the binary alloy (i.e. (8*f/dc?),, in the Cahn
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equation (5.3)). Namely, as shown in Fig. 47 this “constrained” inverse
susceptibility 7! becomes increasingly negative as one increases the average
concentration in the spinodal region. It then discontinuously changes to
a positive value as one crosses into the classical metastable domain. (This
discontinuity is an artifact of the mean field theory; Hohenberg and Nelson
(1979).) To understand how this ¥ arises and how one defines the spinodal
curve for such tricritical systems, one must consider the initial behavior
immediately following a quench into the miscibility gap (shown in Fig. 46).
Since |y| (the amplitude of y) and ¢ are nonconserved and conserved
variables respectively, | | will inmediately relax to some constrained value
1 determined by the initial values of ¢ and the temperature. The local
concentration ¢ will remain essentially constant during this rapid relaxation
of ||, since the time scale for its evolution is much longer than for |y|.
One obtains this constrained value ¥ from the equation of motion for
|| (which follows from (3.27) upon neglecting the gradient and noise
terms) by setting 8| y|/at = 0. Associated with this constrained value ¥ is
a “constrained” susceptibility which is obtained by evaluating the usual
mean field concentration susceptibility at || = 1. This analysis yields the
function ¥ shown in Fig. 47 and also yields a definition of the spinodal
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F16. 47. Constrained susceptibility ¥ as a function of concentration for fixed
temperature. The spinodal values C; and C, of Fig. 46 and the equilibrium values
at the “superfluid” (C;) and *“‘normal” (C,) side are shown. (From Hohenberg and
Nelson, 1979.)

curve which is shown in Fig. 46. Note that these definitions of ¥ and the
spinodal curve follow from the dynamical argument given above. This same
reasoning is immediately applicable to the relaxational model C (eqns
(3.18)—(3.22)), which can be used to describe the tricritical metamagnet
model discussed in Section XII.B. A detailed discussion of the above
analysis for model C has been given by San Miguel er al. (1981).
Hohenberg and Nelson then linearize the equations of motion (3.27)-
(3.29) for the conserved variables ¢, g and 8 (where q is the “entropy” and
6 is the phase of y = |y ') about the point (1, ), where ¢ is the initial
quench concentration. This linearization involves three hydrodynamic
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modes (when ¢ # 0), a diffusion mode and two second sound modes. The
result for the nonequilibrium structure factor Sk, t) = (ce(t)c-i (1)) is

S(k, 1) = a; e 2Dk + g, ¢~ Po+ Dkt o 33, kit

+ as e D* o5 2i kt + ay, (12.1)

where the g; are time-independent constants that depend in a complicated
way on the hydrodynamic parameters and the initial conditions. The quan-
tities 1,(k) and D, (k) are nonequilibrium versions of the second sound
velocity and damping rate and are typically positive. The diffusion constant
Dy(k) is negative for some range of wavenumbers. Thus the first term in
(12.1) grows while the third term dies out. (The first term is the analog of
(5.9) for the binary alloy.) Since in principle (Do + D) could be negative,
the second term in (12.1) would yield a “flickering” component in the
scattering. This is the second unusual feature of tricritical spinodal decom-
position which we mentioned above. However, Hohenberg and Nelson
find that (Dg + D) is typically positive near the tricritical point, so this
flickering may be difficult to observe experimentally.

Since it is known that the time domain of applicability of a linear theory
is quite limited, it is interesting to see if one can develop an approximate
nonlinear theory for tricritical systems. Unfortunately the additional order
parameter and hydrodynamic modes makes this even more difficult to do
than for binary alloys. However, a LBM-like theory (Section V) has been
developed for the relaxational model C (Dee et al., 1981). The most
interesting result of this theory is a quite asymmetric behavior of the
structure factor S (k, t) = (cc(f)c_«(2)) as a function of the average quench
concentration c¢o. This theoretical result is a reflection of the asymmetry
in an effective Hamiltonian which is used in the calculation. This Hamil-
tonian results from the replacement of || by v in the equation of motion
(3.19) for ¢. As mentioned in Section XII.B a similar asymmetric behavior
in $(k, t) is seen in Monte Carlo simulations.

The nucleation rate and late stage growth law have also been derived
for model C (San Miguel and Gunton, 1981; San Miguel er al., 1981). The
calculation of the nucleation rate follows the formalism outlined in Section
IV and requires determination of the activation energy, the imaginary part
of the free energy and the dynamical prefactor x (i.e. (4.26)~(4.29), (4.55)).
This involves first determining the saddle point solution (4, &) (the “tri-
critical droplet”) for the Hamiltonian (3.20). This is more difficult than for
the “y*” model discussed in Section IV, due to the existence of the
second-order parameter c¢. A perturbation solution of the saddle point
equations can be given, however, to lowest order in a perturbation par-
ameter g =x¥2l/E (where & is the mean field correlation length and x, and
Iy are defined in (3.20)). The result which one obtains for the activation
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energy is the same as (4.19) when expressed in terms of the corresponding
tricritical quantities. An explicit expression for the surface tension o is
obtained which includes a correction term in addition to the expected
dominant singularity. The latter is in agreement with previous phenom-
enological predictions (Papoular, 1974; Widom, 1975). The result for the
imaginary part of the free energy for model C is the same (to leading order)
as (4.57) and (4.58), with an appropriate change of variables (San Miguel
and Gunton, 1981). For example, the magnetic field H is replaced by
8A = A — Ay, which is the variable for model C which is appropriate for
the description of metastable states. The result that to leading order the
static contribution to the nucleation rate (the imaginary free energy) is
identical for model C and the Ising model is due to the fact that this is
determined by the geometrical properties of the Hamiltonian which
describes the saddle point droplet solution and its deformations (Section
IV). To leading order this is the same for the two models. However, since
the Ising model possesses a symmetry with respect to H which does not
exist for model C with respect to 8A, the higher order contributions to the
imaginary free energy will be different.

The calculation of the nucleation rate for model C is completed by
determining the dynamical prefactor k in (4.55). In principle this is done
by linearizing eqns (3.18) and (3.19) about the tricritical saddle point
solution (1, é). The actual calculation was performed by using a variational
method due to Langer (1971) (San Miguel et al., 1981). This also allows
one to determine the late stage growth law (Langer, 1971, 1975). The
result for model C is that x involves a mixing of two different growth
mechanisms (Allen—Cahn and Lifshitz-Slyozov; see Section VI). This seems
natural since for this model one is dealing simultaneously with a noncon-
served variable 9 and a conserved variable c. For large enough droplets,
however, the late stage growth law reduces to the LS ¢/ behavior.

The calculations discussed above have also been carried out for *He-
‘He mixtures, except that the dynamical prefactor was left undetermined
(San Miguel and Gunton, 1981). Thus a complete expression for the
nucleation rate has not been given. In this case it is clear, however, that
hydrodynamic effects which are included in the Siggia—Nelson (1977) model
will give rise to a different dynamical prefactor than obtained for model
C. The result for the imaginary free energy for *He-*He mixtures (and
hence for its contribution to the nucleation rate, eqn (4.55)) also differs
from model C for a normal “He fluid metastable state (but not for a
superfluid metastable state). This arises from the fact that model C has a
discrete symmetry of the Ising type, whereas due to the complex nature
of the order parameter v, the Hamiltonian for *He—*He has a continuous
symmetry. Namely, the Hamiltonian has a well known invariance under
gauge transformations. The result is that when evaluating €2 in (4.29) one
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obtains contributions from zero eigenvalues associated with the invariance
under a change of phase. This leads to a contribution to the imaginary free
energy (4.54) which changes the exponent 7/3 in (4.58) to 23/6 on the
normal fluid side of the *He—*He coexistence curve (San Miguel and
Gunton, 1981).

B. Monte Carlo studies

Recently detailed Monte Carlo studies of the ordering and phase separation
processes for a two-dimensional model of a metamagnet have been carried
out (Sahni and Gunton, 1980; Sahni et al., 1982). The Hamiltonian for this
model is

H=J2 00~ 2JEo,ak+HEa, (12.2)

nnn @

where 0;= *1, J >0 and the spins are situated on a square lattice. The

symbols nn and nnn denote sums over nearest and next nearest neighbors,

respectively. The phase diagram for this model is reasonably well known

(Landau, 1972; Landau and Swendsen, 1981). In particular the tricritical

point is estimated to be at the temperature T, = 1.21 J/ky and magnetization
= (.37 (Landau and Swendsen, 1981).

The dynamical studies have been carried out for several different
quenches into the miscibility gap below the tricritical point. The dynamics
of this system is taken to be Kawasaki spin exchange. This model is the
lattice analog of model C. The nonconserved and conserved order par-
ameters v and ¢ for this metamagnet are the local sublattice magnetization
and local magnetization respectively. It should also be noted that with a
standard change of variables (12.2) can also be considered to be a model
of a binary alloy (in which ordering and phase separation effects are taken
into account) or of a chemisorption system (Section XIII.F). Thus computer
simulation studies of ordering and phase separation for this model could
give qualitative insight into the behavior of binary alloys or chemisorption
systems below their tricritical points.

In the computer simulation studies two structure functions, $y,(k, f) and
S.(k, t) have been determined (the notation is obvious). As with other
systems discussed in this review, a time domain in which linear theory is
valid (Hohenberg and Nelson, 1979) was not observed. Nevertheless, both
structure functions exhibit dynamical instabilities, as is implicit in the
Hohenberg—Nelson theory. The behavior of 8. (k, t) is qualitatively similar
to that seen in Monte Carlo studies of a binary alloy (Section IX) for
S(k, t). That is, the peak height S..(ky, ¢) increases while k(¢) decreases
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with time. The other structure factor behaves very similarly to that for a
pure antiferromagnet, whose order parameter is nonconserved (Phani et
al., 1980; Sahni et al., 1981). Namely, S,,U(k, t) develops a peak at k =
0 which increases with time. The first and second moments of each of these
structure factors have also been determined. To a first approximation the
ratios r,(¢) and r.(r) (analogous to (8.6)) are time-independent after an
initial transient behavior. However, a small but definite time dependence
was found in several of the quenches. Various power law approximations
for the moments were also obtained, which are given in Sahni et al. (1982).

As with other systems discussed here, both structure factors were found
to exhibit a scaling behavior as given by (8.5) (although no normalization
was used). This was the first observation of scaling in tricritical systems
(Sahni and Gunton, 1980; Sahni et al., 1982). The best example of this is
shown in Fig. 48 for a quench to a temperature T = 0.67; and a magnet-
ization M = 0.5. The scaling of (X, ) at values of the average magnet-
ization which are less and greater than M = 0.5 was much less satisfactory,

F(x)
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Fic. 48. The scaling function for the conserved variable structure function for the
two-dimensional metamagnet at a quench temperature T = 0.67, and magnetization
M= 0.5, (From Sahni et al., 1982.)

however. This is due in part to (a) significant “metastability” problems,
(b) scatter in the Monte Carlo data and (c) possible deviations from scaling.
It should also be noted that in Fig. 48 the scaling function seems much
more peaked than the corresponding scaling functions shown for the Ising
model in Section IX. To some extent this is misleading, however, due to
the discrete values of wavenumbers sampled in the simulation study. The
true scaling function is undoubtedly rounder at the top than the figure
suggests.
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An interesting feature of the compuer simulation studies is a pronounced
asymmetry in S..(k, t) as a function of the average quench magnetization.
Namely, at a fixed time the peak height S..(k, t) increases with increasing
magnetization (i.e. as one moves from left to right in the metamagnet
phase diagram corresponding to Fig. 46). There is no value of the mag-
netization about which fcc(k, t) is symmetric, in contrast to the symmetric
Ising model discussed in Section IX. This asymmetric behavior clearly
reflects the asymmetry of the tricritical coexistence curve (such as is shown
in Fig. 46), in contrast to the symmetric coexistence curve shown in Fig.
25. Eventually a value of the average magnetization (M = 0.7) is reached
for which this peak height begins to decrease (at fixed time) with increasing
M. Detailed studies of this effect show that it is a rather gradual transition
(Sahni et al., 1983b). This transition appeared to be rather sharp in pre-
liminary studies reported by Sahni et al. (1982). An open theoretical
question concerning the observed asymmetry is whether this behavior is
related to the constrained susceptibility ¥ (Fig. 47). A detailed answer to
this question will require a more accurate calculation of ¥ than the mean
field result (Fig. 47). It seems clear that such a calculation will yield a much
more rounded, but nevertheless asymmetric 7. A theory for the nonlinear
terms neglected in linear theory (Hohenberg and Nelson, 1979; San Miguel
et al., 1981) will also be necessary. The LBM-type calculation of Dee et
al. (1981) does predict an asymmetry qualitatively similar to the Monte
Carlo results, but it was based on a mean-field-type model.

C. *He-"He mixtures

In this section we discuss several recent light scattering experiments of
phase separation in *He—*He mixtures quenched below the tricritical point.
The *He—*He system has several interesting differences with the organic
binary mixtures discussed in Sections X and XI. Its ordered state, for
example, is superfluid. As a consequence it has a second sound mode not
present in normal binary mixtures. As well, its phase diagram and various
thermodynamic and transport properties are well known, as is the case for
certain binary fluids. Its thermodynamic properties are, however, mean-
field-like. Its coexistence curve is also much more asymmetric near the
tricritical point (Fig. 46) than is the case for an organic binary mixture
near its critical point, as already noted. So far, the most interesting dif-
ference between phase-separating *He-*He and normal binary fluids which
has been observed experimentally is due to gravity, as we mention later.

The first study of phase separation in the *He—*He liquid mixtures was
made by Hoffer et al. (1980). They observed the formation of a halo which
brightened and rapidly collapsed. This is qualitatively similar to the
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behavior observed in the IW and LW mixtures discussed in Section XI.
However, the time scale for the collapse was much shorter for *He—*He
than for these mixtures. It should also be remarked that, as noted earlier,
the observation of a collapsing ring does not necessarily imply that one is
seeing a spinodal decomposition process. A similar phenomenon can arise
from scattering from a distribution of nucleated droplets that subsequently
grow in size. Indeed, it seems likely that most if not all of the light scattering
results discussed in this section are due to such an effect (Alpem et al.,
1982b).

A subsequent study (Sinha and Hoffer, 1981) showed that the intensity
of scattered light satisfied a scaling of the form (8.5), with the characteristic
scaling length being k' (). However, it is apparent from their results that
the scaling function F(k/k,) could have a weak time dependence. In both
of these studies the peak position was fitted to a power law of the form
(5.34). The authors found that the exponent a exhibited a strong time
dependence, changing from a®alue of a' = 1/3 at early times to#*= 1 at
later times. This is similar to the observations of Chou and Goldburg and
Knobler and Wong (Section XI) and in agreement with Siggia’s predictions
for ordinary binary mixtures (Section V). Nevertheless, it should be noted
that the estimates of the exponent for >He—*He are not precise and depend
to some extent on the choice of the time origin (¢ = 0) (Hoffer et al., 1980).
It should also be noted that the scaling function obtained by Sinha and
Hoffer is very sharply peaked, in a fashion rather similar to the computer
simulation studies (Fig. 48). This extreme sharpness should be viewed with
some caution, however, as it seems rather unusual. It could possibly be an
artifact of experimental uncertainties in the light scattering data. Further
study of this point for both the metamagnet and *He—*He mixtures clearly
seems useful.

Other light scattering studies on *He—*He mixtures which are pressure
quenched into the miscibility gap have been carried out by Benda et al.
(1981, 1982). In their initial study the angular distribution of scattered light
was measured for a wide range of quenches inside the miscibility gap.
Halos were observed not only for quenches inside the spinodal region
estimated by Hohenberg and Nelson (Fig. 46), but also well outside this
region. They also noted an interesting asymmetry in the scattering pattern
which they subsequently investigated in much greater detail (Benda et al.,
1982), as we discuss below. In both of their studies the time scale of the
measurements, in units of =D& % (eqn (5.28)), corresponded to the
domain 7= 10° which is the region of late stage growth. (This estimate
is based on extrapolated values for D and & on the coexistence curve
obtained from Leiderer et al. (1974, 1975).) Correspondingly, the region
of wave vectors corresponds to k,/E < 107>, where the distance between \
“clusters” is much greater than the interfacial thickness. On the other hand, |
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Sinha and Hoffer (1981) estimate that their measurements are in the range
5 < 1< 10?, which are in a much earlier stage of the phase separation
process. None of these studies are in a time domain for which the
Hohenberg—Nelson theory (Section XII.A) would apply. In addition, none
of the experiments observe the “flickering” effect discussed in Section
XII.A.

We now summarize the work of Benda ez al. (1982) in which anisotropic
scattering is observed. Their earliest observations of the light scattering
data show an isotropic halo, with the intensity of scattered light satisfying
the scaling law (5.8). However, in the later stages the angular distribution
becomes anisotropic about the direction of the incident beam. This is
shown in Fig. 49, in which the structure factors S, and $, are displayed. |
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FiG. 49. Structure factors S, and S, determined from the scattered intensity in the
horizontal and the vertical scattering phase, respectively. This is for a time ¢t = 1.3s
after starting decomposition from 7 = 0.830K and p = 0.724 bar to 0.310 bar. The
quenched state is indicated in the insert (+). The error bars are smaller than the
symbol size. (From Benda et al., 1982.)

These structure factors are obtained from simultaneous scans in the vertical
and horizontal directions. As can be seen from this figure, the position of
the peak, kv, for S, is smaller than the corresponding ky, v for Sy. As the
process continues, k. becomes considerably smaller than kpn. As a
consequence of this anisotropy, there is a breakdown of the simple scaling
relation (5.8).

Benda et al. interpret this effect as due to the influence of gravity on the
later stages of phase separation. There has been no detailed theoretical
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treatment of the effect of gravity in this separation process. However,
Siggia (1979) did anticipate the possibility that such an effect could
eventually dominate at sufficiently late times. He estimated that gravity
should begin to dominate when the droplet size is approximately equal to
(o/gAp)¥?, where o is the surface tension, Ap the density difference
between the two phases and g the gravitational acceleration. This corre-
sponds to a droplet size of about 10 um for the quench shown in Fig. 49.
This yields a predicted crossover at a value of k,, which is consistent with
the experimental results. The effect of gravity also accounts for k., <
km,n. Namely, since large droplets will rise (or fall) faster than small ones,
collisions will occur which will lead to coalescence and hence growth in the
vertical direction. The effect in the horizontal direction will be neglible,
thus accounting for the difference between ky , and k. It is clear that
a detailed theoretical treatment of gravitational effects would be very
helpful. The *He~*He mixtures provide the first example in which such
effects seem to be observable.

We conclude by observing that earlier studies of nucleation in *He-*He
mixtures were carried out by Brubaker and Moldover (1974). There appear
to be discrepancies between this work and the more recent studies of Benda |
et al. (1982) which are at the moment unexplained. |

XIlll. Special Topics |

In this final section we give brief summaries of experimental and/or
theoretical work on the kinetics of first-order phase transitions for a variety
of topics not discussed so far in the text. In some cases, such as for
superfluids and superconductors, extensive experimental and theoretical
work exists on nucleation phenomena, whereas for several other systems
research is at a more preliminary level. In general, far less attention has
been given to spinodal decomposition than to nucleation phenomena. Qur
purpose in writing this section is to survey existing work in the field with
the aim of suggesting areas for further study.

A. Nonlinear relaxation and metastability‘

A completely satisfactory characterization of metastable states has not yet
been given. This remains as an important fundamental problem of statistical
mechanics. From a rigorous point of view attempts have been made to
describe metastable states in terms of constrained ensembles (Penrose and
Lebowitz, 1979). For the questions considered in this review, however, it
is more important to characterize the decay of the metastable state and to
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calculate its associated lifetime. Since metastability is essentially a dynam-
ical problem it is useful to give a dynamical description of metastable states.
One such characterization has been proposed in terms of a nonlinear
relaxation function by Binder and Miiller-Krumbhaar (1974).

The general concept of a nonlinear relaxation function and an associated
nonlinear relaxation time was introduced by Suzuki (1971) to describe the
nonlinear relaxation of a system to equilibrium after a finite change of
thermodynamic parameters, such as changes in temperature or applied
external fields. We are interested in the particular case in which a phase
transition is required for the system to equilibrate. The word “nonlinear”
refers to the fact that this is not a case which involves small fluctuations
around equilibrium, where linear response theory would be valid. In
equilfbrium there are two relevant statistical quantities which contain
information about “time structure”. These are the correlation function and
the linear response function, which are related by an appropriate fluctuation
dissipation relation. No such relation exists in the nonlinear case. The
importance of the nonlinear relaxation becomes particularly dramatic near
T., where very small deviations from equilibrium can have profound effects
on systems. In such situations an expansion around equilibrium necessarily
breaks down. The range of validity of linear response theory shrinks to
zero as the final state of the system approaches the critical point.

The nonlinear relaxation function is of particular importance for dynam-
ical processes in which the order parameter is not conserved (e.g. model
A). We have already given examples of such systems in Section VI. There
is also the hope that the understanding of these processes would yield some
insight about dynamical processes with conserved order parameter. We
should also mention that the experimental information in nonconserved
dynamics (Section VI) is not very abundant. No attempt has yet been made
to extract experimental information on the nonlinear relaxation time and
compare it with the theoretical predictions discussed below.

In general we consider the situation in which a system in equilibrium is
described by some Hamiltonian ; for ¢ < 0. At ¢ = 0 the system is abruptly
forced into a new condition governed by a new Hamiltonian #. We then
study the relaxation of some macroscopic property A = (a) to the equilib-
rium state corresponding to ¥. The nonlinear relaxation function is then
defined by

A — A(=) |
=—t 13.1

where in a “Heisenberg representation” the average defining A(¢) is taken
with respect to e #, In a “Schrodinger representation” the average is
taken with respect to the time-dependent probability distribution p(f), |
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where p(0) ~ ¢ ™ and p(e) ~ e 7. The relaxation time is defined by
Ta = J dipa(l). (13.2)
0

Other possible definitions have been given by Suzuki (1969, 1970), Schnei-
der and Stoll (1974) and Ikeda (1977).

If A stands for a particular Fourier mode of a field ¢(%, f), then (Binder,
1973)
(YD) — (yr())
(¥e(0)) — {yr())’

Of particular interest is the % = 0 mode which corresponds to a homo-
geneous equilibrium situation. When studying the relaxation of the order
parameter to a state ggove T, with no symmetry-breaking field applied we
have M(%) = 0, where M(t) = (yo(¢)). This corresponds to the isothermal
process in which a symmetry breaking field is switched off above T, and
also to the process in which the system is heated from below to above T,
at constant vanishing field. We then have

M(2)
™= f 4310y (13.4)

Pa(xX, 1) = (13.3)

The properties of the nonlinear relaxation time and nonlinear relaxation
function in the asymptotic critical region have been studied by scaling
arguments (Racz, 1975, 1976; Fisher and Racz, 1976; Kretschmer etal.,
1976; Sancho et al., 1980), series expansions (Suzuki, 1971; Ikeda, 1976a,
b; Suzuki and Ikeda, 1976; Racz and Collins, 1976; White, 1976; Csepes

and Racz, 1978), renormalization group (Kawasaki, 1976; Suzuki, 1976¢c;
Bausch and Janssen, 1976; Bausch etal., 1979; Yamada etal., 1977,

Eisenriegler and Schaub, 1980), Monte Carlo simulations (Binder, 1981a;
Ogita etal., 1969; Stoll etal., 1973; Binder and Stoll, 1973; Binder and
Miller-Krumbhaar, 1974; Racz and Collins, 1975; Kretschmer et al., 1976,
Bolton and Johnson, 1976) and cluster dynamics (Binder and Stoll, 1973;
Binder and Miiller-Krumbhaar, 1974; Binder er al., 1975; Kretschmer et al.,
1976).

As noted above, Binder and Miller-Krumbhaar (1974) have proposed
a constructive definition of a metastable state according to the behavior
of ¢(¢). Their point of view is that a metastable state is one which does not
evolve appreciably in time on a time scale large compared with the equi-
librium relaxation time. Accordingly, the metastable state is associated
with the existence of a flat part (plateau) of the nonlinear relaxation
function. By its definition, this characterization does not permit a clear-cut
distinction between metastable and unstable states. In this interpretation
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the nonlinear relaxation time is identified with the lifetime of the metastable
state. This suggests then the identification of the nonlinear relaxation time
with the completion time of Section X (Binder and Miller-Krumbhaar,
1974). Monte Carlo simulations on a d =2 Ising model with Glauber
dynamics (Binder and Miiller-Krumbhaar, 1974) substantiate the plateau
picture of the nonlinear relaxation after small field reversal for T < T, (Fig.
50). In fact, the various parts of ¢(t) can be interpreted in terms of the
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Fic. 50. Monte Carlo results for the nonlinear relaxation function for the two-
dimensional Glauber model. The different values of magnetic field at a temperature
J/ksT = 0.45 are indicated in the column. (From Binder and Miiller-Krumbhaar,
1974.)

processes seen in snap-shots of the Monte Carlo cluster evolution: A first
concave part corresponds to the relaxation to the metastable state, with
an increase in the number of small clusters. The flat part associated with
the metastable state corresponds to the formation of noninteracting clusters
of intermediate size which disintegrate. The linear decay of ¢(f) corresponds
to the coagulation reactions of intermediate clusters which have become
sufficiently stable. Finally, the last exponential decay is associated with the
final stage of the process in which the original background phase has been
reduced to small clusters in the emerging phase.

The plateau behavior of ¢(f) has been found in a mean field solution of
the Ginzburg-Landau model of an Ising ferromagnet with nonconserved
order parameter (eqn (3.17) without £). One considers a reversal of the
magnetic field at T< T, from H=0 to H' <0 and slightly larger (in
absolute value) than the spinodal value H* (Binder, 1973). For values of
|H'| for which |H'| <|H*|, ¢(t) does not decay to zero. The system is
caught in a mean field “metastable” state, which has an infinite lifetime.
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For values of | H'| much larger than | H*|, ¢(f) decays very rapidly to zero,
indicating the decay of the unstable state. Billotet and Binder (1979) have

. attempted to calculate ¢(¢) for this same model including fluctuations. The
decoupling of the equations for the moments is made following essentially
the Langer-Bar-on-Miller scheme (Section V). The numerical solution of
the equation yields results for ¢(r) which are qualitatively similar to those
of mean field. In particular, infinitely long-lived metastable states exist
although the value of H* is reduced with respect to the mean field value.
Billotet and Binder (1979) concluded from this result that the Langer—
Bar-on-Miller theory contains a spinodal curve and does not include a
description of the mechanism of nucleation and growth believed to be
essential in understanding the smooth transition between unstable and
metastable states. The comparison of the results of this calculation with
the Monte Carlo data mentioned above show that the theory overestimates
the lifetime of the metastable state and that it predicts a too rapid decay
of ¢(¢) from its plateau value. In fact, this decay time is predicted to be
essentially independent of H'. This is in disagreement with the identification
of this decay time with the nonlinear relaxation time and the lifetime of
the state. These deficiencies are less important for larger values of H’, that
is, going away from the metastable region. On the other hand, the initial
time behavior of ¢(f) indicating the decay to the metastable state is in good
agreement with the theory. This confirms the validity of the Langer-
Bar-on-Miller scheme for early times.

As a final remark we wish to point out that the nonlinear relaxation
function seems to be an important “first principles” tool to study some
properties of first-order phase transitions which have not yet been exten-
sively used.

B. Relaxation of fluctuations under various quench conditions

Most studies of nucleation and spinodal decomposition assume that the
quench from a disordered phase to a point below the coexistence curve is
instantaneous. This is clearly an idealization of the actual situation (except
in Monte Carlo studies) in which the actual quench rate is finite. Theoretical
studies of the effect of such finite quenches have so far not been carried
out. In this section we deal with a somewhat different class of quenches
in which the dynamical evolution of a system differs from that of usual
nucleation or spinodal decomposition experiments. We will consider in
particular the behavior of a system under three different quench conditions.
The first is a temperature or pressure quench in the stable, one-phase
region (Binder, 1977; Wong and Knobler, 1979). The second is a “double
quench”. The system is first quenched from above to below 7. and then
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subsequently ‘““‘quenched” back to a state above 7, (Wong and

1978; Ruiz, 1982). The third considers periodic varia(tions %f temlgz:);l:rre’
which brings the system alternatively above and below T, (Onuki, 1981
19822%, b, c). The difficulty of dealing with time-dependent que’nches’
mentioned at the beginning, arises, of course, in the case of this periodié
temperature variation. It is worth noting in this regard that finite quench
rates have been considered in other dynamical situations than those dis-
cussefi here. For example, Ahlers et al. (1981) have considered the effects
of bringing a system through an instability point at a finite rate in inter-
preting their experiments on the onset of ordered structures in
Rayleigh-Benard systems. Caroli et al. (1981) have also studied the decay
of metastable and unstable states in zero-dimensional models of systems
which are driven through a bifurcation point at a finite velocity.

We first consider a quench from one state in a one-phase region to a
second point in the same region. Any fluctuation of such a system will
decay to the homogeneous equilibrium state. It is obvious that a linear
theor‘y. such as that of Cook (Section V) should be valid for this quench
condition in the limit k — 0, t— c. By considering the eigenvalue spectrum
of the time evelution operator which appears in the master equation (9.6),

Binder (1977) has shown that in this limit the corresponding structure
factor is given by

S(k, 1) = Si(k) e T®OR 4 § (k) {1 — e 2P, (13.5)

In eqn §13.5) T and T’ denote the initial and final temperatures, respectively
while $7(k) and $r(k) denote the corresponding equilibrium structure
factors. The mutual diffusion constant at 7’ is D (k). This form is the
ag]zaropriate solution of Cook’s equation (Section V), where Dr(k) =
k™“w(k) and w(k) is defined by eqn (5.7). Scaling arguments can be used
to extend the result (13.5) to the critical region. A simple exponential
decay for $(k, ) is predicted by (13.5) if 7' > T. If T’ < T, however
S(k, t) is predicted to develop a maximum at k,(f), where ’

k() —— 0.

1> w

This behavior has been confirmed for the binary fluid IW by Wong and
Knobler (1979). They studied $(k, #) for the two qi]enches T= ‘ITf +70 mK
T'=T.4+10mK aAnd I'=T.+10mK, T'=T,+ 70 mK re-specfiw-elv. 'I'ht;
same behavior for S(k, 7) has also been observed in Monte Carlo simulations
for the Ising model in quenches from 7= o to T’ = 1.17, (Marro et al.,
1975). This one-phase quench is, of course, a rather simple d\*fu‘smic&i
problem. J

The second case is the double quench T— 7' — T, with 7" < T.< T.
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Such an experiment has been performed by Wong and Knobler (1978) in
a binary fluid. Although they did not give a detailed analysis of their
results, they found that the scattering ring which developed following the
first quench to the lower temperature 7' continued to collapse after the
second quench to the higher temperature T. The rate of collapse, however,
is smaller at the temperature T than at the lower temperature 7'. Sub-
sequent to this experiment, Ruiz (1982) has developed a theory for such
a double quench for fluids. As in the one-phase quench discussed above,
Ruiz’s analysis is based on linearizing the dynamical equations of motion.
He explicitly considers hydrodynamic effects by including a coupling of
the local velocity field to the local concentration. He finds that the structure
factor obeys a scaling behavior similar to that observed in ordinary spinodal
decomposition, as discussed in Section VIII. He obtains a value a = § for
the exponent (5.33) for k() which he argues corresponds to the crossover
between a = 1/3 and a = 1 discussed by Siggia (Section V).

The third case of spinodal decomposition due to a periodic temperature
variation has been considered by Onuki (1981, 1982a, b, c) in an interesting
series of papers. This temperature variation can be produced by a sound
wave or more generally by a periodic external force such as a pressure or
magnetic field. Onuki has analyzed the behavior of TDGL models for a
single component order parameter which is either conserved or noncon-
served (models A, B; Section III). He has concluded that in general
fluctuations show a strong periodic enhancement when the following two
conditions are fulfilled. First, the amplitude of the temperature oscillation
must be larger than | Tp — T¢|, where Ty is the mean temperature. Second,
the parameter y must be much greater than unity, where u is the ratio of
the decay rate of a mode of characteristic length & to the frequency of
oscillation of the temperature. A major difference between the conserved
and nonconserved cases is that in the former case the fluctuation enhance-
ment is cutoff at a wavenumber k. = u~¥2£;! (unless the mean temperature
is very close to the shifted critical temperature). In the latter case all
fluctuations with wavenumbers less than £} exhibit enhancement.

Onuki has evaluated the time dependence of the order parameter for
the nonconserved TDGL model by a mean field approximation. The critical
temperature is unchanged, so that for 7y > T, the system remains in the
disordered phase, while for T < T, the order parameter exhibits a forced
oscillation. An analysis of the linearized equation for the structure factor
in the disordered phase yields a periodic solution with an enhancement of
fluctuations under the two conditions stated above. When u> 1 (as for a
large periodic variation of temperature), the nonlinear coupling of the
fluctuations cannot be neglected. This case is treated by Onuki generalizing
ideas of Suzuki (1976a, b, 1977a, b, 1981) for a system with one degree
of freedom and of Kawasaki etal. (1978) for the nonconserved TDGL
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model. These authors argue that, in the decay of an unstable state, there
is first a Gaussian regime in which the nonlinear terms can be neglected.
There is also a nonlinear regime in which the noise (the internal fluctuations)
can be neglected. Under a periodic oscillation of temperature, the system
alternates between the Gaussian and non-Gaussian regimes. One has a
sequence of variances of the Gaussian distribution of fluctuations which
tends to a limit in which the system reaches a periodic state. (This is true
as long as the interval in which T — Ty is positive and is large enough for
the system to return to the Gaussian regime.) By such arguments Onuki
concludes that the nonlinear coupling of fluctuations produces a shift in
the critical temperature. This new critical temperature is defined as the
mean value of the temperature for which the system first exhibits an ordered
state (holding other parameters constant). Furthermore, for u> 1 the
transition is shown to be first order. Onuki also evaluates the structure
factor in the periodic, disordered state and the order parameter in the
periodic, ordered state.

A mean field treatment of the conserved TDGL model does not show
any special features for the order parameter. The critical point is unchanged
and below T, the order parameter attains its equilibrium value. Neverthe-
less, the linearized equation for the structure factor implies a similar
behavior for this quantity as in the nonconserved case, for a restricted
range of k. Thus there is also a periodic solution in this case, with an
enhancement of fluctuations.

Onuki (1982c) has subsequently presented a numerical study of periodic
spinodal decomposition in solid and fluid binary mixtures. His analysis is
based on the theories of Langer eral. (1975) and Kawasaki and Ohta
(1978a) for these systems, discussed in Section V. For fluid mixtures the
periodic variation in temperature can be achieved experimentally by a
periodic change in pressure, whereas in solids it can be realized by a
macroscopic change in temperature. He finds that for solid mixtures under
appropriate conditions the scattering intensity should display two peaks,
implying the existence of two types of clusters. The smaller ones are created
and destroyed within each period, but some of them survive to grow into
the larger ones after several periods. For fluids, he finds this double peak
only in certain time intervals, presumably due to the influence of hydro-
dynamic interactions. In both cases, the nature of the transition which
occurs as the average temperature is lowered with a fixed size of the
temperature vibration remains unknown, although it could be a first-order
transition. Finally, it is worth mentioning that by making the period of
temperature oscillation very small, one effectively reduces the time scale
of the decay of the order parameter. Therefore this method of temperature
oscillation provides a means for studying spinodal decomposition in systems |
with rapid time scales. |
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C. Superfluidity and superconductivity

The basic idea of nucleation as a thermally activated process which requires
a critical size fluctuation has been used to calculate the critical velocity of
a superfluid flow (Langer and Fisher, 1967; Langer and Reppy, 1970). The
underlying concept is that a stable superfluid flow is a nonequilibrium
phenomenon, for which many-body equilibrium theories that only consider
small fluctuations around equilibrium are incorrect. A nonzero superfiuid
flow characterized by a velocity v, is then regarded as a metastable state.
There exists a finite probability (per unit time) for homogeneous nucleation
to a more stable state with smaller velocity, caused by the appearance of
large, localized fluctuations. If v, is sufficiently small, such a probability
is too small to be observed experimentaily. The critical velocity has an
operational definition quite similar to the cloud point. It is the velocity for
which |dv/dr| is larger than a characteristic observable value. As in the
case of the cloud point, this turns out to be a sharply defined quantity. A
nucleation rate of the general form (4.26) can be used to fit the experimental
data reasonably well (Langer and Reppy, 1970). It is nevertheless important
to note that the main theoretical predictions, such as the logarithmic decay
of v,, are independent of the specific model one uses to calculate the
activation energy. The model proposed by Langer and Fisher (1967) iden-
tifies the “droplet” or localized fluctuation of the nucleation picture as a
vortex ring. The creation of a vortex ring is the mechanism for the dissi-
pation of energy that causes the decay of the superfluid fiow. This vortex
ring characterizes the saddle point of nucleation theory (Section IV) and
connects two superfluid states with a difference of 27 in the phase of the
complex order parameter. As for the binary fluid (Section IV), the acti-
vation energy or energy of formation of the vortex ring can be calculated
phenomenologically using hydrodynamic ideas. The numerical agreement
with experiment is rather poor, due to the rough estimates used in the
calculation of the activation energy and the prefactor of the nucleation
rate. The calculated critical velocity turns out to be an order of magnitude
larger than the experimental value (Langer and Reppy, 1970).

An analogous problem that has been studied from the same viewpoint
is the transition to resistive states in superconducting channels when a large
enough supercurrent occurs (Langer and Ambegaokar, 1967; McCumber
and Halperin, 1970). Here again the superconducting state is regarded as
a metastable state that decays to a state of lower supercurrent through the
appearance of a localized fluctuation. The system can be described by a
Ginzburg-Landau functional for the complex order parameter. In the case
of thin whiskers the problem becomes essentially one-dimensional. From
the mathematical point of view this one-dimensional problem is very
interesting, since the different ingredients of the nucleation rate (4.26) can
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be explicitly calculated (McCumber and Halperin, 1970). In particular this
is the only example for which an explicit evaluation of the different eigen-
values entering in the prefactor €, has been carried out. Similar to the
superfluid case, the saddle point is a configuration connecting two super-
conducting states with a difference of 27/L in wavenumber (L is the length
of the system channel). The first calculation by Langer and Ambegaokar
(1967) yielded large discrepancies with experimental results which were
attributed to the existence of inhomogeneities. A revised calculation
(McCumber and Halperin, 1970) of the prefactor of the nucleation rate
seems to reconcile theory and experiment. Recently a more powerful
approach to the mathematical problems considered by McCumber and
Halperin (1970) has been presented (Durn et al., 1981). In particular the
method allows one to obtain explicit results for arbitrary values of the
current.

D. Electron—hole condensation in semiconductors

Asis well known, it is possible to form electron-hole pairs in semiconductors
by optical excitation (Wolfe, 1982). At high temperatures these pairs
behave like a Bose gas of free excitons. At high density the gas ionizes
into a fermionic system (electron-hole plasma) and a metal-insulator
transition occurs. Below a critical temperature a first-order phase transition
occurs which is analogous to a gas-liquid transition. Two-phase coexistence
consists of a low density exciton gas together with a high density fermionic
“liquid” phase (an electron-hole plasma). This is a nonequilibrium state,
but its phase diagram looks very much like an ordinary gas-liquid system.
For example, Thomas et al. (1978) have determined the phase diagram for
Ge, which has a critical temperature 7. = 6.7 % 0.2 K and a critical density
ne = (0.6 = 0.1) x 107 cm™3. The phase diagram for Si has been determined
by Shah efal. (1977), with T.=27*1K and n.=1.1x10%cm™.
Reviews of this subject have been given by Hensel eral. (1977) and
by Rice (1977).

Nucleation phenomena in this nonequilibrium phase transition have been
studied by theorists (Silver, 1975a, b, 1977, 1978; Combescot and Com-
bescot, 1976; Staehli, 1976; Westervelt, 1976a, b; Koch and Haug, 1979;
Combescot, 1980) and experimentalists (Bagaev et al., 1976; Etienne et al.,
1976; Staehli, 1976; Dite et al., 1977; Shah etal., 1977b; Hammond and
Silver, 1979; Voisin et al., 1979). The classical Becker-Doring theory (Sec-
tion II) has been adapted to this nonequilibrium situation by Silver (1975a,
b, 1977) and Westervelt (1976a, b). The main difference between the
theory discussed in Section II and that for the electron-hole problem is

“that it is necessary to supplement the rate equations which contain the
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usual evaporation—condensation mechanism (or excitons in a droplet). The
additional terms account for the decay of excitons due to their finite lifetime
and for the creation of excitons by optical pumping. The finite lifetime of
the excitons provides a mechanism for droplets to lose particles at a rate
which is proportional to the droplet volume. (This mechanism is of course
absent in classical nucleation theory.) As a consequence, droplets cannot
grow to form a single macroscopic phase. In the nonequilibrium, steady
state situation there exists a characteristic size for which the droplet is
stable. For this size, the evaporation—condensation and finite lifetime effects
compensate each other. Droplets which are larger or smaller than the
characteristic size will shrink or grow, respectively. The nucleation rate is
the measure of the flow of droplets across the critical size saddle point to
the stable state, which is a droplet of characteristic size. An interesting
effect is that the characteristic size grows while the critical size decreases
as a function of supersaturation. Therefore, at a given temperature there
exists a minimum supersaturation at which both sizes are equal. At lower
supersaturations no stable droplet size is reached. The finite lifetime effects
become more important at low temperatures because the evaporation and
condensation rates decrease strongly with temperature, whereas the recom-
bination rate is practically constant. These facts imply that the minimum
supersaturation becomes very small at low temperatures. For instance, the
theory predicts a minimum supersaturation for Ge of order unity for
T=1.5K (Silver, 1978). Below this temperature significant deviations
from an “equilibrium” liquid-gas behaviour must occur. Sizeable stationary
droplet solutions are excluded by these theoretical considerations, so that
metastability is ruled out. The main predictions of this finite lifetime
nucleation theory seem to be in agreement with experimental observations.
These finite lifetime effects are more important in Si than in Ge (Hammond
and Silver, 1979), since the lifetime is two orders of magnitude smaller in
this case.

Silver (1978) has given a field theoretic generalization of the above
Becker-Doring-type theory. This theory is based on the ideas discussed
in Section I'V. His starting point is a hydrodynamic model which essentially
consists of the Langer-Turski (1973) equations for the liquid-gas transition,
supplemented by a damping term which simulates the scattering from
phonons. There are also additional terms in the continuity equation which
model the creation of excitons and the electron-hole recombination. Silver
discusses the droplet solution of these equations, but does not give a
complete calculation of the nucleation rate. The predictions of his theory
are in general similar to the simpler finite lifetime, Becker-Déring-type
theory. However, his formulation might allow one to study the case of
large supersaturations, for which nucleation theory is not applicable. His
theory also predicts properties of the stable droplet which differ substan-

3. Dynamics of first-order transitions ' 443

tially from the capillarity approximation. In particular, these droplets are
characterized by both a velocity and a concentration profile.

Finally, we note an interesting microscopic calculation by Kirczenow
(1982) who analyses the surface and interface structure of the binary
electron-hole liquid in (111) stressed Ge at T = 0. In this case two different
electron species (“hot” and “cold”) exist. Phase separation between two
different phases (I and II) is predicted to occur without any nucleation
process taking place, even though the transition is of first order (as long
as the electron-hole liquid has a free surface). Phase I consists of cold
electrons and holes, while phase II consists of hot electrons, cold electrons
and holes.

E. Coherent metal-hydrogen systems

In certain metal-hydrogen alloys, such as PdH, and NbH, a gas-liquid-
like phase transition occurs at moderate hydrogen concentrations. In the
temperature—density domain which normally corresponds to two-phase
coexistence, the density of hydrogen is inhomogeneous. There are in fact
two possible phase diagrams which can be discussed and in principle
experimentally measured. The first is the true equilibrium state, which is
an incoherent state in which a hydrogen-rich “liquid” phase coexists with
a hydrogen-poor “gas” phase. Since incoherency implies a mismatch of
lattice parameters between the two phases, the interface between the
phases by necessity contains localized dislocations. The second, metastable
state is a coherent state which, in a certain region of the phase diagram,
consists of an inhomogeneous distribution of hydrogen which varies on a
macroscopic scale. It is the coherent state with which we will be concerned,
since it is experimentally realizable and should exhibit unusual spinodal
decomposition. Its unusual characteristics are due in part to the presence
of coherency stresses. These prevent rapid density variations of hydrogen
and thereby preclude the formation of sharp interfaces.

The theory of the coherent and incoherent phase transitions of hydrogen
in alloys has been developed by Wagner and Horner (1974), Horner and
Wagner (1974) and Bausch et al. (1975). This theory is based on the idea
due to Alefeld (1969) that the dominant attractive force between the
protons is a long-ranged, elastic interaction. This interaction arises from
a deformation of the host lattice by an interstitial proton. This deformation
produces a long-range strain field which acts on the other protons. The
above theory predicts that the phase transitions of coherent metal-hydrogen
systems are of a mean field or Landau type. This prediction seems to
be in good agreement with experiment (Buck and Alefeld, 1972; de
Ribaupierre and Manchester, 1974a, b, 1975; Manchester, 1976; Zabel
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and Peisl, 1979, 1980). A comprehensive review of the experimental and
theoretical situation in metal-hydrogen alloys has been given by Wagner
(1978). It should be noted that these phase transitions exhibit a strong
sensitivity on the sample geometry. This was predicted by Wagner and
Horner (1974) and confirmed experimentally by Zabel and Peisl (1979,
1980).

A theory of spinodal decomposition in coherent metal-hydrogen systems
has been developed by Janssen (1976). This is a deterministic theory in
which noise (internal fluctuations) is neglected and is based on equations
of motion similar to those of Cahn (Section V). The physical situation
described by these equations is, however, quite different from normal
systems such as binary alloys or binary fluids. The reason is that in the
coherent state the important density fluctuations only consists of a few
unstable macroscopic (“surface”) modes. Janssen was thus able to give an
explicit solution for the time dependence of the dominant unstable mode,
which included nonlinear coupling terms ignored in the Cahn theory.
Kappus and Horner (1977) extended Janssen’s theory to the case of
extremely deep quenches where all the surface modes (those which depend
upon the surface geometry) are unstable. They treated the noise term in
an approximate way and were able to give an explanation of the quasi-
periodic precipitation which has been observed on the surface of rapidly
quenched NbH, systems (Pick, 1978). Haus and King (1982) have recently
considered coherent spinodal decomposition for an elastically isotropic,
spherical sample which undergoes a shallow quench into the unstable
region. Their theory treats both the noise and nonlinear terms using ideas
originally developed for systems with a discrete set of unstable modes
(Arecchi and Degiorgio, 1971; Suzuki, 1976a, b; Haake, 1978). Specific
predictions have been made for NbH, which can in principle be experi-
mentally tested. Their theory seems to be the most complete study to date
of coherent spinodal decomposition.

Finally we note that Burkhardt and Woger (1975) have proposed using
X-ray scattering to measure coherent spinodal decomposition in metal-
hydrogen alloys. The idea is to determine the time dependence of the order
parameter (the macroscopically varying hydrogen density) by measuring
the shifts in the Bragg maxima. It should also be noted that all the theories
of coherent spinodal decomposition discussed here assume that the system
remains coherent during such a process. However, Wagner (1978) has
pointed out that this is in general incorrect. Instead, in the later stages one
would expect a partially incoherent phase separation to occur, due to the
creation and motion of dislocations. Nevertheless, he points out that if one
is sufficiently close to 7, one could expect a coherent state to be maintained
for several hours. A recent review of experimental studies of metal-hydro-
gen systems has been given by Manchester (1982).
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F. Physisorption and chemisorption systems

There are a number of two-dimensional physisorption (He, Ar and Kr on
graphite) and chemisorption systems (O/W (110), H/W (100), N/W (100),
O/Pd (110)) (Sinha, 1980), which undergo both an order-disorder phase
transition and a phase separation process simultaneously below a certain
“multi-critical” temperature. In the case of physiadsorbed systems the
adatoms (He, Kr, Ar) sit at the bottom of the potential wells of the graphite
atoms and hence are weakly attached to the substrate. This is in contrast
to the chemisorption systems where an adatom (O, N) is chemically bonded
to the host surface atoms (W, Pd, Ag). At high temperatures, adatoms are
randomly distributed on the host surface and the system is in a disordered
or “fluid” state. As the temperature is suddenly quenched below a certain
“critical” temperature (which depends upon the coverage), islands of a
definite symmetry develop and grow in time. The symmetry of the ordered
islands depends upon the nature of the adatom-adatom interactions as well
as the symmetry of the underlying substrate. The development of the
ordered domains can in principle be studied in low energy electron dif-
fraction (LEED) or X-ray scattering experiments (Lagally et al., 1978).
Most of the LEED investigations have been directed toward studying the
equilibrium properties of these systems. For example, the location of the
Laue spots in the diffraction pattern provides information about the sym-
metry of the ordered regions. Measuring the intensity and width of the
Laue spots (Buchholz and Lagally, 1975) determines the total amount of
a given order in the system and provides useful information about the
phase diagrams of these systems. Monte Carlo studies (Williams et al.,
1978) of the model systems have been carried out in conjunction with
LEED experiments to estimate the adatom-adatom interactions. Very
recently, using Monte Carlo techniques, Sahni and Gunton (1981) have
carried out a dynamical study of a simple model of O/W (110). They
monitored the growth of islands of p(2 X 1) and p(1 X 2) order after the
system is quenched from a high temperature “fluid” phase to a temperature
below the “multi-critical” temperature. The ordering and phase separation
is indicated by the development of the peaks in the order parameter and
atomic coverage structure factors, respectively. This system evolves very
slowly, so that equilibrium is never attained in this study. This is presumably
due to the presence of antiphase boundaries between p(2 X 1) and p(1 % 2)
domains. Recently, Safran (1981) has argued on analytical grounds that
such a system (O/W (110)) with four degenerate ground states will stay
metastable forever in two dimensions. However, his argument is limited
to very low temperatures and a coverage of 1/2. An extension of his ideas
to high temperatures and different coverages is needed for understanding
the slow growth seen in computer simulations. Lagally et al. (1978) have
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also noticed the slow evolution of the O/W (110) system in experimental
studies. At present it is not clear whether this is due predominantly to
surface heterogeneties (e.g. terraces), the smallness of the diffusion con-
stant or antiphase boundaries as seen in Monte Carlo simulations by Sahni
and Gunton (1981).

G. Intercalation compounds

One of the most interesting but at present poorly understood phenomenon
in intercalation compounds is the dynamical evolution of the pure stage
ordering. This ordering is a periodic sequence of n host layers and one
intercalant layer. General reviews of intercalation have been given by
Fischer and Thompson (1977, 1978). Although staging has also been
observed in a2 number of transition metal dichalcogenides, the best known
systems are graphite intercalation compounds (GICs) where staging has
been reported as high as n ~ 10. Graphite is a layered compound and
consists of parallel planes of graphite atoms stacked up along the ¢ axis.
The intercalant atoms (Br,, C, K, Rb) enter the GICs from the periphery
of the interplanar regions. At equilibrium, one observes an ordering along
the c-axis as well as an in-plane superlattice arrangement of intercalant
atoms. The most striking feature of the c-axis ordering is the staging which
is independent of the wide variety of in-plane ordering. The in-plane
ordering includes both solid (commensurate and/or incommensurate with
the graphite host) and liquid phases.

This universal feature of the staging phenomenon (independent of the
in-plane ordering) makes it possible to understand the essential physics of
staging by assuming a simple model without any detailed knowledge of the
in-plane interactions. Such an attempt has recently been made by Safran
(1980), who obtained the phase diagram of intercalation compounds in a
mean field approximation by assuming an average attractive in-plane inter-
action and repulsive interplanar interaction between intercalants. There
are regions in the phase diagram where stages n and (n + 1) coexist in
equilibrium, e.g. at high coverages stages 1 and 2 coexist below a tricritical
point. Safran (1980) has also studied the dynamical evolution of the
quenched system from a high temperature “fluid” phase to a temperature
T < T, where stage ordering and phase separation occurs simultaneously.
This work involved an application of Tomita’s approximation (Tomita,
1978) to spinodal decomposition (Section V.B). Safran numerically evalu-
ated both the in-plane (Sy(k, r)) and interplane (S, (k, f)) structure factors
which exhibit growing peaks. Within the plane, the intercalant atoms form
islands which grow in time and their interplanar positions (or staging)
changes due to c-axis repulsive interactions. Safran’s highly simplified
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dynamical model does not take into account explicitly the electrostatic or
the elastic interactions which play an important role in the staging phenom-
enon. No experiments have been done to date on the dynamics of staging‘
and in-plane ordering.

H. Nucleation and spinodal decomposition in polymer blends

An interesting area with potentially important applications of spinodal
decomposition is that of polymer blends. A few compatible binary polymer
melts of chemically different polymers A and B have been found. Such
mixtures are entirely miscible in the one-phase region but undergo phase
separation beyond a critical point. A review of the thermodynamic proper-
ties of such systems in terms of a Flory-Huggins equation of state has been
given by de Gennes (1979). An earlier discussion has been given by
McMaster (1973). The metallurgy of such blends has also been discussed
(Krause, 1972; Klempner and Frisch, 1977).

A few experimental studies of nucleation and spinodal decomposition
phenomena in these blends have already been performed. McMaster (1975)
has investigated the binary styrene—acrylonitrile copolymer—poly(methyl
methacrylate) system (SAN/PMMA) by TEM methods. He observed the
formation of a dispersed two-phase structure for the concentrations 75%
SAN:25% PMMA and temperature T = 265°C. Ostwald ripening was seen
in which the time dependence of the domain growth was consistent with
the Lifshitz—Slyozov theory (Section VI). He also observed the formation
of a highly interconnected, two-phase structure characteristic of spinodal
decomposition for quenches at 25% SAN:75% PMMA, T = 180°C and
T = 210°C respectively. This interconnected structure coarsened much

-more rapidly than the dispersed structure. The size of phase-separated

domains in the interconnected morphology grew initially in a linear fashion,
quite similar to that found in binary fluids (i.e. to (5.32)). During the later
stages the growth was shown to cross over to an exponential behavior.
McMaster attributed the coarsening of this interconnected structure to a
viscous flow mechanism which was driven by interfacial tension. He pre-
sented a simplified analysis of this complex flow based on an earlier theory
by Tomotika (1935). (Tomotika considered the break-up of an infinite
cylindrical thread of one viscous Newtonian fluid which is immersed in a
second viscous Newtonian fluid.) Further theoretical study of this inter-
esting coarsening problem is obviously warranted.

Nishi etal. (1975) also studied nucleation and spinodal decomposition
in polystyrene—poly(vinyl methyl ether) mixtures, using light transmission,
optical microscope and pulsed NMR methods. They observed both the
dispersed, two-phase structure and the highly interconnected structure seen
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by McMaster. They interpreted these two morphological structures as
produced by nucleation and spinodal decomposition, respectively. Large
differences in light transmission were found for these two different struc-
tures. They also found qualitative differences in the coarsening rates of
these two structures, consistent with McMaster’s observations. By using
Cahn’s linear theory (Section V) to analyze their spinodal decomposition
data, they were able to obtain estimates of the thermodynamic and dynam-
ical parameters for this polymer-polymer system. The polystryrene—
poly(vinyl methyl ether) system has also been studied by several other
groups®*Pe most recent work is a light scattering study by Snyder et al.
(1983) who have analyzed their early time results in terms of a Cahn—
Hilliard-like expression. Their paper also gives detailed references to other
work on this system. The problem of phase separation in polymer blends
in thin films has also been studied by Reich and Cohen (1981) and other
authors (additional references are given in Reich and Cohen, 1981).

Another experimental study of spinodal decomposition has been carried
out by Gilmer etal. (1982). They studied de-mixing in the system atactic
polystyrene-atactic poly(ortho-chlorostyrene) (aPS/aPOCS) by light scat-
tering techniques. Their data for the wavenumber k(f) which locates the
maximum in the scattering intensity was analyzed using a power law
approximation ((5.34) with By =0). They found that the exponent a’
varied with temperature, molecular weights and composition of the sample,
with the major change being due to temperature. Their values for a’ are
in the range a’ = 0.8-1.6, which is similar to the result of McMaster in the
initial stages of coarsening. (His observation corresponds to a’ = 1.) Gilmer
et al. interpret their results for aPS/aPOCS as indicating that viscous flow is
the dominant mechanism for domain growth in their study. They do not see
the exponential growth observed by McMaster in the later stages of coarse-
ning, possibly because their study does notinclude the late time region.

More recently, Pincus (1981) has given a theoretical analysis of the initial
stages of spinodal decomposition in polymer blends. He considered a
rapidly quenched mixture of two polymers of polymerization No and Np.
For simplicity he discussed the symmetric case Ny = Np = N, for long
chains N> 1. His dynamical model assumes that the chain mobility is
controlled by reptation (de Gennes, 1971). Reptation is a diffusive motion
of a polymer chain in a randomly shaped “tube” formed by a background
of obstacles. The original conditions under which reptation was considered
valid required that the background be in a fixed (frozen-in) configuration.
As such, it was considered unlikely that reptation was a relevant mechanism
for polymer melts, since the obstacles themselves are mobile polymer
chains. However, subsequent work (Edwards and Grant, 1973; de Gennes,
1976, 1980; Doi and Edwards, 1978a, b, c; Klein, 1978) suggested that
reptation is relevant in all dense polymer systems. If reptation is the
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dominant dynamical effect in polymer blends, then the very early stage of
spinodal decomposition should be qualitatively different from that of binary
alloys. This results from the fact that the mobility which occurs in the
equations of motion analogous to (5.1) and (5.2) is strongly k-dependent.
(Another difference between polymer blends and binary alloys is that the
Flory-Huggins free energy is used, rather than a Ginzburg-Landau free
energy.) As a consequence, Pincus finds from the linear equation of motion
(analogous to Cahn’s theory, Section V) that the most unstable mode
(immediately after the quench) is molecular weight dependent. The cor-
responding growth rate is proportional to the melt reptation diffusion
constant. These predictions seem to be consistent with the experimental
results of Nishi er al. (1975) discussed above. However, it is not obvious
that a linear theory is applicable in the domain of time which is experi-
mentally studied. In addition, recent neutron spin—echo studies of entangled
polymer chains in a melt (Richter et al., 1981) and computer simulation
studies of a model of such a melt (Richter whg/., 1981; Baumgértner and
Binder, 1981) are in general inconsistent with the reptation model. (A
recent Monte Carlo study by Deutsch (1982) yields results which seem
consistent with the reptation model, however. Kremer (1983) disagrees
with Deutsch’s conclusion.) Thus for both reasons further experimental and
theoretical studies of spinodal decomposition in polymer blends would
seem necessary. Two additional points concerning the theory of Pincus
should be made. The first is that his paper corrects an earlier theory (de
Gennes, 1980) of spinodal decomposition for the same model. The second
is that Pincus concludes that the late stage growth behavior of polymer
blends should satisfy a Lifshitz—Slyozov (Section VI) growth law. Namely,
the average droplet volume should increase linearly with time. This pre-
diction is consistent with the experimental results of McMaster (1975).
Finally, it is worth repeating an observation by de Gennes (1980) that
spinodal decomposition and coarsening in polymer blends could lead to
new structures which have an excellent linkage between components. This
would be of considerable -technological importance.

It should also be noted that nucleation and spinodal decomposition
phenomena have been studied in polymer—solvent systems (van Aarsten,
1970; Smolders et al., 1971; van Emmerik and Smolders, 1972; van Emmerik
etal., 1973). A discussion of the thermodynamic properties of such systems
has been given by de Gennes (1979).

l. Essential singularity in percolation problems

It is well known that the cluster generating function f,(H) in percolation
problems plays a role similar to the free energy of a thermodynamic phase
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transition as a function of the magnetic field (Stauffer, 1979; Essam, 1980).
For the percolation problem H is an “external field’ and p is the probability
for a site or a bond to be occupied. The percolation transition is charac-
terized by the existence of an infinite cluster for p > p.. (No infinite cluster
exists for p <p..) Kunz and Souillard (1978) have given rigorous proofs
of anumber of properties concerning the analyticity of the cluster generating
function as a function of H, for the interacting and noninteracting site and
bond percolation problems. An important result is the proof of the existence
of an essential singularity of f,(H) for H =0 in the percolation regime,
that is p > p.. This rigorous result is most interesting because of the analogy
with the conjecture of an essential singularity at the coexistence curve of
a thermodynamic first-order phase transition discussed in Section IV. The
proof shows that for p = p. the clusters have an effective volume and that
there exist contours whose volume grows faster than the surface area.
These facts are reminiscent of the droplet picture used by Langer (Section
IV) to calculate the imaginary part of the free energy for a metastable
state which characterizes the essential singularity of Ising-like systems. In
fact Harris and Lubensky (1981) and Lubensky and McKane (1981) have
shown that the essential singularity of the cluster generating function can
be understood from a consideration of instantons«(droplets) in a metastable
state, in a discussion which precisely follows Langer’s calculation of the
imaginary part of the free energy. They have also used the general Langer
droplet picture to calculate the p-dependence of the cluster size distribution
function (the Laplace transform of the cluster generating function) near
the percolation threshold. The calculation is based on the fact (Fortuin
and Kasteleyn, 1972; Lubensky, 1979) that f,(H) can be obtained as the
limit of the free energy of a g-state ferromagnetic Potts model in the limit
g— 1, where H is the magnetic field. In the mean field treatment of, this
model there exist two spatially uniform local equilibrium states: the first
is singly degenerate and the second is (¢ — 1)-fold degenerate. For H > 0
the first state is stable, but becomes metastable for small H < 0 and droplets
of the second state will appear. The contribution of these droplets to the
free energy of the system gives rise to the essential singularity. The acti-
vation energy of the droplets is calculated as outlined in Section IV for the
thermodynamic singularity. This activation energy contains a bulk term
due to the free energy difference of the two spatially uniform local equi-
librium states and a surface term associated with the droplet configuration
connecting the two spatially uniform states. The prefactor €2, analogous
to (4.29) is calculated in an analogous way to that in Section IV, by
considering the effects of small fluctuations. The mean field result is valid
for d > 6 (the upper critical dimension is 6). The extension to the critical
behavior for d < 6 is worked out integrating renormalization group recur-
sion relations in the same way that Houghton and Lubensky (1981) extended
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Langer’s results to the critical region (Section 1V). After performing a
Laplace transform of the result for f,(H), the final result for the cluster
size distribution C(n) is

C(n) = n~% exp(—Al(p —pon®]).,  p>po, (13.6)
where {=1-—1/d and

(2d)[1 +4d — d?], d=2,4,6,
g =< -1/9, d=3, (13.7)
—449/450, d=5.

The different values of & arise from additional logarithmic divergences in
the calculation of fluctuation of the critical droplet for different values of
d. This is also analogous to the different exponent that appears for d = 3
in the Ising model (Section IV).

J. Geological systems

A considerable amount of research has been carried out on phase transitions
in complicated, geological silicate systems. A short review of the evidence
for spinodal decomposition in systems such as pyroxenes and feldspars has
been given by Jantzen and Herman (1978). Experimental studies of spinodal
decomposition in such silicates have involved TEM investigations, which
explore the microstructures of these minerals (McConnell, 1971; McLaren,
1974).

Agother phenomenon of self-organization occurs in rocks, which are
polycrystalline aggregates of a variety of minerals. There is considerable
geological evidence to suggest that, within a certain range of temperatures
and pressures, such a rock can spontaneously reorganize into bands of
mineral concentration. This is known as metamorphic layering. One
example is that of a random quartz—feldspar—mica aggregate which spon-
taneously reorganizes into bands which are rich in quartz plus feldspar or
mica. Dissolution and precipitation seem to be the basic mechanisms for
such a change, rather than a migration of crystals. A theory of this self-
organization has been proposed by Ortoleva et al. (1982) and Strickholm
et al. (1983). This theory is based on equations for crystal growth and
dissolution and has been rather successful in predicting many aspects of
this metamorphic layering. Other spontaneous pattern formations are
known to exist in minerals, such as are discussed by Haase et al. (1980)
and Berner (1980).
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K. Pattern formation in chemical reactions

A number of patterns have been observed in chemical reactions whose
formation can be explained using concepts which we have discussed in this
review. For example, in the classic Liesegang-type experiment (Feinn et
al., 1978) coprecipitates such as Pb(NO;), and KI produce a Pbl, precip-
itate. This can result in the formation of regular, macroscopic bands for
certain concentrations of the coprecipitates. This phenomenon has been
attributed to a periodic sequence of supersaturation, nucleation and deple-
tion. More recent experiments show that even a uniform system can evolve
into a mottled pattern of precipitate, following an aging process (Feinn
et al., 1978). Both the Liesegang banding and this uniform precipitate
instability have been explained recently in terms of a Lifshitz-Slyozov-type
theory (Feinn et al., 1978; Lovett et al., 1978; Feeney et al., 1983). Namely,
“Ostwald ripening” occurs in which large crystals grow at the expense of
nearby small crystals. Regions in which the average particle size is larger
than for the surrounding regions experience particle growth via accretion
of material which is dissolved from nearby crystals.

L. Gels'

A gel is a macroscopic, cross-linked polymer network which is generally
immersed in a solvent. Gels can be roughly categorized as either weak
(where the bond energy is comparable to ks T) or strong (where the bond
energy is much larger than ks T'). Both classes have been extensively studied
and shown to exhibit interesting phase transitions. One transition is the
sol-gel transition, in which a macroscopic polymer network is formed.
Other transitions include phase separation, gel collapse and higher order
critical points.

For example, Tanaka et al. (1979) have studied critical phenomena and
phase separation in weak gels consisting of gelatin polymers in a
methanol-water solvent. The qualitative features of the phase diagram
have been explained by mean field theory (Tanaka, 1978), as well as by
means of percolation models (Coniglio et al., 1982). Tanaka et al. (1979)
also investigated the temperature dependence of the transmitted and scat-
tered light intensities for this system. As the temperature is lowered the
system exhibits what appears to be a sharp transition from a transparent
to an opaque state. This was interpreted as locating a spinodal point (where
in a mean field theory the concentration fluctuations of the gelatin molecules
diverge), but such an interpretation should clearly be viewed with con-
siderable reservation. It seems clear, however, that a detailed study of
nucleation and decomposition phenomena in such systems would be useful.
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Another type of phase transition has been observed in polyacrylamide
gels immersed in acetone-water mixtures. In this case the polymer network
in the gel collapses if one either lowers the temperature or increases the
acetone concentration (Tanaka, 1978; Tanaka et al., 1980). This is a gel-
gel transition in which the two gel phases are distinguished by different gel
volumes. This volume discontinuity can be quite large, as gel collapses
have been observed in which the volume decreases by a factor of 350.
Tanaka et al. (1979) have obtained qualitative phase diagrams from a mean
field theory. They have also shown that the ionization of the polymer
network plays a key role in such phase transitions (Tanaka et al., 1980).
A study of dynamical phenomena in such a phase transition, if experi-
mentally feasible, would also merit consideration.

M. Optical instabilities!

Two examples of the decay of an unstable state have been extensively
studied in quantum optics. The first of these involves the build-up of laser
radiation when a laser is switched on. This phenomenon can be described
in terms of a Fokker—Planck equation for the probability function of the
complex, coherent state amplitude (Risken, 1965; Haken, 1970). This
model has been treated by many authors, including Gordon and Aslaksen
(1970), Arecchi and Degiorgio (1971), Suzuki (1976a, b) and Haake (1978).
The existing theory, which takes into account the nonlinearity of the
dynamics, is in good agreement with experiment. This problem is perhaps
the best understood of the many dynamical instabilities discussed in this
article, primarily because only a few modes become unstable, in contrast
to the field theoretic models discussed in Section III.

A second example is the problem of superfluorescence. A macroscopic
number of atoms are initially brought to identical excited states and then
allowed to radiate spontaneously. Under suitable conditions the atoms will
radiate cooperatively, producing short, intense pulses. One can view the
initial atomic state of complete inversion as a state of unstable equilibrium
(Haake, 1978). The decay of this state is due to the presence of microscopic,
random fluctuations of the initial atomic dipole moments. A detailed
dynamical study of such superfluorescent pulses has been given by Haake
et al. (1979, 1980, 1981). In particular, the delay time statistics of super-
fluorescent pulses has been analyzed in terms of a passage time at which
the field intensity reaches a specified value. It turns out that this passage
time can be determined quite accurately from the early stage linear
dynamics of the radiating system (Haake et al., 1981). Thus for this problem
one can obtain most of the interesting observed results without treating
the nonlinear terms in the equations of motion.
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N. Molecular dynamics

Molecular dynamics provides a very useful technique for studying various
aspects of metastability and instability. In this method one solves numeri-
cally Newton’s equations of motion for a given number of particles, thereby
obtaining a detailed microscopic description of the dynamical evolution of
the system. This is a well known procedure which has been discussed by
Rahman (1964), Verlet (1967), Kushick and Berne (1973) and others. A
review of the use of molecular dynamics in studying metastability and
instability in fluids has been given by Abraham (1979). Here we summarize
some relatively recent developments which seem particularly interesting
for the subject of this article. First, the original molecular dynamics study
of spinodal decomposition in a Lennard-Jones fluid mentioned in Section
V (Mruzik et al., 1978; Abraham, 1979) has been extended in a detailed
investigation of phase separation in a two-dimensional, one-component
fluid (Abraham et al., 1982; Desai er al., 1983). These studies of a
Lennard-Jones fluid extend out to times of the order of several hundred
picoseconds, during which the structure function develops in a way similar
to that shown in Fig. 41. A corresponding experimental study of real fluids
would be very difficult to achieve in this time interval. (Indeed, such
numerical and laboratory studies are rather complimentary with respect
to the time scales which are probed.) The results of the two-dimensional
study include (Koch et al., 1983) a detailed observation of the density
morphology and the radial distribution function. The “late time”’ behavior
of the mean cluster size is found to be ¢ and ¢* for constant temperature
and constant energy quenches, respectively. Koch ef al. show that these
cluster growth results can be explained by a Lifshitz—Slyozov-type theory.
An observed scaling of the structure factor (the Fourier transform of the
radial distribution function) is explained by a simple model calculation.
This work yields interesting new results which still require greater theor-
etical understanding. In particular it is clear that one needs a better theory
of nonlinear phenomena than presently exists.

A second area in which molecular dynamics seems to provide beautiful
results is that of nucleation and crystal growth in supercooled liquids.
Although this review has not dealt with this topic, this subject is of
fundamental importance in nucleation theory. Recent molecular dynamics
studies (Mandell et al., 1976; Hsu and Rahman 1979a, b) have shown that
the final ordered structure which a supercooled liquid achieves after homo-
geneous nucleation is determined by the interaction potential between the
atoms. For example, the simulation studies convincingly show that super-
cooled liquid argon forms a close-packed structure, while supercooled
liquid rubidium forms a body-centred cubic structure. This of course agrees
with experimental results, but raises the interesting theoretical problem
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of explaining how relatively small changes in pairwise atomic interaction
energies can lead to the nucleation of very different ordered structures.
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Addendum to Chapter 1

Note Added in Proof

The critical behaviour of surfaces continues to be a very active area of
current research. In the following we briefly describe the most significant
recent results.

A. Critical behaviour at an edge

Cardy (1983) generalized the discussion of systems with free surfaces to
the case where the system is bounded by several planar surfaces which met
at an edge. Then for volume V — « the free energy F is written as

F=Vfy+Sfi+ Lfe(a)+..., (A.1)

where S is the total surface area and L the total length of the edges. The
last term in eqn (A.1) involves the edge free energy fe (&), which depends
on the angle « between the two planes defining the edge. Cardy (1983)
studies f.(a) both within mean-field theory and by field-theoretic renor-
malization group methods analogous to those of Section VL. A. Introducing
a local field H, acting at the edge only, a scaling behaviour

fe(@) = |14 fe(le] 74 H, |7 Hy, | T|™Ho) (A2)

is established which generalizes eqn (3.16) 2 — & = (d — 1)y (which
follows from eqn (3.23a) and the hyperscaling relation). From eqn (A.2)
the exponents governing all possible magnetizations and susceptibilities
may be read off; for instance, the edge magnetization behaves as m; =
—of.(a)/oH, = (—)®, with B, =vy(d — 2) — A, , and the edge suscepti-
bility o = — of. (@)/0H,9H o |t| 712, with y, =4, + Ay — vy(d —2) , while
a local susceptibility is defined as x, 2 =— 0%fc(a)/dH5 = |f|7"**, with
2,2 =2A; — w(d — 2) . The correlation function of two spins at the edge
decays at criticality with distance r as r~2*™2 , while the correlation
function of a spin at the edge and a spin in the bulk decays as
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Addendum to Chapter 3

Note Added in Proof

Subsequent to the completion of this article many papers have appeared
(or were originally overlooked) which were not originally reviewed. A
partial list of these articles as they relate to various sections of this review
is given below with a few descriptive remarks.

Section I Gunton and Droz (1983) have written a general introduction
to the theory of metastable and unstable states. Many of the field theoretic
ideas of this review are discussed in greater detail in their monograph.

Section II An illuminating discussion of the region of validity of the
classical theory of nucleation in d dimensions has been given by Binder
(1983a). His treatment is based on the Ginzburg criterion.

Section III.C Mazenko and Valls (1983) have developed a real space
renormalization group formalism for the Glauber kinetic Ising model.
Using this formalism, they discuss the behavior and self-similarity of an
Ising model quenched below T.. Also, renormalization group analyses of
the mean field model of metastable and unstable states have been given
by Gunton and Yalabik (1978) and Dee et al. (1980).

Section IVB  Klein and Unger (1983) have studied systems with long-range
potentials near the classical spinodal curve. This was done using the con-

“tinuum theory of Cahn and Hilliard. They found that nucleation occurs
- with ramified droplets. The droplets become compact in the initial stage

of growth. These results are consistent with the computer simulations of
Heermann and Klein (1983) discussed in Section VIL.B.

Section V.A In a paper on polymer mixtures (Section XIII.H), Binder
(1983b) has applied the Ginzburg criterion to determine the region of
validity of the linear Cahn theory. This useful criterion can be extended
to the other systems discussed in this review.

Section V.B Petschek and Metiu (1983) have studied the time dependent
Ginzburg-Landau equation in two dimensions through computer simula-
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tion. They analyzed spinodal decomposition in a binary mixture with a
conserved order parameter. Their approach may provide a useful starting
point for further studies.

Section VI.B Recent work on models with a nonconserved order par-
ameter include the following. Monte Carlo studies have been carried out
on domain growth in several two dimensional systems: The g-state Potts
model (Sahni et al., 1983; Srolovitz et al., 1983), the clock (vector Potts)
model (Kaski and Gunton, 1983), a square lattice gas with fourfold degener-
ate (2 % 1) states (Sadiq and Binder, 1983), an anisotropic planar rotor
model on a triangular lattice (Mouritsen, 1983) and the antiferromagnetic
model for several different quench temperatures (Kaski ez al., 1983). These
model studies (as well as the experiments reviewed in this article) indicate
that dynamical universality classes may exist analogous to those known in
critical dynamics. Theoretical studies of domain growth in the antiferro-
magnetic model include Safran et al. (1983) and Grant and Gunton (1983).

Section VII Penrose and Buhagiar (1983) have discussed the kinetics of
nucleation in a lattice gas model. A microscopic theory based on a version
of the Becker-Doring equations is compared with the results of computer
simulation studies of the model.

Section VIII' The original work of Kawasaki and Ohta (1982) (Section
VIII) on the dynamics of random interfaces has been extended in a series
of papers. These include work on fluids (Kawasaki and Ohta 1983), a
statistical dynamical theory of interacting kinks (Kawasaki and Nagai,
1983), a molecular dynamics study of interacting kinks (Nagai and Kawa-
saki, 1983) and an analysis of the dynamics of kinks, interfaces, vortices
and the kinetics of phase transitions (Kawasaki et al., 1983). Fratzl et al.
(1983) have analyzed and compared the time evolution of the structure
function and grain distribution which were obtained from computer simu-
lations of the kinetic Ising model. They also found excellent agreement
between the scaling function (scaled with the Guinier radius) obtained
from Monte Carlo studies with the scaling function obtained for a variety
of real systems. The scaling function is found to be independent of the
temperature, alloy concentration and substance considered.

Section XI Simon et al. (1983) have analyzed the unmixing kinetics of
various Al-Zn and Al-Ag-Zn alloys in terms of various models of nuclea-
tion and growth, as well as spinodal decomposition. Salva-Ghilarducci et
al. (1983) have studied precipitation in ternary Al-Zn—-Ag alloys by neutron
SAS. Komura et al. (1981, 1983) have also studied phase separation by |
neutron SAS in Al-Zn and Al-Zn-Mg alloys. Forouki (1982) has also
studied the kinetics of phase separation in an Al-Zn-Mg alloy. |
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Section XIII.B Mabher ez al. (1982) have studied the kinetics of a critical
mixture of IW after a quench from the one-phase region into the two-phase
region, followed by a reverse quench into the one-phase region. Their light
scattering results are in good agreement with the theory of Ruiz mentioned
in Section XIII.B. Periodic quenches have also been performed on a binary
fluid by Joshua et al. (1983) following the original suggestion of Onuki
(Section XIII.B).

Section XIII.H Binder (1983b) has developed a theory of collective dif-
fusion, nucleation and spinodal decomposition in polymer mixtures. This
work extends the earlier analyses of de Gennes and Pincus referred to in
this article. Phase separation in polymer blends have been studied using
light scattering techniques by Snyder et al. (1983) and Snyder and Meakin
(1983).

Section XIIILM Weiss (1982) has presented a unified treatment for the
decay of a metastable state over the entire time regime. He analyzed a
Fokker—Planck model with one degree of freedom.

References

Binder, K. (1983a). IFF/KFA preprint.

Binder, K. (1983b). IFF/KFA preprint.

Dee, G., Gunton, J. D. and Kawasaki, K. (1980). J. Stat. Phys. 24, 87.

Forouki, A. R. (1982). PhD thesis, University of California at Berkeley.

Fratzl, P., Lebowitz, J. L., Marro, J. and Kalos, M. H. (1983). Submitted to Acta
Metall.

Grant, M. and Gunton, J. D. (1983). Temple University preprin(.

Gunton, J. D. and Droz, M. (1983). In Lecture Notes in Physics, Vol. 183 (J.
Zittartz, ed.), Springer-Verlag, Berlin.

Gunton, J. D. and Yalabik, M. C. (1978). Phys. Rev. B18, 6199.

Heerman, D. W. and Klein, W. (1983). Phys. Rev. B 27, 1732.

Joshua, M., Maher, J. V. and Goldburg, W. I. (1983). University of Pittsburgh

preprint.

Kaski, K. and Gunton, J. D, (1983). Temple University preprint.

Kaski, K., Yalabik, M. C., Gunton, J. D. and Sahni, P. S. (1983). Temple
University preprint,

Kawasaki, K. and Nagai, T. (1983) to be published.

1, K. and Ohta, T. (1982). Progr. Theorer. Phys. 68, 129.

Kawasaki, K. and Ohta, T. (1983). Physica 118A. 175

Kawasaki, K., Ohta, T. and Nagai, T. (1983). J. Phys. Soc. Jpn 52, Suppl., 131.

Klein, W. and Unger, C. (1983). Phys. Rev. B (in press).

Komura, S., Osamura, K., Fujii, H., Takeda, T. and Murakami, Y. (1981). Colloid
Polym. Sci. 259, 670.

Komura, S., Osamura, K., Fujii, H. and Takeda, T. (1983)

Maher, J. V., Easwar, N., Goldburg, W. 1. and Joshua, M. (1982). Phys. Rev.!
Lett. 49, 1850. :



482 J. D. Gunton et al,

Mazenko, G. and Valls, O. (1983). Phys. Rev. B (in press).

Mouritsen, O. (1983). Aarhus University preprint.

Nagai, T. and Kawasaki, T. (1983) to be published.

Penrose, O. and Buhagiar, A. (1983). J. Stat. Phys. 30, 219.

Petschek, R. and Metiu, H. (1983). J. Chem. Phys. (in press).

Sadiq, A. and Binder, K. (1983). IFF/KFA preprint.

Safran, S. A., Sahni, P. S. and Grest, G. S. (1983). Phys. Rev. B (in press).

Sahni, P. S., Grest, G. S., Anderson, M. P. and Srolovitz, D. L. (1983). Phys.
Rev. Lett. 50, 263.

Salva-Ghilarducci, A., Simon, J. P., Guyot, P. and Ansara, 1. (1983). Acta Metall.
(in press).

Simon, J. P., Guyot, P. and de Salva, A. (1983). Phil. Mag. (in press).

Snyder, H. L., Meakin, P. and Reich, S. (1983). J. Chem. Phys. 78, 3334.

Snyder, H. L. and Meakin, P. (1983). Dupont preprint.

Srolovitz, D. L., Anderson, M. P., Grest, G. S. and Sahni, P. S. (1983). Scripta
Metall. (in press).

Weiss, U. (1982). Phys. Rev. A 25, 2444,

Author Index

The numbers in italic refer to the Reference pages where references are listed in
full. A number in parenthesis following a page number identifies a numbered
reference on that page.

A

Aaronson, H. 1., 94, 140

Abe, R., 63, 74, 75, 135, 144

Abraham, D. B., 71, 72, 74, 75, 136,
152, 259

Abraham, F. F., 94, 136, 279, 284, 286,
321, 330, 331, 346, 454, 455, 457, 461,

462

Achiam, Y., 199, 259

Affleck, 1., 313, 317, 455

Agarwal, A., 405, 455

Aharony, A., 237, 255, 262, 263

Ahlers, G., 252, 254, 259, 263, 437, 455

Aizenmann, M., 343, 344, 455

Akindi, G., 203, 263

Alben, R. S., 94, 95, 134, 142

Alefeld, G., 443, 455, 456

Alexander, S., 230, 259

Allen, G. A. T., 104, 136, 241, 242, 246,
259

Allen, S. M., 276, 335, 336, 337, 423,
455

Alpern, P., 330, 430, 431, 432, 455, 456

Alvarado, S. F., 124, 136

Ambegaokar, V., 244, 254, 259, 301,
309, 440, 441, 461

Amit, D., 179, 259

Amit, D. J., 120, 136

Andelman, D., 196, 235, 245, 259, 265

Anderson, P. W_, 81, 142

Andreev, A. F., 68, 69, 136, 281, 455

Angelescu, N., 75, 136, 211, 259

Ardell, A. J., 335, 455

Arecchi, F. T., 444, 453, 455

Aslaksen, E. W., 453, 458

Au-Yang, H., 45, 46, 47, 50, 51, 53, 55,

75, 136, 138, 150, 156, 186, 187, 188,
2(6)4, 205, 206, 207, 208, 216, 257, 259,
261

Avron, J. E., 72, 136, 144

B

Bader, S. D., 124, 137

Bagaev, V. S., 441, 455

Bak, P., 81, 136

Baker, G. A., 244, 259, 381, 455

Baker, G. A., Jr, 110, 136

Baker, J. A., 390, 455

Baraver, J. R., 153, 192, 222, 259

Band, W., 280, 455

Barber, M. N., 2, 32, 34, 36, 39, 40, 41,
42, 61, 62, 63, 78, 105, 107, 108, 114,
136, 138, 142, 146, 147, 151, 152, 153,
157, 158, 162, 179, 181, 182, 184, 185,
186, 191, 192, 194, 201, 209, 2X0, 211,
212, 213, 214, 215, 216, 217, 218, 219,
221, 222,223, 224, 225,226, 227, 228,
229, 230, 231, 234, 235, 240, 243, 248,
249, 255, 259, 261, 262, 265

Bariev, R. Z., 55, 74, 136, 233, 259

Barker, J. A., 346, 455, 461, 462

Barker, R. A, 81, 138

Bar-on, M., 275, 298, 299, 322, 323, 325,
326, 328, 379, 385, 439, 461

Barouch, E., 51, 68, 144

Bartel, T. L., 405, 456

Bartlett, R. J., 429, 430, 459

Baumgartner, A., 449, 456, 463

Bausch, R., 338, 434, 443, 456

Baxter, R., 74, 136

483





