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Abstract. We study the Deffuant et al model for continuous-opinion dynamics
under the influence of noise. In the original version of this model, individuals meet
in random pairwise encounters after which they compromise or not depending on
a confidence parameter. Free will is introduced in the form of noisy perturbations:
individuals are given the opportunity to change their opinion, with a given
probability, to a randomly selected opinion inside the whole opinion space. We
derive the master equation of this process. One of the main effects of noise
is to induce an order–disorder transition. In the disordered state the opinion
distribution tends to be uniform, while for the ordered state a set of well defined
opinion clusters are formed, although with some opinion spread inside them.
Using a linear stability analysis we can derive approximate conditions for the
transition between opinion clusters and the disordered state. The master equation
analysis is compared with direct Monte Carlo simulations. We find that the
master equation and the Monte Carlo simulations do not always agree due to
finite-size-induced fluctuations that we analyze in some detail.
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1. Introduction

The application of techniques and tools from nonlinear and statistical physics to explain
the dynamics of opinion changes in a society has become a topic of interest in recent
years [1]. A society can be thought of as a complex system composed of a large number
of interacting individuals with diverse opinions. These opinions are not necessarily static,
and can evolve due to a variety of internal as well as external factors, such as the
influence of advertising and acquaintances, amongst others. As a result of this evolution, a
consensus opinion could emerge (a vast majority of individuals adopting a similar opinion),
or the population could fragment into a number of clusters. To analyze the process of
opinion formation, several models inspired from statistical mechanics have been developed.
In those, the opinion held by an individual is a dynamical variable which evolves by some
rules, usually with an important stochastic ingredient [2]. Models can be divided into
two broad categories: discrete models where the opinion can only adopt a finite set of
values [3]–[5], and continuous models where the opinion of an individual is expressed as
a real number in a finite interval [6]–[9]. Discrete models are useful when analyzing cases
in which individuals are confronted with a limited number of options (a political election,
for example) where one is forced to choose amongst a finite set of parties. Continuous
models are more suitable for analyzing cases in which a single issue (legalizing abortion,
for example) is being considered and opinions can vary continuously from ‘completely
against’ to ‘in complete agreement’.

A continuous model introduced by Deffuant et al [6] has received much attention
recently. This model implements the bounded confidence mechanism by which two
individuals only influence the opinion of each other if their respective opinions differ
less than some given amount. In other words, people holding too distant opinions on an
issue will simply ignore each other and will, hence, keep their original opinions. It is only
through the interaction of not too distant people that we manage to modify our opinion.
This model was in turn inspired by the Axelrod model for the dissemination of culture [10]
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and general threshold models [11] and has in turn inspired a large number of extensions
and modifications [12]–[20].

In the Deffuant et al model individuals meet in random pairwise encounters in a given
connectivity network, but the subsequent evolution is completely deterministic. This leads
to final states in which either perfect consensus has been reached or the population splits
into a finite number of clusters such that all individuals in one cluster have exactly the
same opinion. We believe that such uniform states are not very realistic and some degree
of discrepancy must appear within otherwise well defined clusters. In this paper, we
introduce an additional element of randomness in the dynamics. The aim is to represent,
certainly in a caricaturist manner, the element of free will present in all human decisions
by which we do not follow blindly the opinion dictated by our relationships. Our aim is to
analyze how the interplay between this free will and the interactions amongst individuals
affects cluster formation in opinion dynamics. In the language of statistical mechanics,
what we are doing is to add noise to the deterministic dynamics and analyze which aspects
of the model are robust against the introduction of noise. Noise is introduced by allowing
an individual opinion to change to another randomly chosen value in the whole opinion
space. Under some circumstances this turns out to be equivalent to allowing each agent
to return, at some random times, to a specific opinion preferred by that agent.

Our analysis, based upon numerical integrations of the corresponding master equation
as well as Monte Carlo simulations, reveals new and interesting phenomenology. There
exists a critical value mc of the noise intensity, which depends on the confidence range,
such that for noise larger than this value the system becomes disorganized and cluster
formation does not occur. We provide a linear stability analysis that reproduces the
order–disorder transition that occurs at mc. For noise smaller than mc, the steady state
probability distributions in opinion space broaden with respect to the noiseless case, but
still have large peaks and cluster formation can be unambiguously defined by looking at
the maxima of the distributions. The cluster formation occurs by a series of bifurcations
that mimic those that occur in the noiseless case.

An important aspect of our work, that we want to stress here, is that the numerical
Monte Carlo simulations do not necessarily agree with the results from the master
equation. This is due to the inherent finite-size-induced fluctuations that occur in the
simulations. A similar warning is required when one tries to make inferences as regards
possible applications of the model to real situations. For example, it is possible to find
regions of bistability where dynamical transitions between a single cluster and two clusters
occur. These transitions do not occur in the infinite-size thermodynamic limit taken
routinely in most studies. This stresses the role that a finite size has in the dynamics of
social systems [25].

This paper is organized as follows. The Deffuant et al model is briefly reviewed in
section 2. The main results are presented in section 3, devoted to studying this model in
the presence of noise. In section 4 we use a linear stability analysis to derive approximately
the critical value of the noise intensity for the formation of opinion clusters. A summary
and conclusions are presented in section 5.

2. Review of the Deffuant et al model

Let us consider a population with N individuals. We will denote by xi
n the number

representing the opinion on a given topic that individual i has at time step n. As
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mentioned in section 1, the opinion is a real variable in a finite interval and, without
loss of generality, we take xi

n ∈ [0, 1]. Initially, it is assumed that the values xi
0 for

i = 1, . . . , N are randomly distributed in the interval [0, 1]. A dynamics is introduced to
reflect that individuals interact, discuss, and modify their opinions. In the original version
of the model [6], at time step n two individuals, say i and j, are randomly chosen. If their
opinions satisfy |xi

n − xj
n| < ε, i.e. they are close enough, they are modified as

xi
n+1 = xi

n + µ(xj
n − xi

n), xj
n+1 = xj

n + µ(xi
n − xj

n), (1)

but otherwise they remain unchanged. Whether the opinions have been updated or not,
time increases: n → n + 1. As a consequence of the iteration of this dynamical rule,
the system reaches a static final configuration which, depending on the values of the
parameters ε and µ, can be a state of full consensus where all individuals share the same
opinion, or one of fragmentation with several opinion clusters. It is customary to introduce
the time variable t = n∆t, where ∆t = 1/N , measuring the number of opinion updates
per individual, or number of Monte Carlo steps (MCS).

The parameter µ is restricted to the interval (0, 0.5]. It determines the time for
convergence between individuals as well as the number of final clusters [23, 24]. For small
values of µ, the individuals slightly change their opinions during the meeting, while for
µ = 0.5 the interacting individuals fully compromise and, after the meeting, they share
the same opinion. As in most studies, we will adopt from now on in this paper the
value µ = 0.5. The parameter ε, which runs from 0 to 1, is the confidence parameter.
Starting from uniformly distributed random values for the initial opinions, the typical
realization is that for large values, ε ≥ 0.5, the system evolves to a state of consensus
where all individuals share the same opinion and that, decreasing ε, the population splits
into opinion clusters separated by distances larger than ε.

The process can be described in terms of a master equation for the probability density
function P (x, t) for an individual opinion x at time t. The appendix contains a derivation
of this master equation in the presence of the additional noise term described in section 3.
Equation (A.4) with m = 0 is the master equation for the noiseless original Deffuant et al
model, first obtained in [12]. A detailed analysis based on its numerical integration [12, 20]1

shows that there are four basic modes of cluster appearance, dominance, or splitting,
which are called bifurcations [12, 20] in this context (see figure 1): nucleation of two
minor clusters symmetrically from the center of the opinion interval (type 1, such as the
birth of two minor clusters from the boundaries at ε = 0.5 in figure 1); nucleation of two
major clusters from the central one (type 2, as occurs at ε ≈ 0.266 in figure 1); nucleation
of a minor central cluster (type 3, as occurs at ε ≈ 0.222 in the figure); and, finally, sudden
increase of the mass of that central cluster accompanied by a sudden drift outwards in the
location of the two major clusters (type 4, at ε ≈ 0.182 in the figure). In this sequence
‘major’ opinion clusters contain a high fraction of the population, while ‘minor’ clusters
contain a much smaller fraction (of the order of 10−2 or smaller). The bifurcation pattern
repeats itself as ε decreases even further.

It is important to emphasize that the situation depicted in figure 1 is the result for
steady solutions of the master equation attained at long times starting from a uniform
initial distribution. Many other steady solutions of the master equation exist. In

1 In order to compare with the results of [12] we note that our parameter ε is related to their parameter ∆ by
ε = 1/2∆.
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Figure 1. Top panel: bifurcation diagram of the noiseless Deffuant et al model
reproduced from reference [22], coming from a numerical analysis of the master
equation of the model [12, 21]. Lines show the position of the opinion clusters as
a function of ε. With arrows we indicate the location of the four basic bifurcation
types: type 1 at ε ≈ 0.5, type 2 at ε ≈ 0.266, type 3 at ε ≈ 0.22, type 4
at ε ≈ 0.182, and this pattern repeating as ε decreases even further [21]. In
the bottom panels we plot in a logarithmic grayscale the asymptotic probability
distribution P∞(x) (values smaller than 2×10−4 are plotted white), as a function
of ε, resulting from extensive numerical simulations of the microscopic model with
N = 103 and N = 104 agents, respectively. Note that a single realization using
the Monte Carlo microscopic rules of the model leads to a probability distribution
which is a sum of delta-functions. The distributions displayed in the panels are the
result of an average over 105 realizations for N = 103 and 2× 104 realizations for
N = 104 and a histogram bin size ∆x = 0.01. In all cases, in the master equation
as in the Monte Carlo simulations, the initial condition represents opinions which
are random and uniformly distributed in the interval [0, 1].
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particular, any combination of delta-functions is a steady solution of the noiseless master
equation provided they are separated by more than a distance ε. We stress also that this
analysis based upon the master equation corresponds to the limit case where the number
of individuals N tends to infinity. In Monte Carlo simulations of the microscopic rules,
or in practical applications with a necessarily finite number of individuals, some features
need to be considered. It is still true that each realization ends up with a small number
of clusters (of major type and of minor type), all individuals within a cluster holding
exactly the same opinion. However, the exact location of the clusters might vary with
respect to the master equation prediction and minor clusters might not appear depending
on the particular realization and the total size of the population. Furthermore, there
could be realizations in which even the number of observed major clusters differs from the
prediction of the master equation. These effects are more pronounced for smaller numbers
of individuals. In the same figure 1 we have plotted the distribution of observed clusters,
averaged over many realizations for two different numbers of individuals N , where the
aforementioned properties can clearly be observed. For instance, for ε = 0.28, the master
equation predicts that there should be only one major cluster, centered at x = 0.5, and
two minor clusters. However, in almost half of the realizations with N = 1000 individuals
the opinions split instead into two major clusters centered around x = 0.28 and 0.72 and,
eventually, some minor extreme clusters.

3. Effect of noise

Noise is introduced as a random change of an individual’s opinion. Specifically, we modify
the dynamics as follows: at time step n the original dynamical rule, equation (1), applies
only with probability 1 − m. Otherwise, a randomly chosen individual i changes opinion
to a new value xi

n+1 drawn from a uniform distribution in the interval [0, 1] and all other
opinions remain unchanged. The probability m is a measure of the noise intensity. Note
that, quite generally, this rule is equivalent to allowing each agent to return to a specific,
basal, opinion preferred by that agent, provided that the basal opinions are randomly
distributed amongst the agents. In this section, we will study in detail the effect of this
new ingredient in the dynamical evolution of the model. We analyze both the results
coming from a numerical integration of the master equation as well as numerical Monte
Carlo-type simulations of the microscopic rules of the model.

3.1. Master equation approach

The appendix contains a derivation of the master equation, equation (A.4), appropriate for
this process. We have first obtained the asymptotic distribution P∞(x) = limt→∞ P (x, t)
of the master equation starting from a suitable initial condition P (x, t = 0). As in other
studies, we assume that the initial condition represents a uniform distribution in opinion
space, i.e. P (x, t = 0) = 1 for x ∈ [0, 1] and P (x, t = 0) = 0 otherwise. For m = 0 the
steady state distribution P∞(x) is a sum of delta-functions located at particular points. In
the case m > 0 the steady distributions are no longer delta-functions but still are peaked
around some particular values if ε is not too small or m not too large. We have plotted
in figure 2 the master equation steady probability distributions P∞(x) as a function of
the parameter ε for two different values of the noise intensity. In the small noise case
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Figure 2. Plot, in a logarithmic grayscale, of the asymptotic probability
distributions P∞(x) as functions of ε, obtained after a numerical integration of
the master equation (A.4) for m = 0.01, top panel, and m = 0.1, bottom panel.
We have used a fourth-order Runge–Kutta method with a time step ∆t = 0.1
for the time evolution and Simpson’s rule for the integrals in x-space with a
discretization ∆x = 1/M , M = 2000. We have checked for some test cases that
smaller time or discretization steps do not significantly change the results. As in
figure 1 we show with arrows the location of the bifurcation points.

m = 0.01 it is still possible, for not too small ε, to identify the same type of bifurcation
as in the noiseless case by looking at the maxima of the probability distributions: a
type 1 bifurcation at ε = 0.5 where minor clusters begin to form at x = 0 and 1; a
type 2 bifurcation at ε ≈ 0.2695 where the distribution switches from having one single
maximum at x = 0.5 to having two maxima of equal height located at x ≈ 1/4 and 3/4;
a type 3 bifurcation at ε ≈ 0.250 where a central maximum begins to grow; a type 4
bifurcation at ε ≈ 0.1835 where three equally spaced maxima of equal height at x ≈ 1/6,
x = 1/2 and x ≈ 5/6 appear. This pattern of bifurcations repeats as ε decreases even
further. However, type 1 and type 3 bifurcations are somewhat ambiguous to define since
the relative importance of the minor clusters actually increases continuously instead of
sharply increasing when new maxima begin to form. We have observed numerically that,
at variance with the noiseless case, the location of the major clusters (defined as the
absolute maxima of the distribution) does not vary with ε until a new bifurcation of type
2 or type 4 is reached. Similarly, we observe that these maxima are regularly located at
x ≈ 1/k, 3/k, . . . , (k − 1)/k for k = 2, 4, 6, . . .. We have not been able to find a suitable
explanation for these interesting properties.

The same general structure can be observed in the case of larger noise m = 0.1,
although the distributions are much broader now. The location of the main bifurcation
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points can be located at ε ≈ 0.2695 (type 2) and ε ≈ 0.1755 (type 4). The type 1 and
type 3 transitions are very imprecisely defined, especially for smaller values of ε.

For both noise values, one observes that clusters become less defined and finally
are replaced by a more or less unstructured distribution for ε below a critical value
εc which increases with m. Alternatively, one realizes the existence of a critical value
mc = mc(ε), increasing with ε, above which the cluster structure disappears from the
steady distribution.

A somewhat expected feature that emerges from the data shown in figure 2 is that the
width of the steady distributions grows with the noise intensity. An explicit expression
for the width of the single maximum present when ε ≥ 1 (i.e. when all individuals are
allowed to interact) could be obtained from the master equation, since in this case the
moments form a closed hierarchy. Defining the moments M1 and M2 as in the appendix,
the variance σ2 = M2 − M2

1 satisfies

dσ2

dt
= −σ2 +

m

12
. (2)

In this limiting case (where the main feature of the model, bounded confidence, has been
lost since everybody is able to interact with everybody), the variance reaches a steady
state in which the width increases with noise as σ ∼ m1/2.

3.2. Comparison with Monte Carlo simulations

Once the master equation predictions have been established, and before comparing with
the results coming from the Monte Carlo numerical simulations using the microscopic
rules, a word of warning is, as in the noiseless case, required. In simulations with a
finite number N of individuals the dynamics of the probability distribution as well as
its asymptotic, steady state, values might not coincide with the analysis of the master
equation. We have found this deviation to be more pronounced in the case of being
close to a bifurcation point. For example, in figure 3 we plot the time evolution of the
probability coming from Monte Carlo simulations of the model for different system sizes
and the results from the master equation in the case ε = 0.28, close to a type 2 bifurcation
point. It can be seen that, although the Monte Carlo simulation and the master equation
agree initially very well, they start to deviate after a time that depends on the number of
individuals N : the larger N , the longer the time for which the Monte Carlo simulations
are faithfully described by the master equation. In this particular case, ε = 0.28, it can
be seen that the master equation agrees with the Monte Carlo simulations up to a time
t ∼ 10 for N = 103 and a time t ∼ 100 for N = 105. In view of this difference, it
is surprising that the Monte Carlo steady state distributions show only small (although
observable) finite-size effects. Quite similar functions describe the steady state data for
both N = 103 and 105; see figure 4. As can be seen in figure 3, however, while the numerical
solution of the master equation tends to the steady state distribution P∞(x), the Monte
Carlo simulations tend to another distribution, Pst(x). These two distributions are very
different: P∞(x) has a large maximum (large cluster) at x = 0.5 and two much smaller
maxima at x ≈ 0.127 and 0.873, whereas Pst(x) has two equal maxima at x ≈ 0.25 and
0.75. Although it appears surprising at first, it turns out that the steady state distribution
Pst(x) coming from the Monte Carlo simulations of the model is also very close to a steady
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Figure 3. Probability distribution function P (x, t), for intermediate time steps,
from Monte Carlo (MC) simulations (histograms binned with bin size ∆x =
5×10−4) for two different system sizes N = 103 and 105, and the master equation
(ME) integrations of equation (A.4) starting with a flat distribution with ε = 0.28
and m = 0.01. The distributions are averages over 105 realizations for N = 103

and 104 realizations for N = 105.

state solution of the master equation (A.4) having two major clusters. However, this last
steady state solution cannot be obtained as an asymptotic solution of the master equation
limt→∞ P (x, t) starting from a uniform initial condition P (x, t = 0) = 1 for x ∈ [0, 1]. It
turns out that it is reached when starting instead from an initial condition asymmetric
with respect to the center of the interval.

Summing up, for ε = 0.28 there are two steady state solutions of the master equation,
Pst(x) and P∞(x). Starting from a uniform initial condition, P∞(x) is the one reached
asymptotically as a solution of the master equation. However, Pst(x) is, up to finite-size
effects, the one reached instead in the Monte Carlo simulations. We interpret this in
terms of the relative stability of the two solutions: introducing a fluctuation δP (x) on
the solution P∞(x) it is then possible to reach the solution Pst(x), but not the reverse.
This fluctuation δP (x) needs to be asymmetric, δP (x) (= δP (1 − x), and it appears
naturally in Monte Carlo simulations because of the finite number of individuals N and
it is more probable for smaller values of N . This explains why the system with smaller N
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Figure 4. The symbols denote the steady state probability distribution function
Pst(x), obtained from Monte Carlo simulations for system sizes N = 103 (·) and
N = 105 (×) in the case ε = 0.28, m = 0.01. The dashed line is obtained as an
asymptotic solution of the master equation starting with a non-uniform initial
condition. These three distributions are very similar in this logarithmic scale,
although there are differences in the height of the maxima (see figure 3). It turns
out that close to each of the two maxima, the distributions can be well fitted
with a Lorentzian function [19]. The solid line is the distribution P∞(x) coming
from a numerical solution of the master equation (A.4) starting with a uniform
distribution.

deviates earlier from the solution of the master equation. If one induces artificially2 such
a non-symmetric perturbation in the solution P∞(x) or, alternatively, one starts with a
non-uniform, asymmetric initial condition, then the master equation tends to Pst(x).

The existence of more that one steady solution of the master equation seems to
be a general feature. In fact, if the distributions in figure 2 are recalculated by slowly
increasing and decreasing ε without resetting the initial condition to P (x, t = 0) = 1
after each change in ε, we observe the hysteresis behavior typical of bistability occurrence
close to first-order transitions. Which one of the possible steady solutions is observed in
the Monte Carlo simulations depends on the parameter ε. It could even happen that the
inherent fluctuations of a finite system take it from one solution to another and back.
This sort of bistability is observed, for instance, in Monte Carlo simulations at ε = 0.31.
As shown in figure 5, the evolution displays multiple jumps between two solutions: one
with two maxima of equal height and another one with a large central maximum and two
smaller maxima near the edges of the opinion interval. The existence of jumps induced
by finite-size fluctuations has been observed in a microscopic model of catalytic surface
reaction [26, 27] whose rules are based on an Ising-type model including explicit noise
terms.

2 If one is not careful enough, the perturbation might also appear as a numerical instability of the integration
method.
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Figure 5. Time series of the opinion distributions P (x, t) at four values of ε
and m = 0.01 and N = 1000. The grayscale is logarithmic, with values smaller
than 0.1 plotted in white. Simulations are initialized with random homogeneous
distributions 1000 MCS before the first time shown in the plots. The first three
panels are near a type 2 bifurcation. At ε = 0.28 the system appears polarized
into two opinion clusters. At ε = 0.35 a single major opinion has been established,
with two lateral minor clusters. At ε = 0.31 the system fluctuates between these
two states. A single cluster is observed at large ε (bottom panel).

Looking at figure 2, one can see that for small ε or, alternatively, for noise intensity
m larger than a critical value mc which increases with ε, the bifurcations become blurred
and the maxima of the distributions are not evident, implying the inhibition of cluster
formation. This happens at ε ! 0.1 for m = 0.1 and at ε ! 0.01 for m = 0.01. A similar
effect can be observed in the Monte Carlo simulations and can be described in terms of an
order–disorder transition: order identified with the state with well defined opinion clusters
and disorder identified with the state without clusters. In figure 6 we plot the steady state
probability distribution in a disorder case: m = 0.01 and ε = 0.008. Note the absence of
peaks indicating the presence of clusters, other than the small peaks at the borders of the
finite opinion interval coming from edge effects.

To define this transition in a more quantitative way, we have used the so-called cluster
coefficient GM , which aims to characterize the existence of clusters [28]. The definition of
the cluster coefficient GM starts with dividing the opinion space [0, 1] into M equal boxes
and counting the number of individuals li which, at time step n, have their opinion in the
box [(i − 1)/M, i/M ]. The value of M must not be so large that particles are artificially
considered to be part of a single cluster, nor so small that statistical errors are large within
one box. Otherwise, the exact value of M is not important, For our problem, the values
M = 100 and 200 give almost undistinguishable cluster coefficients, as shown in figure 7.
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Figure 6. Plot of the steady state probability distribution the Pst(x) in the case
m = 0.01 and ε = 0.008. One can note the absence of clusters (other than those
coming from edge effects at the borders of the finite opinion interval) both in
the master equation (black line, same integration details as in figure 2) and in
the Monte Carlo simulations (red line, system size N = 104 agents averaged over
104 realizations). According to the linear stability analysis (see section 4), the
critical value for cluster formation is εc = 0.0088.

One next introduces an entropy-like measure SM = −
∑M

i=1(li/N) ln(li/N). Note that
0 ≤ SM ≤ ln M , and that the minimum value SM is obtained when all the individuals
are in just one box, while the maximum value, SM = ln M , is reached when li = N/M ,
i.e. when the opinions are uniformly distributed in the interval [0, 1]. Finally, the opinion
cluster coefficient is defined as [28]

GM = M−1〈eSM 〉, (3)

where the overbar denotes a temporal average in steady conditions and 〈·〉 indicates an
average over different realizations of the dynamics. Note that 1/M ≤ GM ≤ 1. Large
values GM ≈ 1 indicate that the opinions are evenly distributed over the full opinion space
(a situation identified with disorder), while small values of GM indicate that opinions peak
around a finite set of major opinion clusters (a situation identified with order).

The data coming from Monte Carlo simulations (see figure 7) show that GM is an
increasing function of the noise intensity m and saturates to its maximum value GM ≈ 1
for large enough values of m. The transition from cluster formation to disorder will
be defined, somewhat arbitrarily but precisely, as the value mc of the noise intensity for
which the cluster coefficient reaches the value GM = 0.9. For small values of the confidence
parameter ε the transition to the homogeneous state is abrupt and occurs for small values
of m. If one increases ε, the transition becomes less abrupt and a higher noise intensity is
needed to obtain the homogeneous, cluster-free, state. This last feature can be explained
using the linear stability analysis that we shall develop in section 4.
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Figure 7. Opinion cluster coefficient GM versus m for ε = 0.05, 0.2, 0.4, and
0.6, from left to right, respectively as obtained from Monte Carlo simulations
with N = 105 individuals (dots; the solid line is a guide to the eye). Solid dots
correspond to M = 100 and open dots to M = 200. The location of the order–
disorder transition is defined as the value mc for which GM = 0.9. Note that,
except at some particular points (see figure 8(b)), mc is an increasing function of
ε and that the transition is very abrupt for small ε.

4. Linear stability analysis

We have shown that opinion clusters still form in the presence of small amounts of
noise, but an unstructured state without clusters dominates the opinion space for noise
larger than a critical noise intensity mc. Although the transition to cluster formation
is a nonlinear process, one can still derive approximate analytical conditions for the
existence of cluster formation in the parameter space (ε, m) by performing a linear
stability analysis of the unstructured solution of equation (A.4). This is greatly simplified
if one neglects the influence of the boundaries and assumes that the interval [0, 1] is
wrapped on a circle, i.e. there are periodic boundary conditions at the ends of the
interval. This would be a reasonable approximation for describing the distribution far
from the boundaries if ε, which fixes the interaction range, is sufficiently small. In this
case the homogeneous configuration Ph(x) = 1 is an approximation to the unstructured
steady solution of the master equation. Analysis of its stability begins by introducing
P (x, t) = Ph(x)+Aqeiqx+λqt, where q is the wavenumber of the perturbation, λq its growth
rate and Aq the amplitude. After introducing this ansatz in equation (A.4) we find the
dispersion relation giving the growth rate of mode q:

λq = 4ε(1 − m)

[
4 sin(qε/2)

qε
− sin(qε)

qε
− 1

]
− m. (4)

This is plotted in figure 8(a), for several values of m. The maximum value of λq occurs at
qmax = 2.7907/ε. It turns out that the maximum value λqmax is negative for m > mc and
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(a) (b)

Figure 8. (a) Growth rate, equation (4), of a perturbation to the homogeneous
solution as a function of qε for ε = 0.35 and m = 0.0, 0.10, 0.287, and 0.35 from
top to bottom. It shows that λq becomes negative for high values of m. (b) Phase
diagram on the plane (ε,m) as obtained from Monte Carlo simulations with
N = 105 individuals (dots), using the criterion based on the cluster coefficient
GM=100 as described in the text. The solid line is the prediction from the linear
stability analysis. Clusters appear below the lines, whereas the unstructured
state is stable above.

positive for m < mc = ε/(a + ε) with a ≈ 0.8676. Alternatively, for fixed m the maximum
growth rate is negative for ε < εc = am/(1 − m), and positive for ε >ε c. Therefore, the
homogeneous state is unstable and cluster formation is possible only for m < mc or
ε > εc. The numerical values are εc = 0.096 for m = 0.1 and εc = 0.0088 for m = 0.01,
in reasonable agreement with the behavior observed for the master equation dynamics in
figure 2. Comparison with Monte Carlo simulations is performed in figure 8(b) where we
plot the critical value mc obtained from the cluster coefficient GM as described earlier.
We see in the figure that the agreement is very good for small ε but deviates for larger
values. This is consistent with the fact that neglecting boundary effects is expected to
be appropriate only for small ε. Finally, it is possible to estimate roughly the number
of clusters n using a simple argument: n is related to the wavelength of the maximum
growth as n = qmax/2π or n = 0.444/ε for ε >ε c. This result is in qualitative agreement
with the 1/2ε rule, which says that the number of major clusters after cluster formation
is roughly determined as the integer part of 1/2ε (see [20, 21] for details).

5. Summary and conclusions

In this paper we have studied the Deffuant et al model for continuous-opinion dynamics
in the presence of noise. Besides the usual rules of the model, we give each individual the
opportunity to change, with a certain probability m, their opinion to a randomly selected
opinion inside the whole opinion space. The final behavior depends of the confidence or
interaction parameter ε and the noise intensity m.
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We have first reviewed the original noiseless version of the model. We have shown that
for small number of individuals N and depending of the particular realizations, the exact
location of the opinion clusters might vary with respect to the predictions of the master
equation. In particular, minor clusters might not appear and there could be realizations
in which even the number of observed major clusters differs from the prediction of the
master equation.

We have derived (appendix) a master equation for the probability density function
P (x, t) which determines the individual density or distribution in the opinion space.
Numerical integration of this equation from uniform initial conditions reveals that for
m > 0 the steady distributions are no longer delta-functions as for m = 0, but are still
peaked around some well defined maximum value, with some non-vanishing width. By
looking at those maxima we are able to identify the same kinds of bifurcations as in the
noiseless case [12, 20]. At variance with the noiseless case, the location of the maxima
(the central opinion of the clusters) does not depend on ε until a new bifurcation point is
reached.

We have also found that in the noisy case the asymptotic steady state probability
distributions reached by Monte Carlo simulations might not coincide with the ones
obtained from the master equation dynamics starting from the same symmetric initial
condition. This deviation is more pronounced in the case of being close to a bifurcation
point. In particular, we have presented a situation where, starting from a uniform initial
condition, a particular stationary distribution, P∞(x), is actually reached by the master
equation but another distribution, Pst(x), is the one reached instead in Monte Carlo
simulations. The time at which the Monte Carlo simulations begin to deviate from the
master equation depends on the system size: the smaller the size, the earlier the deviation
occurs although the final Monte Carlo distribution Pst(x) shows only small size effects.
Remarkably, Pst(x) turns out to be close to another steady solution of the master equation.
Thus, the discrepancy observed during the dynamics does not seem to be simply a trivial
finite-N effect. We interpret it in terms of the relative stability of the two solutions by
adding an asymmetric perturbation to P∞(x). It is then possible to reach the solution
Pst(x) obtained from Monte Carlo simulations, but not the other way around. Asymmetric
fluctuations appear naturally in Monte Carlo dynamics because of the finite number of
individuals, and are larger for smaller N . We have also shown that the fluctuations present
in Monte Carlo simulations are even able to induce jumps from one solution to another
and back.

An order–disorder transition to cluster formation induced by noise has been
characterized using the so-called cluster coefficient GM for the simulations performed
with Monte Carlo dynamics. We have found that GM is an increasing function of the
noise intensity m and saturates to its maximum value GM ≈ 1 for large enough values of
m. For small values of the confidence parameter ε the transition to the disordered state
is abrupt and occurs for small values of m. If one increases ε, the transition becomes
less abrupt and a higher noise intensity is needed to obtain this state. Using a linear
stability analysis of the unstructured (no clusters) solution of the master equation we
have derived approximate conditions for opinion cluster formation as a function of the
relevant parameters of the system. We have found qualitative agreement between the
linear stability analysis and numerical simulations. The agreement is better for small
values of ε where boundary effects, neglected to make feasible the linear analysis, are less
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important. However, we should emphasize that the pattern selection of this model is,
with noise and without it, intrinsically a nonlinear phenomenon and obtaining the exact
critical conditions for opinion cluster formation remains a challenge.

Our work stresses the importance that fluctuations and finite-size effects have in the
dynamics of social systems for which the thermodynamic limit is not justified [25]. Further
work will address the effect that these ingredients have in the dynamics of continuous-
opinion models in the presence of an external influence, or forcing, representing the role
of advertising.
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Appendix

Here we derive the master equation, i.e. the evolution equation for Pn(x), the probability
density function (pdf) of the opinions at step n for the model introduced in this paper.
Note that Pn(x) is constructed from the histogram of all individual opinions xi

n at step
n. Let us first find the evolution of the pdf for those two particular individuals i, j that
have been selected for updating at step n according to the basic rule, equation (1). We
will denote by P i

n+1(x) the pdf of the opinion of individual i at the step n + 1, i.e. the
probability that xi

n+1 adopts the value x. According to that rule, it is straightforward to
derive the evolution equation

P i
n+1(x) =

∫

|xi
n−xj

n|<ε

dxi
n dxj

nPn(xi
n)Pn(xj

n)δ

(
x − xi

n + xj
n

2

)

+

∫

|xi
n−xj

n|>ε

dxi
n dxj

nPn(xi
n)Pn(xj

n)δ(x − xi
n), (A.1)

and a similar expression for P j
n+1(x). The integrals over xi

n and xj
n both run over the

interval [0, 1]. In this equation an independence approximation for the variables xi
n, xj

n

has been implicitly assumed, i.e. their joint pdf Pn(xi
n, xj

n) is supposed to factorize as
Pn(xi

n, xj
n) = Pn(xi

n)Pn(xj
n). This is an uncontrolled approximation whose validity can

only be established by an independent comparison with the Monte Carlo simulation of
the microscopic rules. For the individuals k (= i, j whose opinion does not change at time
step n + 1 we have simply P k

n+1(x) = P k
n (x).

The pdf Pn+1(x) has several contributions: (i) with probability 1−m two individuals,
say i, j, are chosen for updating according to the basic evolution rule, equation (1), and
N − 2 variables remain unchanged. (ii) With probability m one individual is chosen for
updating according to the noise rule and N − 1 variables remain unchanged; the new
opinion of the selected individual is sampled from an, in principle, arbitrary distribution
Pa(x), although in this paper we have taken throughout that Pa(x) is the uniform
distribution Ph(x) = 1 in the interval [0, 1]. After consideration of these contributions
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we are led to the evolution equation

Pn+1(x) = (1 − m)

[
N − 2

N
Pn(x) +

1

N
P i

n+1(x) +
1

N
P j

n+1(x)

]

+ m

[
N − 1

N
Pn(x) +

1

N
Pa(x)

]
. (A.2)

Replacing P i
n+1(x) and P j

n+1(x) from equation (A.1) one obtains after some algebra

Pn+1(x) = Pn(x) +
(1 − m)

N

[
4

∫

|x−x′|<ε/2

dx′Pn(2x − x′)Pn(x′)

− 2Pn(x)

∫

|x−x′|<ε

dx′Pn(x′)

]
+

m

N
[Pa(x) − Pn(x)] . (A.3)

The integrals over x′ run over the interval [0, 1], and it has to be imposed that Pn(x) = 0
if x /∈ [0, 1]. We now take the continuum limit Pn(x) → P (x, t) with a time t = n∆t and
taking the limit ∆t = 1/N → 0 as N → ∞, to obtain

∂P (x, t)

∂t
= (1 − m)

[
4

∫

|x−x′|<ε/2

dx′P (2x− x′, t)P (x′, t)

− 2P (x, t)

∫

|x−x′|<ε

dx′P (x′, t)

]
+ m [Pa(x) − P (x, t)] , (A.4)

which is the master equation of the Deffuant et al model in the presence of noise and
the basis of our analysis. The noiseless case, m = 0, was first obtained in [12]. We note
here the symmetry property of the master equation: if the initial condition is symmetric
around the central point x = 1/2, namely we have that P (x, t = 0) = P (1 − x, t = 0),
then this property holds for any later time, P (x, t) = P (1 − x, t), ∀t > 0.

The time evolution of the first moments of P (x, t) can be computed from the master
equation. Defining the moments as Mk(t) =

∫
dxxkP (x, t) one finds easily that dM0/dt =

0 (normalization condition) and that the first moment evolves as dM1/dt = m(Ma
1 −M1),

where Ma
1 is the first moment of the distribution Pa(x). Therefore, if m > 0, the

average opinion tends to M1 = Ma
1 independently of the initial condition, and it is always

conserved in the noiseless case m = 0. Expressions for higher-order moments can only be
obtained in the special case ε ≥ 1, as discussed in the main text.

References

[1] Castellano C, Fortunato S and Loreto V, 2009 Rev. Mod. Phys. 81 591
[2] Stauffer D, 2005 AIP Conf. Proc. 779 56
[3] Galam S, 2002 Eur. Phys. J. B 25 403
[4] Schweitzer F and Holyst J, 2000 Eur. Phys. J. B 15 723
[5] Sznajd-Weron K and Sznajd J, 2000 Int. J. Mod. Phys. C 11 1157
[6] Deffuant G, Neu D, Amblard F and Weisbuch G, 2000 Adv. Complex Syst. 3 87
[7] Weisbuch G, Deffuant G, Amblard F and Nadal J P, 2002 Complexity 7 855
[8] Weisbuch G, Deffuant G and Amblard F, 2005 Physica A 353 555
[9] Hegselmann R and Krause U, 2002 J. Artif. Soc. Soc. Simul. 5 2

[10] Axelrod R, 1997 J. Conflict Res. 41 203
[11] Granovetter M, 1978 Am. J. Sociol. 83 1420
[12] Ben-Naim E, Krapivsky P L and Redner S, 2003 Physica D 183 190
[13] Amblard F and Deffuant G, 2004 Physica A 343 725

doi:10.1088/1742-5468/2009/08/P08001 17

http://dx.doi.org/10.1088/1742-5468/2009/08/P08001
http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1063/1.2008591
http://dx.doi.org/10.1007/s100510051177
http://dx.doi.org/10.1142/S0129183100000936
http://dx.doi.org/10.1142/S0219525900000078
http://dx.doi.org/10.1002/cplx.10031
http://dx.doi.org/10.1016/j.physa.2005.01.054
http://dx.doi.org/10.1177/0022002797041002001
http://dx.doi.org/10.1086/226707
http://dx.doi.org/10.1016/S0167-2789(03)00171-4


J.S
tat.M

ech.
(2009)

P
08001

Noisy continuous-opinion dynamics

[14] Stauffer D, Sousa A and Schulze C, 2004 J. Artif. Soc. Soc. Simul. 7 7
[15] Kozma B and Barrat A, 2008 Phys. Rev. E 77 016102
[16] Guo L and Cai X, 2009 Commun. Comput. Phys. 5 1045
[17] Carletti T, Fanelli D, Grolli S and Guarino A, 2006 Europhys. Lett. 74 222
[18] Carletti T, Fanelli D, Guarino A, Bagnoli F and Guazzinni A, 2008 Eur. Phys. J. B 64 285
[19] Ben-Naim E, 2005 Europhys. Lett. 69 671
[20] Lorenz J, 2005 Physica A 355 217
[21] Lorenz J, 2007 Int. J. Mod. Phys. C 18 1819
[22] Lorenz J, 2007 PhD Thesis Universität Bremen http://nbn-resolving.de/urn:nbn:de:gbv:46-diss000106688
[23] Laguna M F, Abramson G and Zanette D H, 2004 Complexity 9 31
[24] Porfiri M, Bollt E M and Stilwell D J, 2007 Eur. Phys. J. B 57 481
[25] Toral R and Tessone C J, 2007 Commun. Comput. Phys. 2 177
[26] Fichthorn K, Gulari E and Ziff R, 1989 Phys. Rev. Lett. 63 1527
[27] Considine D, Redner S and Takayasu H, 1989 Phys. Rev. Lett. 63 2857
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