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Abstract - We introduce a method by which stochastic processes are mapped onto complex networks.

As examples, we construct the networks for such time series as those for free-jet and low-temperature

helium turbulence, the German stock market index (the DAX), and the white noise. The networks are

further studied by contrasting their geometrical properties, such as the mean-length, diameter, cluster-

ing, average number of connection per node. By comparing the network properties of the investigated

original time series with those for the shuffled and surrogate series, we are able to quantify the effect

of the long-range correlations and the fatness of the probability distribution functions of the series on

the constructed networks. Most importantly, we demonstrate that the time series can be reconstructed

with high precisions by a simple random walk on their corresponding networks.
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There has been much recent interest in the study of complex networks and their applications in a

variety of fields, ranging from computer science and communications, to sociology and epidemiology

[1, 2, 3]. Graph theory provided the mathematical foundations for the study of complex networks,

which began in the 18th century with Euler’s solution to the famous Bridges of Konigsberg problem.

The work of Erdös and Renyi [4, 5] in the 1950s on the theory of random graphs has also been very

influential. A network - or a graph - is simply a collection of nodes or vertices connected by links or

edges. The links may be directed or undirected, and weighted or unweighted. Much recent research

has shown that many, and perhaps most, natural or even man-made phenomena may be usefully and

fruitfully described in terms of networks and their properties. The brain, for example, is a huge

network of neurons linked by synapses [6].

In parallel with the recent work on complex networks, there has also been much interest in, and

work on, analyzing nonlinear dynamical and stochastic processes which fluctuate widely and contain

correlations that may be very extended. Such processes occur in many natural and man-made phe-

nomena, ranging from various indicators of economic activities, such as the stock market, to velocity

fluctuations in turbulent flows, heartbeat dynamics, and many other phenomena [7, 8].

It is of interest and practical importance to develop frameworks that may connect the two different

representations of complex systems, namely, networks and widely fluctuating stochastic processes.

There have already been some attempts to map some random processes onto equivalent network rep-

resentations. For example, spatial networks that represent complex dynamics in high-dimensional

state spaces [9, 10, 11], as well as networks of pseudo-periodic time series [12], have been con-

structed.

In this paper we propose a general method by which a given stochastic process is mapped onto a

complex network with distinct geometrical properties. The relation between the statistical properties

of the stochastic time series, such as the intermittency and correlation length, and their stochastic be-

havior, as well as the properties of their equivalent networks are then studied. We show that a network

equivalent of a stochastic time series enables us to address a central question in the field of analysis

of the data for complex systems: Given a fluctuating, sequentially-measured set of experimental data,

how is it possible to reconstruct the time series, representing the data, with high precision? The re-

construction is essential to making predictions for the future. We show that for such processes the

corresponding time series can be reconstructed with high precision by a random walk on the network

equivalent. As examples, we construct complex networks for several distinct time series, such as
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those for the free-jet turbulence, financial markets (the German stock market index, the DAX), and

the white noise.

As is well-known, a given process with a degree of randomness or stochasticity may have a finite,

or even an infinite, Markov-Einstein (ME) time (or length) scale. The ME time (length) scale is the

minimum time interval (length scale) over which the data can be considered as a Markov process

[8]. To ascertain such a property, the data are first examined to see whether they follow a Markov

chain and, if so, their ME time (length) scale T is estimated [12, 13, 14, 15, 16]. We note that the

correlation and the ME scales are two independent scales in a time or spatial series [17]. For example,

for stochastic series that describe the properties of turbulent flows, which typically contain long-range

correlations, the ME length scale is the Taylor length scale [18]. The time series that we study in this

paper have finite ME time scales T .

The determination of the ME scale T of a stochastic series is done based on the least-squares

method and the likelihood statistical analysis [17, 19], by computing numerically the three-point

probability density function (PDF) of the series, and comparing the results with what is expected for

a Markov process. Then, the least-squares method is used to minimize the difference between the

two, in order to delineate the Markov properties of the series, and in particular the ME T . The details

of the method has been described in our previous publications [17, 19] and, therefore, need not be

repeated here.

Now let us consider a discrete stationary process x(t), with unit ME time scale T = 1 (in units

of the data lag). If M is the number of bins needed to precisely represent, or evaluate, the PDF of

x(t), the data are partitioned into M bins, with each bin having an equal number of data points. Each

bin is represented by a node in the equivalent complex network of the series, which would have M

nodes. When the PDF of the data is not Gaussian, we use the surrogate technique to transfer it to

a Gaussian function, while preserving the correlations in the data. Increasing the number of nodes

(bins) also increases the resolution of the network, but also the statistical errors. The statistical errors

increase due to the reduction of the number of data points in each bin. Thus, there is an optimal

number of nodes (bins) that has the highest resolution, such that the statistical errors do not eliminate

any meaningful information. The optimal number of the bins is estimated by minimizing the distance

(difference) of the PDF of the surrogated time series from (with) the Gaussian PDF. This is done by

the chi-square test.

Nodes i and j are linked if as the time increases the value of x(t) in bin i changes to that in bin
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j in one time step. A weight wij is attributed to a link ij, which is the number of times that a given

value of x(t) changes from its value in bin i to bin j in one time step, and is normalized at each node.

The transition matrix W = [wij] is, in general, not symmetric. Thus, the network is both directed

and weighted. For the time series with a finite ME time scale T > 1, one can construct the transition

matrix with entries given by p[x(t)|x(t − T )], and attribute to each node a set of data arrays with

length T (see below). In order to clarify the process of generating the network equivalents of the

series, we show in Fig. 1 the schematic network made from a simple series.

We constructed the equivalent complex networks for three series, namely, those for the free-jet

turbulence (FJT), the German financial market (the DAX), and the white noise (WN) time series. The

FJT data were for a fluid velocity, measured at various times at a fixed point in the flow system.

We also computed the ME time scales for the three series. Figure 2 presents the three network

equivalents of the three series. Each network was constructed using 3× 106 normalized data points in

each series, and contains about 103 nodes, with the distance of each node from the network’s center

being proportional to its number, meaning that the nodes with higher number of links are located at

larger distances from the network’s center. The intensity of the colors associated with the links is

proportional to their weight wij .

In Table I the networks’ characteristics, such as the mean link length, clustering coefficient, diame-

ter, average and maximum number of outgoing and incoming links (the nodes’ degree), 〈k2
out〉/〈kout〉,

and 〈k2
in〉/〈kin〉 are presented, where k is the nodes’ degree or connectivity. The mean length for a

directed weighted network was evaluated with Dijkstra’s algorithm [20], which accounts for the num-

ber of nodes in a probable path between every two edges. The clustering coefficient was calculated

by counting the normalized number of connected triplet of vertices [20], i.e.,

Ci =
Ai

Bi
=

∑
j,k wijwkiwjk
∑

j,k wijwki
. (1)

The clustering coefficient has a clear meaning in stochastic processes with Markov properties. Ai

is the probability of returning to state i after three ME time scales, i.e., A=wii(3T ), where we have

used the stationarity of the time series and the Chapman–Kolmogorov (CK) equation for the Markov

series. Note that wij is a conditional PDF that, for a process with the ME times scale T = 1, satisfies

the CK equation, whereas for T > 1 it satisfies the CK equation with, P (i, t + tM |j, t) = wij . The

CK equation states that wij(2T ) =
∑

k wikwkj . The coefficient Bi is also simplified because of the

nature of wij as the conditional probabilities. Indeed,
∑

j wij(T ) = 1, due to the normalization, and
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∑
k wki(T ) = p[x(t + T ) = i] is the probability of being in a state i in one step of the size of the ME

time scale. Note also that the latter sum is an unconditional probability measure of being in state i.

In terms of the network structure and properties, the DAX time series exhibits the interesting

feature that, its mean length and diameter are approximately equal to the corresponding values for

the WN network. However, the clustering coefficient of the DAX network is one order of magnitude

larger than that of the WN and is, in fact, comparable with that of the FJT. To investigate the effect of

intermittency and rare events in the corresponding networks of the time series, we repeat the procedure

for the FJT for a very large Reynolds number (see Table I). Due to the very high fluctuations of the

velocity field at the high Reynolds number, the clustering coefficient decreases. But, at the same

time, due to the increase in the rate of “rare” events with increasing Reynolds number, the network’s

diameter increases too.

To determine the effect on the network structure of long-range correlations and the fatness of the

tails of the time series’ PDF, we shuffled and surrogated the time series. In principle, long-range

correlations and the fatness of the PDF can lead to the intermittent or multifractality of a time series.

If the long-range correlations are the origin of the multifractality, then the corresponding shuffled

time series should exhibit monofractal scaling, since the long-range correlations are destroyed by the

shuffling. If, however, the multifractality is also due, in part, to the fat tails of the PDF, the shuffled

series will exhibit weaker multifractality than the original time series, as the multifractality due to the

fatness of the PDF of the time series is not affected by the shuffling.

To investigate the possibility of multifractality due to the broadness (fat tails) of the PDF, we sur-

rogate the time series. In this method the phases of the coefficients of the discrete Fourier transform

of the time series are replaced with a set of pseudo-independent quantities, uniformly distributed in

(−π, π). The correlations in the surrogate series do not change, but the probability function changes

to the Gaussian distribution. Our analysis indicates that for the shuffled time series the clustering

coefficients, diameter, and the mean length of the equivalent network take on values that are essen-

tially equal to those for the WN series, while the network for the surrogate of the time series increases

slightly in diameter and the mean length, but its clustering coefficients remains unchanged. This im-

plies that the clustering coefficients are almost independent of the structure of the time series’ PDFs.

We find for the time series that we study that the degree distributions of the outgoing and incoming

links, N(k+) and N(k−), have the property that, N(k+) % N(k−). Moreover, the network for the

turbulence time series x(t) has, on average, about 90-120 nodes, whereas the corresponding numbers
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for the DAX’s and WN’s networks are about 900 and 950 (on the order of the bin numbers). Thus,

the FJT time series x(t) does not contain the possibility of “jumps” from one bin to another arbitrary

bin, whereas such possibilities do exist for the DAX and WN series; see Fig. 3. Due to the different

numbers of the accessible nodes for the turbulence and the other time series, we have plotted the N(k)

for the DAX and WN in the inset of Fig. 3. Moreover, the plots of N(k) for the turbulence series with

the Reynolds numbers Re=36100 and 757000 indicate that, at the higher Reynolds number the peak

of the distribution shifts to higher values of k, but the distribution still does contain smaller values of

k as well.

We also find that the PDF of the weight differences wij −wji of the networks’ links has a positive

skewness for the FJT and DAX series, but vanishing skewness for the WN series, implying that in the

former case their third moments S3 ≥ 0. The typical values for S3 = 〈(wij−wji)3〉/〈(wij−wji)2〉3/2

are 0.047, 0.001, and 0.000 for the FJT at Reynolds number Re=36100, the DAX, and the WN series,

respectively. Thus, the FJT and DAX time series do not have symmetric adjacent matrices. The

symmetry is broken even more strongly in the FJT. Moreover, we find that, S3 = 0.0185 for the time

series for turbulence with low-temperature helium (as the fluid) at Re=757000, hence indicating that

the adjacent matrix is more symmetric at high Reynolds numbers Re.

An important aspect of this work is that, the networks enable us to reconstruct the time series,

such that they will be similar, in the statistical sense, to the original time series. The dynamics of

conditional PDF P (x, t|x0, t0) is governed by the Kramers-Moyal (KM) equation [19]:

∂P (x, t|x0, t0)/∂t =
∑∞

l=1(−∂/∂x)l[D(l)(x)P (x, t|x0, t0)].

The KM coefficients D(l)(x) may be written in terms of the weights wij as, D(l)(xj) =
∫

dxi (xi −

xj)lwij . The n-point joint PDF can be written in terms of P (x, t|x0, t0) and P (x, t). This means that

knowledge of the weights wij yields all the correlation functions of the process x(t). This fact enables

us to reconstruct the time series with very high precision.

In practice, to reconstruct a given time series, we first construct its network equivalent and the

weights wij and, then, perform a random walk on the network, with the transition probabilities of the

walk being the weights wij . The random walk then generates a time series (of the visited nodes) with

the same statistical properties as those of the original series. The generalization of the reconstruc-

tion procedure to time series with a ME time scales T > 1 is also straightforward. One constructs

the transition matrix with its entries given by, p(xt|xt−T ), and attributes to each node a set of data
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arrays with length T > 1. Therefore, to reconstruct the time series with T > 1, a stochastic walker

moves from one node to another, such that at each node i we set the array, xi(t) = (x1, x2, · · · , xT ).

Moreover, we may use the same method for constructing the equivalent networks for coupled or mul-

tidimensional time series. For example, for the coupled time series x(t) and y(t), we assign the vector

(x1, · · · , xT1 , y1, · · · , yT2) to each node, where the time series x(t) and y(t) have the ME time scales

T1 and T2, respectively.

As an example, consider a time series with with T % 20, shown in Fig. 4. There, we have plotted

the data for the FJT with a Reynolds number of 36100, and reconstructed the time series, from the top

to the bottom, respectively. The reconstructed time series preserves all the statistical properties of the

original series over every scale. To make a quantitative check on this claim, we also present in Fig. 4

the PDFs of the turbulence time series increments, i.e., P (x(t + τ)− x(r); τ) for τ = 1, 10, 100 and

800, respectively [21]. As shown in Fig. 4, the PDFs of the reconstructed time series have the same

properties as the original time series. This implies that the reconstruction also preserves the cascade

nature of the turbulence series in scale.

Figure 4 also presents the scaling behavior of the structure function of the velocity increments,

i.e., Sq = 〈|x(t + τ)− x(t)|q〉, for q = 2, 3, and 4. The results indicate again that they have the same

scaling nature and properties. Thus, the agreement between the statistical properties of the original

and reconstructed time series is excellent, at least with respect to the general structure functions.

Finally, we note that knowledge of the weights wij enables us to determine the level-crossing

frequency of the time series [22, 23, 24]. The level crossing is characterized by the quantity ν+
α ,

which is the average frequency of positive-slope crossing of a level α in a time series. The frequency

ν+
α of the crossings is deduced from the underlying weight matrix wij . For discrete time series, the

frequency is given by,

ν+
α =

∫ α

∞

∫ ∞

α
wijP (xj) dxidxj. (2)

In summary, we introduced a method by which stochastic processes are mapped onto equivalent

complex networks. We described the physical interpretation of the networks’ geometrical properties,

such as their mean length, diameter, clustering, average number of connection per node, and their

stochastic interpretations. As example, we determined the network characteristics of the free-jet and

low-temperature helium turbulence, the German stock market index (the DAX), and the white noise.

For a given process with a finite Markov-Einstein time (or length) scale, the corresponding network

enables us to reconstruct the time series with high precision, by performing a random walk in the
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network.

As a distinct application, generation and regeneration of large surfaces would be possible by

sampling a real surface with high resolution (with the same resolution as nanoscope imaging, e.g., the

atomic force microscope images). This would then be applicable to computer simulation of surfaces

and interfacial processes, such as diffusion of materials between rough surfaces, the effect of surface

roughness on the friction, and so on [14]. It was shown that conditional probability distribution

function P (x, t|x0, t0), satisfies the Kramers-Moyal equation, with the coefficients of the equation

given by the weights of the corresponding adjacent matrix. We also established the relation between

the level-crossing frequency of the time series in terms of the weights wij attributed to each link of

the network. The method described here is applicable to a wide variety of stochastic processes and,

unlike many of the previous methods, does not require the data to have any scaling feature.
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Network’s Properties of different time series

Networks Mean length Clustering Diameter kMax,out/kMax,in 〈(k2
out〉/〈kout〉)/(〈k2

in〉/〈kin〉)

White Noise 1.0498 0.001 2 970/973 0.0067/0.0065

Stock Market (DAX) 1.1044 0.013 2 964/960 0.0922/0.0935

Turbulence, Re=36100 3.820 0.038 15 131/128 0.3359/0.3335

Turbulence, Re=757000 3.776 0.023 23 178/181 0.3458/0.3469
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Figure 1: A schematic network (b) made from a signal(a).
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Figure 2: Networks for the time series of, (A) turbulence; (B) the white noise, and (C) log-returns of

the DAX. The networks have 1000 nodes and are constructed by 3× 106 normalized data points.
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