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Abstract: We show the advantages of controlling the unstable dynamics of 
a semiconductor laser subject to conventional optical feedback by means of 
a second filtered feedback branch. We give an overview of the analytical 
solutions of the double cavity feedback and show numerically that the 
region of stabilization is much larger when using a second branch with 
filtered feedback than when using a conventional feedback one. 
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1. Introduction 

The control of unstable semiconductor lasers (SCL) has received considerable attention during 
recent years. For example, the presence of periodic or chaotic oscillations can appear when 
these lasers are subject to conventional optical feedback (COF). Although the chaotic 
behavior can be useful in, e.g. chaos based applications [1] these oscillations are, in general, 
unwanted and must be avoided or stabilized. It is our purpose in this work to stabilize periodic 
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or chaotic oscillations of a SCL subject to conventional optical feedback into CW emission. 
To this end we use a second branch subject to a filtered feedback from an external mirror. 

One of the pioneering techniques to control unstable periodic orbits was proposed by Ott, 
Grebogi, Yorke [2]. They showed how to stabilize chaotic oscillations into periodic 
oscillations by applying small perturbations proportional to the deviation from the desired 
periodic orbit. Another well known method of control is due to Pyragas [3]. In this method the 
control is reached by a feedback loop whose round trip time matches the one of the desired 
periodic orbit. The Pyragas scheme has been successfully applied to different systems [4,5]. 

The control of a laser subject to COF was studied in ref [6]. It was shown that by using a 
second COF branch (CFB) and properly adjusting the feedback delays and strengths complex 
dynamical regimes can be stabilized. However, the control can be achieved only for very 
precise values of the parameters of the two CFB. To avoid these limitations we propose the 
use of a filtered optical feedback branch (FFB), as stabilizing branch, in order to get more free 
parameters and have more opportunities to stabilize the system. We anticipate that when using 
the FFB the stabilization is easier and much more effective. This control technique would find 
application in information transmission systems when damages or unavoidable feedback in 
the transmission channel occur and can result in a behavior that is not desired in the system. 

The paper is structured as follows. In Section 2 we describe the model. In Section 3 we 
show analytical solutions for a COF case and for the case of one branch with COF and the 
other with FFB. The control using FFB is presented in Section 4, where we highlight the 
advantages of the proposed setup compared to that of the COF. Finally, the summary and 
conclusions are given in Section 5. 

2. Setup and the model 

The proposed setup is depicted schematically in Fig. 1. It consists of a SCL coupled to the 
external reflectors R1 and R2, that could be implemented, e.g., by using two fiber cavities. One 
feedback branch, governed by reflectivity R1, is the conventional feedback branch (CFB) and 
the other governed by R2 is the FFB. 

 

Fig. 1. Investigated setup. A laser with fiber-based external cavities. The cavities lengths are l1 
= 0.05 m and l2 = 0.03 m. The refractive index of the optical fiber is n = 1.5. 

Filtered feedback can be obtained from a grating or a Fabry-Perot resonator. In our case 
we consider a grating filter and, for simplicity, single reflection in both CFB and FFB. The 
frequency dependent reflectivity in the FFB r(ω) is described by a Lorenzian function [7,8] 
with width λ and detuning ∆ω with respect to the solitary laser frequency ω0. 
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The laser dynamics is analyzed in the framework of the extended Lang-Kobayashi rate 
equation [9] for the complex field amplitudes E(t), F(t) and excess carrier density N(t) 
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where τ1 and τ2 are the roundtrip times in the CFB and FFB, respectively. γ1 and γ2 are the 

feedback strengths governed by the reflectivity R1 and R2, respectively. φ = ω0τ1 and ψ = ω0τ2 
are the accumulated optical phases in the CFB and FFB, respectively. The second and the 
third terms in the Eq. (2) correspond to the feedback from CFB and FFB, respectively. The 

other parameter values are: α = 5 the linewidth enhancement factor, g = 1.5·10
−5

 ns
−1

 the 

differential gain, s = 4·10
−7

 the gain saturation coefficient, τph = 2 ps and τn = 2 ns the photon 
and carrier lifetimes, respectively; N0 = 1.5·10

8
 the carrier number at the transparency. The 

injection current is I = 45 mA (threshold current Ith = 14.7 mA). 

3. Stationary states. Saddle-node bifurcation 

The stationary states of the system (2-4) are given by rotating wave solutions (external cavity 
modes, ECMs) of the form 

 ( ) , ( ) , ( ) ,s s s
i t i t i

s s sE t E e F t F e N t N
ω ω Φ+= ⋅ = ⋅ =   (5) 

where Es, Fs, ωs, Φs, Ns are time-independent real constants. Inserting (5) into (2-4) we obtain 

 ( )1 1 2 2sin( arctan( )) sin arctan( ) ,s s eff sD Dω φ ω τ α ψ ω τ α δ= − − + − − +   (6) 

where 2
1 1 1= +D γ α , ( )( )22

2 2 1 1= + + −∆eff sD γ α ω ω λ , ( )( )arctan= −∆sδ ω ω λ . 

To simplify the calculations we have neglected the saturation gain, since the qualitative 
features of the modes location are not affected. Consequently we obtain 

 ( ) ( )1 1 2 2 01 2 cos( ) 2 cos cos ,s ph s sN g Nτ γ φ ω τ γ δ ψ ω τ δ = − − − − + + 
  (7) 

For different parameter values Eq. (6) has different number of roots ωs. When only the CFB is 
present the solutions of Eq. (6) are located on top of an ellipse in the (ωs,Ns)-projection [10]. 

The COF phase φ determines the precise location of the points on the ellipse. When the FFB is 
added the locations of the modes and the general picture become more complicated. 

 

Fig. 2. (a) ECMs in the (ωs,Ns)-plane (Media 1) for γ1 = 20 ns−1, γ2 = 15 ns−1, τ1 = 0.5 ns, τ2 = 

0.3 ns, λ = 1.6 GHz and ∆ω = −8 GHz. (b) zoom of panel (a) around ωs = −13.9 GHz. 

Figure 2(a) shows the typical distribution of the ECMs in the combined CFB and FFB 

system for the phases φ and ψ varying in the interval [0, 2π]. In contrast to the case of single 
COF our scheme displays a more complicated distribution of modes. Figure 2(b) shows the 

zoom of Fig. 2(a) in the interval [-14.5 GHz, −13.4 GHz]. The stationary states of Eqs. (2-4), 

for any fixed value of the phase φ, lie on the deformed ellipses (see Figs. 2(a) and 2(b)). Thick 
black (modes) and red ('anti-modes') lines show the stationary states of the system (2-4) for 

different values of the phase ψ in the interval [0, 2π] and φ = 0. When φ is fixed and ψ is 
varied the ECMs (big red and black points) move along the deformed black and red thick 
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ellipses (see Media 1). Big black and red points are modes and 'anti-modes', respectively, 

when φ = ψ = 0. The blue lines show saddle-node bifurcations where modes and anti-modes 
collide. The 'anti-modes' are always unstable while the modes can be stable or unstable. 

By differentiating (6) with respect to ωs, we obtain the condition for saddle-node 
bifurcations [11,12]. In Fig. 3 we show saddle-node bifurcations in the (γ2,ψ)-plane for the 
laser operating in a periodic (a) and chaotic (b) regimes due to the CFB. The number of modes 
and anti-modes is shown in colour scale. It can be seen that in the case of the FFB the number 
of modes decreases when the feedback strength is increased (see red and light blue regions in 
Fig. 3). 

 

Fig. 3. Lines of saddle-node bifurcation for φ = 0, (a) γ1 = 12 ns−1, ∆ω = −6 GHz (Media 2) and 

(b) γ1 = 20 ns−1, ∆ω = −8 GHz (Media 3). Other parameters are as in Fig. 2. 

4. Stabilization using filtered feedback 

To study the stabilization process we numerically investigated the system depicted in Fig. 1 

under different operating conditions of the CFB. We considered the cases γ1 = 12 ns
−1

, when 

the system develops a periodic behaviour and γ1 = 20 ns
−1

 when it operates in a chaotic 
regime. 

Figures 4(a) and 4(b) show the optical spectra in a periodic and chaotic regime. The red 
line shows the shape of the filter of the FFB whose central frequency is located at the position 
where the control is optimum. 

 

Fig. 4. Optical spectra of a semiconductor laser with a CFB with (a) γ1 = 12 ns−1 and (b) γ1 = 20 

ns−1. The other parameters are τ1 = 0.5 ns, φ = 0. The red line shows the shape of the filter with 

λ = 1.6 GHz and (a) ∆ω = −6 GHz, (b) ∆ω = −8 GHz. 

4.1 Stabilization of periodic oscillations into CW operation 

We begin our analysis by applying a FFB to a system that operates in a periodic regime due to 
a CFB. Figures 5(a)-5(c) show the regions (light blue) in the parameter space where control is 

achieved by using the FFB with τ2 = 0.3 ns and ∆ω = −6 GHz. Since the filter width strongly 
influences the dynamics of the laser the system exhibits different opportunities of control. We 
observed that the size of the regions where control can be achieved increases with γ2 (see Figs. 
5(a)-5(c) and Medias 4-6). For values of γ2>γ1 the regions where the control is possible covers 
up to 50% of the (ψ, λ)-parameter space (see Fig. 5 (c)). 

Figures 5(d)-5(f) show the role of the detuning between the central frequency of the filter 
and the solitary laser frequency for ψ = 2. In fact, control is only possible for specific values 
of the filter detuning. We also noted that the control is very sensitive to the CFB phase since 
by changing it we shift the peaks of the optical spectrum (see Media 7). The dependence of 
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the control regions on the phase is reduced when γ2 is increased (see Figs. 5(d)-5(f), Media 7, 
8, 9), but in general the larger filter width λ is the smaller the stabilization regions are. 

 

Fig. 5. Control domain of the CFB with τ1 = 0.5 ns, γ1 = 12 ns−1 and φ = 0 for (a), (d) γ2 = 8 ns−1 

(Media 4, Media  7); (b), (e) γ2 = 10 ns−1 (Media 5,  Media 8) and (c), (f) γ2 = 15 ns−1 (Media 6, 
Media 9). The notations are: CW – continuous wave; P1, P2 – period one and two oscillations 
respectively; QP – quasi-periodic oscillation; LAC, HAC – low and high amplitude chaos 
respectively. 

 

Fig. 6. Effect of control of CFB. Parameters are (a) τ2 = 0.3 ns, λ = 1.6 GHz (Media 10); (b) ψ 

= 2, λ = 1.6 GHz (Media 11); (c) ψ = 2, λ = ∞ (Media 12). Other parameters are as in Fig. 
4(a). 

Figure 6(a) shows the parameter regions where the control can be achieved as a function 
of γ2. Large γ2 values stabilize the system while the number of ECMs in Fig. 3(a) decreases. 
Figures 6(b) and 6(c) show the influences of the time delay in the dynamics when using 

narrow filters. and a CFB, λ = ∞, respectively. It is clear that the parameter regions in which 
CW operation is stabilized are much broader when using the FFB. It is worth mentioning that 
the system is quite sensitive to phase shifts in both cases (Media 11, 12). 

4.2 Stabilization of chaotic fluctuations into CW operation 

In this section we show that with help of a FFB chaotic oscillations can be also suppressed. 
Figure 7 shows the regions of stabilization for different parameters, when the COF branch is 
operating in a chaotic regime. An increase of γ2, as shown in Fig. 7 and (Media 13, 14, 15, 16, 
17, 18), leads to the widening of CW regions. Figures 7(a)-7(c) show the control regions (light 

blue) for τ2 = 0.3 ns and ∆ω = −8 GHz. The filter width λ and the detuning ∆ω still play a 
decisive role. Particularly important is the detuning as shown in Figs. 7(d)-7(f) for ψ = 5. For 

∆ω ≈-8 GHz and ∆ω ≈-15 GHz stabilization can easily be obtained while for other values of 
the detuning the regions of stabilization are practically absent, except for extremely large γ2. 

In the following we show in more detail the regions of control of CW operation (light 
blue) when the feedback strength γ2 is increased. Figure 8(a) shows these regions of control in 
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Fig. 7. Control domain of CFB with τ1 = 0.5 ns, γ1 = 20 ns−1 and φ = 0 for (a), (d) γ2 = 15 ns−1 

(Media 13, Media 16); (b), (e) γ2 = 20 ns−1 (Media 14, Media 17) and (c), (f) γ2 = 25 ns−1 
(Media 15, Media 18). 

 

Fig. 8. Effect of control of CFB. Parameters are (a) τ2 = 0.3 ns, λ = 1.6 GHz (Media 19); (b) ψ 

= 5, λ = 1.6 GHz (Media 20); (c) ψ = 5, λ = ∞ (Media 21). Other parameters are as in Fig. 
4(b). 

(γ2,ψ)-plane. Figures 8(b) and 8(c) (Media 20 and 21) show an evident advantage of the 
control in a FFB system compared to that performed by a second CFB. 

5. Summary and conclusions 

We have shown that stabilization of a chaotic SCL to CW operation using a FFB is more 
effective than a second CFB. The main advantage of FFB system compared to CFB one is that 
the former has broader CW regions of control and stabilization can be easily achieved. Also 
stabilization regions depend less on delay time and feedback strengths ratio. 

The physical insight behind this fact is that the filtered feedback allows to selectively re-
inject a specific frequency range, as shown in Fig. 4. In this way, CW instabilities originated 
from a Hopf bifurcation can be suppressed by feeding-back the Hopf frequency, with an 
appropriate feedback phase, leading to a destructive interference. As shown in Fig. 5 only 
some phases lead to CW stabilization. By using a CFB it is also possible to induce destructive 
interference on that frequency, however, since all the other frequencies are fed-back as well 
the reinjected light may easily induce an effective reduction of the threshold of other 
instabilities. This effect can be seen, for example, in Fig. 5 where the CW stable region 
decreases, while more chaotic regions appear, as the filter width λ is increased. In fact, we 
have recently shown that CFB systems exhibit strong chaos for increasing feedback strength 
in one cavity [13]. It is worth mentioning that if the filter width is too narrow and it is not well 
tuned at the Hopf frequency, the FFB is inefficient. For a practical implementation one should 
choose λ ~3 to 5 GHz . 

From a more mathematical point of view, the decrease of the number of ECMs when the 
feedback strength is high is responsible for the stabilization to occur. If instead a second CFB 
branch is added to a laser with a CFB the number of ECMs increases and the stabilization is 
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not as effective as with FFB. The results obtained could also be interpreted by the phase 
locking phenomenon described in detail in [6]. 
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