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Species competition: coexistence, exclusion
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We present properties of Lotka–Volterra equations describing ecological competition
among a large number of interacting species. First we extend previous stability conditions
to the case of a non-homogeneous niche space, i.e. that of a carrying capacity depending
on the species trait. Second, we discuss mechanisms leading to species clustering and
obtain an analytical solution for a state with a lumped species distribution for a specific
instance of the system. We also discuss how realistic ecological interactions may result
in different types of competition coefficients.

Keywords: competition; Lotka–Volterra; competitive exclusion; limiting similarity;
pattern formation

1. Lotka–Volterra competition and species distribution

Competitive interactions occur when entities in a system grow by consuming
common finite resources. They are ubiquitous in many fields of science:
examples include biological species competing for food (MacArthur & Levins
1967; Roughgarden 1979; Case 1981), mode competition in nonlinear optical
systems (Benkert & Anderson 1991), or alternative technologies competing for a
market (Pistorius & Utterback 1997). An early, simple, but powerful model for
competitive interactions is the Lotka–Volterra (LV) set of competition equations
(Volterra 1926; Lotka 1932),

Ṅi = riNi

⎛
⎝1 − 1

Ki

m∑
j=1

GijNj

⎞
⎠ , i = 1, . . . , m, (1.1)

where m is the number of species, Ni is the population of species i, ri is
its maximum growth rate, Ki is its carrying capacity and Gij is the matrix
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characterizing the interaction among species i and j , more specifically the decrease
in the growth rate of species i due to the presence of j . Competitive interactions
are characterized by Gij ≥ 0, the situation to be considered here, whereas negative
interactions may model situations of mutualism, predation or symbiosis.

In classical ecological niche theory, species are associated to points in an
abstract niche space. Coordinates in this space represent relevant phenotypic
characteristics, for example size of individuals in a species, or the size of preferred
prey, such that intensity of competition is larger if species are closer in this space.
For simplicity we assume this space to be one-dimensional (multi-dimensional
generalizations are straightforward, as briefly mentioned later). If niche locations
can be considered to be a continuum, we can write equation (1.1) as

∂tψ(u, t) = r(u)ψ(u, t)
[
1 − 1

K (u)

∫
G(u, v)ψ(v, t) dv

]
, (1.2)

where ψ(u, t) is the population density at niche location u. The integral extends
over the full niche space, which could be finite or infinite. For most purposes,
equations (1.1) and (1.2) can be considered as equivalent, since the second
is obtained from the first in the limit of many close interacting species, and
equation (1.1) can be recovered from equation (1.2) for a discrete distribution of
species,

ψ(u) =
m∑

i=1

Niδ(u − ui), (1.3)

with Gij = G(ui , uj), ri = r(ui) and Ki = K (ui).
It is widely believed that equations (1.1) or (1.2) predict a competitive exclusion

leading to a limiting similarity situation (Abrams 1983), in which a pair of species
too close in niche space cannot coexist, and one of them would become extinct.
However, it is known that the model allows for continuous coexistence of species
in some situations (Roughgarden 1979) and refinements on the conditions for this
coexistence have been developed with emphasis on the effect of the shape of the
carrying capacity function K (u) (Meszéna et al. 2006; Szabó & Meszéna 2006). In
this context, a particularly surprising result was the finding by Scheffer & van Nes
(2006) of a situation—for uniform carrying capacity—which was neither of full
coexistence nor of full exclusion, but of clusters or lumps of tightly packed species
which did not exclude each other, but were well separated from other clusters so
that there was a type of limiting similarity leading to a minimum intercluster
distance. Clustering of individuals or entities under competitive interactions of
the LV type had already been observed in other contexts (Fuentes et al. 2003;
Hernández-García & López 2004, 2005; Ramos et al. 2008), where the mechanism
was the diffusive broadening of an otherwise zero-width species or entity. In
contrast, the lumps in Scheffer & van Nes (2006) appeared even in the absence
of diffusion in niche space, which is the situation also considered here.

The importance of the functional form of the interaction kernel Gij in
equation (1.1) or G(u, v) in equation (1.2) was stressed by Pigolotti et al. (2007)
for the case of uniform carrying capacity and interactions depending only on
differences of niche positions, and found to be relevant in an evolutionary context
by Leimar et al. (2008). For that case the positive-definite character of the Fourier
transform of G(u, v) = G(u − v) is a condition implying the absence of limiting

Phil. Trans. R. Soc. A (2009)

 on 19 July 2009rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Species competition 3185

similarity. Species clustering was reported, but for interaction functions rather
different from the Gaussian used in Scheffer & van Nes (2006). In fact, for the
Gaussian interaction case most results are extremely sensitive to details such as
the implementation of the boundary conditions or weak ecological second-order
effects (Pigolotti et al. 2008). Thus, a clarification of the mechanisms leading to
species clustering in LV models would be desirable. In addition, the results in
Pigolotti et al. (2007, 2008) were obtained under the unrealistic assumption of
homogeneity in niche space, whereas the inhomogeneities in the carrying capacity
are known to play relevant roles (Szabó & Meszéna 2006). For simplicity we
restrict our description to the standard situation in which competition is stronger
among species closer in niche space. The existence of studies of LV systems
where non-local interactions beyond that type are considered is worth mentioning
(Doebeli & Dieckmann 2000). That situation can also be described by the
general formalism used here of an integral kernel function, and our general results
therefore also apply to the situation with more general non-local interactions.

In this paper we analyse some mathematical properties of the LV model
(1.1) or (1.2). In §2 we show that the positive-definiteness of the kernel G
remains a determining condition for stable coexistence even for non-constant
K (u). In §3, we discuss the mechanism producing lumped species distributions
and explicitly provide an analytical expression for a particular interaction kernel.
In the appendix we show that, in contrast with the earliest characterizations of
the interaction kernel G (MacArthur & Levins 1967; Roughgarden 1979), both
positive- and non-positive-definite kernels can arise from more detailed ecological
models which consider the dynamics of the consumed resource. We use periodic
boundary conditions in our numerical simulations. We expect the effects of this
simplifying but unrealistic assumption to be unimportant at least when a non-
constant carrying capacity limits the presence of species to a limited region of
niche space.

2. The stability of close coexistence

A simplifying assumption for the study of the LV model is that of homogeneity in
niche space. In this case, the carrying capacity and growth rate are constants, K0
and r0, and the interaction kernel depends only on differences of niche positions
G(u, v) = G(|u − v|). Niche space could be infinite, but, in the case in which it
is finite, homogeneity can only be achieved under periodic boundary conditions.
Under these restrictions it is easy to see that a steady solution to equation (1.2)
which is homogeneous and everywhere non-vanishing always exists: ψ0 = K0/Ĝ0,
where Ĝ0 ≡ ∫

duG(u). This solution represents coexistence of all possible species
without a limit to their similarity. Its stability against small perturbations can be
analysed by linearization of the equation resulting from substitution of ψ(u, t) =
ψ0 + δψ(u, t) in equation (1.2). The solution for the Fourier transform of the
deviation from the homogeneous state, δψ̂q(t), is

δψ̂q(t) = δψ̂q(0)eλq t , with λq = −r0
Ĝq

Ĝ0

, (2.1)
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where Ĝq is the Fourier transform of G(u). Thus, the homogeneous solution ψ0 is
stable if Ĝq is positive ∀q, while a instability leading to pattern formation occurs
when Ĝq may take negative values (Fuentes et al. 2004; Hernández-García &
López 2004; López & Hernández-García 2004; Pigolotti et al. 2007). We note that
many steady solutions to equation (1.2) exist besides ψ0 (in particular, solutions
of the form equation (1.3)). This is so because dynamics preserves ψ(u) = 0 at all
places where there is no initial population. Notice also that ψ0 is the only strictly
positive solution. Among this multiplicity of solutions the ones that will be more
relevant are those which are stable under perturbations or small immigration
(Pigolotti et al. 2007).

An interesting class of functions to be used as kernels and carrying capacities
is the family {gp

σ } given by

gp
σ (u) ≡ exp(−|u/σ |p), (2.2)

which is parameterized by the value of p. The widely used Gaussian kernel is
obtained for p = 2. When p < 2 the functions are more peaked around u = 0 (the
case p = 1 is an exponential) and for p > 2 they become more box-like (g∞

σ (u) is
the flat box with value 1 in the interval [−σ , σ ] and zero outside). The width of
the kernel σ gives the competition range in niche space. We have positivity of the
Fourier transform if p ≤ 2. This implies that the homogeneous solution is stable
under evolution with uniform K and kernel G of the form equation (2.2) if p ≤ 2.
When p > 2, the homogeneous solution is unstable and the system approaches
delta comb solutions of the type equation (1.3), with a spacing approximately
1.4σ (Pigolotti et al. 2007) that represents limiting similarity situations.

We now generalize the above stability analysis to the more realistic case in
which there is no homogeneity in niche space. First, we consider the simpler
case of a symmetric kernel G(u, v) = G(v, u), which in particular includes the
previous case of kernels depending only on species distance: G(u, v) = G(|u − v|).
Note that in this symmetric case one can write equation (1.2) in potential form,

∂tψ(u, t) = −r(u)
ψ(u, t)
K (u)

δV [ψ]
δψ(u)

, (2.3)

with the functional potential given by

V [ψ] = −
∫

K (u)ψ(u, t) du + 1
2

∫∫
G(u, v)ψ(u, t)ψ(v, t) du dv. (2.4)

Stationary solutions of equation (1.2) are those for which the right-hand side of
equation (2.3) equals 0. This has many possible solutions. We define the natural
stationary solution, ψN (u), as the one which is positive and non-vanishing for all
u, so that (

δV
δψ

)
ψN

= 0, (2.5)

that is, the one satisfying∫
G(u, v)ψN (v) dv = K (u), ∀ u. (2.6)
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The solution ψN (u) can be considered as the non-homogeneous generalization
of ψ0 introduced in the homogeneous case. In the particular case in which
G(u, v) = G(u − v), the natural solution can be explicitly written in terms of
Fourier transforms of the competition kernel and the carrying capacity, either in
an infinite system or in a finite one with periodic boundary conditions,

ψ̂
N
q = K̂ q

Ĝq

. (2.7)

This requires that these Fourier transforms and their inverses exist and lead
to positive population densities. When this happens, a continuum species
coexistence is obtained, and its existence is generally robust against small changes
in G or K . Later we show that it is also an attractor of the dynamics when
Ĝq satisfy positivity requirements (p ≤ 2, for the family in equation (2.2), being
p = 2 the marginal case). For a uniform carrying capacity, the natural solution
equation (2.7) always exists and is uniform in phenotype space ψN (u) = ψ0. But
the natural solution may lose positivity or even cease to exist depending on the
properties of G and K . For example, when both G(u) and K (u) are of the form
equation (2.2) with p = 2, the inverse Fourier transform of equation (2.7) exists
when the carrying capacity has a value of σ larger than the kernel G, but not in
the opposite case.

Figure 1 shows stationary solutions attained at long times by the dynamics
in equation (1.2) illustrating the situations described above, starting from a
smooth non-vanishing initial condition. In the first case we choose a kernel
and carrying capacity functions (G(u) = g1

σ (u), K (u) = sech(u/σ)), such that
the natural solution exists and is positive everywhere. Thus it is stable,
and it is the steady state attained at long times. In fact it can be analytically
calculated,

ψN (u) = a−1 sech3(u/σ). (2.8)

In the second case the non-positiveness of the kernel used (with a carrying
capacity of the type equation (2.2)) breaks down the initial configuration into
lumps, which at long times approach zero-width delta functions with forbidden
zones in between. In the third case, despite Ĝq being positive, a positive natural
solution does not exist. Several outcomes are possible but, for the kernel and
capacity used, the system approaches a single hump solution which vanishes in
part of the niche space.

More in general, but still in the symmetric G case G(u, v) = G(v, u), writing
the LV model in potential form (equation (2.3)) is of great use since one can
show that, provided r(u) and K (u) are positive, dV /dt ≤ 0. This implies that V
is a Lyapunov potential and dynamics proceeds towards its absolute minimum,
or if ψ(u, t = 0) = 0 for some u, towards the minimum of V under such constrain.
Notice that, since the potential is a quadratic form, ψN is a global attractor
(starting from non-vanishing initial conditions) when the competition kernel is a
positive-definite quadratic form, which means that

∫∫
f (u)G(u, v)f (v) du dv ≥ 0,

∀f (or
∑

ij xiGijxj ≥ 0, ∀{xi} in the discrete case). This generalizes the previous

stability condition on the Fourier transform Ĝq > 0 to niche inhomogeneous cases,
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Figure 1. Long-time solutions of equation (1.2) for different kernels and carrying capacities. (a)
G = g1

σ , K = sech(u/σ), with σ = 0.1. The natural steady solution (ψN = a−1sech3(u/σ)), which
is positive and non-vanishing everywhere, is reached at long times. (b) G = g4

0.1, K = g0.5
0.1 . Under

this non-positive-definite competition kernel, the solution shown is still evolving and approaches
a singular delta comb of the type (1.3) at long times. (c) G = g0.5

0.1 , K = g1
0.1. A positive natural

solution does not exist and the system approaches a single hump solution which vanishes in part
of the niche space.

and shows that the stability result was global indeed. In a multi-dimensional niche
space, the same analysis shows that the positive-definiteness of the quadratic form
remains the condition for the global stability of the natural solution. In any case,
the important consequence is that the stability of the natural solution depends
uniquely on the competition kernel and not on the carrying capacity (provided the
relation kernel–capacity is such that the natural solution exists and is positive).
In particular, for competition kernels of the form equation (2.2), ψN is always (if
existing and positive) a globally stable solution of the dynamics for p ≤ 2, and
unstable otherwise.

The crucial difference in the case of a non-symmetric competition kernel is
that there is no obvious Lyapunov potential for the system. This implies that
there are no global stability results available. However, local stability can be
investigated. Let us consider a small perturbation of the positive natural solution
ψN (u) + δψ(u, t). To linear order, the perturbation evolves as

dδψ(u, t)
dt

= −r(u)
ψN (u)

K (u)

∫
G(u, v)δψ(v, t) dv. (2.9)
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We now consider the functional H (δψ) ≡ ∫
du (A(u)K (u)/r(u)ψN (u))(δψ)2,

where A(u) is a positive function so that H ≥ 0 and H (0) = 0. Let us compute its
time derivative,

dH
dt

= −2
∫

δψ(u)A(u)G(u, v)δψ(v) du dv. (2.10)

If for some choice of A(u) one has that A(u)G(u, v) is positive definite,
then dH /dt < 0 and δψ = 0 will be approached. This shows that ψN is linearly
stable in such a case. We note that the case in which G(u, v) itself is positive
definite trivially guarantees the positivity of A(u)G(u, v), with a constant A.
Thus, even in this more general non-symmetric case, it is the character of the
interaction kernel G, and not of the carrying capacity (provided it is such that
the natural solution exists and is positive), which determines the stability of the
natural solution.

3. Lumped species distributions

Scheffer & van Nes (2006) found transient but long-lived solutions of
equation (1.1) consisting of periodically spaced lumps containing many close
species. They used a Gaussian interaction kernel which turned out to introduce
an excessive sensitivity of the results to the numerical implementation of the
model and boundary conditions (Pigolotti et al. 2008). However, they found
similar solutions as steady configurations when adding an extra predation term
acting effectively only on species with high population. This can be thought of
as an extra intraspecific competition since it decreases the growth of species with
many individuals. Exploiting this idea, Pigolotti et al. (2007) checked the effect of
using in equation (1.2) a kernel of the type equation (2.2) but with an enhanced
interaction at u = 0, i.e. enhanced intraspecific competition. In particular, they
used a constant carrying capacity K (u) = K0 and a flat box kernel with an added
delta function at the origin (figure 2),

G(u) = g∞
σ (u) + aδ(u). (3.1)

Lumped patterns were obtained numerically for a = 1.
Because the dynamics of equation (1.2) usually involves very long transients,

it is interesting to calculate analytically the steady lumped solution in the simple
case of a kernel (3.1) and uniform carrying capacity K0 (in the infinite line).

We begin with the steady-state condition∫
G(u, v)ψ(v) dv = K (u), (3.2)

valid at u such that ψ(u) �= 0, that particularized to equation (3.1) and constant
K reads

aψ(u) +
∫u+σ

u−σ

dvψ(v) = K0. (3.3)

This is transformed into a differential-difference equation after differentiation
with respect to u,

aψ ′(u) + ψ(u + σ) − ψ(u − σ) = 0, where ψ(u) �= 0. (3.4)
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Figure 2. The kernel in equation (3.1) (a), and the analytical steady solution given by
equations (3.5) and (3.8–3.9) for a = K0 = 1, σ = 0.8, L = 0.3 and d = 1 (b).

This steady equation has many solutions, including the natural one ψ0 = K0/(a +
2σ) which is non-vanishing everywhere, or delta combs such as equation (1.3).
We search for solutions of the type in figure 2, i.e. periodic arrays of lumps, of
period d, each one having a symmetric hump shape f (u) of width 2L (i.e. f (u) = 0
if u /∈ [−L, L]),

ψ(u) =
∞∑

n=−∞
f (x − nd). (3.5)

We are assuming that the lumps do not overlap, so that d > 2L. We also note
that if σ + 2L < d there is no interaction between different lumps, so that for
u ∈ [−L, L] equation (3.4) reduces to f ′(u) = 0 and there is no lump solution.
Moreover, analysis is much simplified if each of the lumps interacts only with
its neighbours (σ + 2L < 2d). Thus we restrict to d < σ + 2L < 2d, for which
equations (3.4) with (3.5) and u ∈ (−L, L) becomes

af ′(u) + f (u + σ − d) − f (u − σ + d) = 0. (3.6)

The general solution of this linear equation is obtained as a sum of exponentials
exp(λu), with

aλ = sinh(λ(d − σ)). (3.7)

λ = 0 is always a solution, and if d − σ < a there are two additional solutions ±λ,
plotted in figure 3. For d − σ > a the only solution is the constant one, but in the
opposite case (the situation favoured by enhanced intraspecific competition a)
the solution is a linear combination of three exponentials. Two of the constants
of the combination are determined from f (L) = f (−L) = 0. The third one, which
gives the overall normalization, can be obtained by returning back to the original
equation (3.3). Finally we get

f (u) = A
(

1 − cosh(λu)

cosh(λL)

)
, if u ∈ [−L, L],

= 0, elsewhere,

⎫⎪⎬
⎪⎭ (3.8)
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Figure 3. The solution λ (positive branch) of equation (3.7) giving the inverse width of species
lumps. The width is finite for d − σ < a, which is favoured by larger enhanced intraspecific
competition a.
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Figure 4. The kernel G = g4
0.2 + 0.8g1

0.02 (a), and the steady solution obtained numerically from it
at long times with constant K0 = 1 (b).

with

A = K0

a (1 − sech(λL)) + 2
λ
(λL − tanh(λL))

, (3.9)

and the value of λ which is plotted in figure 3. Figure 2 shows the analytical
solution equation (3.5) with equations (3.8) and (3.9). We have not studied the
stability of this configuration. But the numerical results in Pigolotti et al. (2007)
indicate that it is stable for some values of L and d.

We finally stress that the appearance of the lumped solution is not a
consequence of the singularity of the delta function in the kernel. In fact, any
kernel sufficiently peaked at the origin will favour the coexistence of close species.
If the behaviour at larger distances of the kernel makes it not positive definite,
then full coexistence will be unstable and the natural solution will split into
disjoint lumps. An example of the final steady state in this situation is shown in
figure 4, with a kernel G = g4

0.2 + 0.8g1
0.02, which has the properties just described

and contains no delta singularity.
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Appendix A. Models leading to LV competitive interactions

We have seen that the character of the interaction kernel G is of major
importance to determine the qualitative outcome of LV competition. In the
original formulation of the niche model, however, only positive-definite kernels
were allowed. The reason is that competition kernels were derived in terms of
utilization functions ui(x), describing how consumer i uses resource at niche
location x (assumed to be continuous) (MacArthur & Levins 1967; Roughgarden
1979),

Gij =
∫

ui(x)uj(x) dx∫
u2

i (x) dx
. (A 1)

When the resource is directly related to space, equation (A 1) can be justified
by considering the probability that consumer i meets consumer j (Roughgarden
1979). It is easy to see that Gij obtained from (A 1) is positive definite. We
show in the following, however, that relation (A 1) is by no means general, and
that a greater variety of kernels—positive or non-positive definite, so that the
natural solution representing coexistence can be either stable or unstable—could
be obtained from equations in which resources are explicitly modelled. Related
calculations could be found, for example, in Schoener (1974).

We consider a set of predators (or consumers) with populations Ni , i =
1, 2, . . . , m, competing for different types of prey populations or resources, Rα,
α = 1, 2, . . . , n, the latter growing in a logistic way with growth rate βα and
carrying capacity Qα in the absence of predators. Particular equations modelling
this are

Ṙα = −Rα

∑
i

aαiNi + βαRα

(
1 − Rα

Qα

)
, (A 2)

Ṅi = Ni

∑
α

SiαRα − diNi , (A 3)

where di is the death rate of species i. The interaction coefficients are aαi , the
depletion rate of resource α produced by species i, and the sensitivity Siα, giving
the growth rate of i thanks to resource α. LV-type dynamics arises when the
time scale for resource evolution is much faster than that of the consumers (i.e.
Siα and di → ∞, but with their ratio finite). In this case, adiabatic elimination
of the resource can be done (Ṙα ≈ 0, so that each prey is at each instant at the
equilibrium determined by their consumers), giving

Rα ≈ Qα

(
1 − 1

βα

∑
i

aαiNi

)
, (A 4)

for the non-vanishing resources. The impact matrix, Dαi , describing the depletion
of resource α by species i (Meszéna et al. 2006) is Dαi = Qαaαi/βα, which
substituted into the consumers equation, leads to

Phil. Trans. R. Soc. A (2009)

 on 19 July 2009rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Species competition 3193

Ṅi = Ni

⎛
⎝ri −

∑
j

CijNj

⎞
⎠, (A 5)

where ri = ∑
α SiαQα is the maximum growth rate and Cij = ∑

α SiαDαj . Thus, the
result is an effective interaction among the predators which is of LV type. It is
customary to write equation (A 5) in terms of the carrying capacity Ki , defined as
the equilibrium population Ni attained in the absence of the other competitors,
i.e. Ki = ri/Cii . In terms of it, equation (A 5) becomes identical to equation (1.1),
with

Gij = Cij

Cii
=

∑
α SiαDαj∑
α SiαDαi

. (A 6)

Having a continuum R(x) of resources instead of a discrete set Rα does not
introduce important difficulties. Simply, one should replace sums by integrals,
replacing the coefficients of equation (A 5) by

ri =
∫

Si(x)Q(x) dx , (A 7)

Cij =
∫

Si(x)Dj(x) dx , (A 8)

Gij =
∫

Si(x)Dj(x) dx∫
Si(x)Di(x) dx

. (A 9)

One can also consider a continuum of species, labelled by their phenotypes u,
so that equation (1.1) is replaced by equation (1.2) with K (u) = r(u)/C (u, u),
G(u, v) = C (u, v)/C (u, u), and r(u) and C (u, v) given by obvious generalizations
of equations (A 7) and (A 8).

It is clear that the presence in the kernel Gij of two different functions (compare
with the most restrictive expression (A 1)) gives enough freedom to obtain a
variety of kernel behaviours under different circumstances. A particularly popular
choice is to assume that impact and sensitivity are proportional: Siα = εDαi , with a
constant efficiency ε. In the continuum resource case the functions can be written
in terms of a single utilization function ui(x) as Di(x) = ui(x) and Si(x) = εui(x),
leading to the classical expression (A 1). Slightly more general cases arise when
the efficiency depends only on the resource, ε = εα, or on the consumer, ε = εi ,
or when dependence on the two types of species factorizes, ε = viwα. In all these
cases (if the efficiency is positive) one is led to a kernel Gij , which is positive
definite. In more general cases, one can have a kernel leading to instability of the
coexistence state.

We conclude with two instances of ecological interactions in equation (A 3)
which allows the stability to be tuned. First, a homogeneous discrete and infinite
niche space in which all resources have the same internal dynamics Qα = Q, βα =
β, ∀α, as well as the consumers: di = d, ∀i. The interactions are taken to be
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Siα = gδi,α,

aα,j = β

Q
Dαj = aδα,j + b(δα,j−1 + δα,j+1).

⎫⎬
⎭ (A 10)

This models a situation in which the consumer k grows only by consuming its
optimal resource Rk , whereas it depletes also the neighbouring resources, Rk+1
and Rk−1. We have ri = Qg, Ki = β/a, Cij = (Qg/β)(aδi,j + b(δi,j−1 + δi,j+1)), and
Gij = δij + (b/a)(δi,j−1 + δi,j+1) so that equation (1.1) is now

Ṅi = QgNi

[
1 − 1

β
(aNi + b(Ni+1 + Ni−1))

]
. (A 11)

The natural solution, i.e. the one in which all species have positive non-zero
population, is N i = β/(a + 2b), ∀i. Its linear stability can be studied by
linearization, Nl(t) = N l + δNl(t) and substitution of the ansatz δNl ≈ eλq teiql

(here i = √−1). We find λq = −(Qg/β)(a + 2b cos q), q ∈ [−π , π ]. λq are the
eigenvalues of −Cij , and stability of N i requires all these eigenvalues to be
negative, i.e. Cij to be positive definite. When a > 2b, then λq < 0 ∀q, and the
natural coexistence solution is globally stable (see results in §2). It is unstable
otherwise. In this example, there is no well-defined single utilization function and
the positivity properties of the interaction kernel and thus the stability of the
natural solution can be changed by varying the parameters.

As a second example, with non-constant carrying capacity, we consider a
continuous distribution of resources and species on the line, and we take

Q(x) = Qg(x), β(x) = βg(x),

Su(x) = sδ(u − x), au(x) = f (u − x),

which implies that the consumers of phenotype u grow only from the resource
at location x = u, but they deplete a wider range characterized by f . This
leads (in the continuous formalism) to r(u) = sQg(u), C (u, v) = sQf (u − v)/β,
K (u) = βg(u)/f (0) and G(u, v) = f (u − v)/f (0). In this example, by choosing
the functions g and f , we can impose any desired combinations of carrying
capacity and interaction kernel. Gaussianity or positive-definiteness are particular
cases, no more natural in this generalization than alternative choices leading to
non-positiveness, instability and thus exclusion zones between clumps of species.
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