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Abstract. We study the effects of the confining conditions on the occurrence of stochastic resonance (SR)
in continuous bistable systems. We model such systems by means of double-well potentials that diverge like
|x|q for |x| → ∞. For super-harmonic (hard) potentials with q > 2 the SR peak sharpens with increasing q,
whereas for sub-harmonic (soft) potentials, q < 2, it gets suppressed.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 02.50.Ey
Stochastic processes

1 Introduction

The simplest dynamical system displaying stochastic res-
onance (SR) is a Brownian particle bound into a one-
dimensional double well under the action of a time oscil-
lating tilt and subjected to fluctuating forces (noise) [1,2].
The SR mechanism can be revealed as a maximum in the
amplitude of the periodic component of the average par-
ticle position as a function of the noise intensity (temper-
ature). Due to fluctuations, the particle randomly jumps
between the two potential wells with Kramers rate [3] that
depends on the double well potential and temperature.
When the average escape time of the particle out of the
potential minima (i.e., the inverse of the Kramers rate)
approximately equals the half time-period of the applied
perturbation, the noise induced interwell jumps and the
periodic force synchronize, thus leading to SR.

When studying the problem of a Brownian particle in
a symmetric double well periodically tilted in time, the
corresponding potential U(x) is usually assumed to di-
verge like U(x) ∼ x4 at large x [1,3], so as to ensure a
robust confining action. However, the divergence of the
potential for |x| → ∞ strongly affects the response of the
system to an external time-periodic forcing. The goal of
the present paper is to investigate how the Brownian mo-
tion in a double well changes with the confining strength
of the one-dimensional potential U(x). For simplicity we
assume that U(x) ∼ |x|q for x → ±∞. By studying the
dependence of a SR spectral quantifier on q, we conclude
that bistability is a necessary, but not sufficient condition
for a one-dimensional system to exhibit SR.

a e-mail: els@ifisc.uib-csic.es

2 Model

The model discussed in the following represents an over-
damped Brownian particle with coordinate x. Its dynam-
ics is described by the Langevin equation,

ηẋ = −U ′(x) + A(t) + ξ(t), (1)

where (. . . )′ ≡ d(. . . )/dx. The confining potential,

U(x) = U0 exp
(−x2/L2

0

)
+ k|x|q/q, (2)

is obtained by superimposing a Gaussian repulsive barrier
of height U0 and width L0, to a power-law potential well.
To ensure confinement, our analysis is restricted to q > 1.
The total potential is mirror symmetric at x = 0, i.e.
U(x) = U(−x). Depending on q a potential U(x) is called
hard (super-harmonic) for q > 2, or soft (sub-harmonic)
for q < 2 [4]. The periodic drive A(t) is chosen as

A(t) = A0 cos(Ωt), (3)

with amplitude, A0, angular frequency, Ω ≡ 2πν, and
time origin arbitrarily set to zero. The fluctuating force
ξ(t) is modeled as a stationary zero-mean Gaussian noise
with auto-correlation function 〈ξ(t)ξ(t′)〉 = 2ηkBTδ(t−t′).
Here T is the temperature and η the friction coefficient.

For numerical purposes it is convenient to choose U0,
L0, and τ ≡ ηL2

0/U0 as the new units respectively of
energy, space and time. Correspondingly, the variables
and the parameters appearing in equation (1) can be re-
placed by the dimensionless quantities x̃ = x/L0, t̃ = t/τ ,
k̃ = Lq

0k/U0, Ã0 = A0L0/U0, Ω̃ = Ωτ and T̃ = kBT/U0.
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Fig. 1. (Color online) Rescaled potential (4) for k = 0.2 and q
ranging between 1.5 and 8. The barrier height is approximately
constant, ΔU � 0.66, and the minima ±xm slowly shrink with
q from xm � 1.59 down to xm � 1.17.

To avoid a cumbersome notation, in the following we omit
all the tildes. In dimensionless notation the potential (2)
reads,

U(x) = exp(−x2) + k|x|q/q, (4)

and the Langevin equation (1) can be rewritten as

ẋ = 2x exp(−x2) − k|x|q/x + A0 cos(Ωt) +
√

Tξ(t), (5)

after the Gaussian noise ξ(t) has been further rescaled so
that 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2δ(t − t′). In the follow-
ing we study how changing q influences the response of
the particle to the periodic forcing signal A(t). As a result
of rescaling, the height, U0, and the width, L0, of the po-
tential barrier, as well as the friction coefficient, η, have
been set to one. The remaining tunable parameter k of
the potential (4) will be kept fixed to k = 0.2 throughout
the present paper. Due to the Gaussian nature of the po-
tential barrier, the barrier height, ΔU , and the potential
minima, ±xm, weakly depend on q (see Fig. 1); therefore,
the observed residual SR dependence on q is mostly an
effect of the varying confining strength of the potential.

We have simulated the behavior of the system by nu-
merically integrating the rescaled Langevin equation (5)
through a Milshtein algorithm [5,6]. Stochastic trajecto-
ries were simulated for different time lengths tmax and time
steps Δt, so as to ensure appropriate numerical accuracy
and transient effects subtraction. Average quantities have
been obtained as ensemble averages over at least 104 tra-
jectories.

3 Results

In the long time regime, after transient effects subsided,
the response 〈x(t)〉 of a particle moving in a symmetric
bistable potential U(x) under the action of the signal (3)
with small-amplitude, A0xm 	 ΔU , and low-frequency,
Ω 	 U ′′(xm), results from the interplay of inter- and the
intrawell dynamics [1]. On ignoring for the time being the
intrawell dynamics, the system response at low temper-
atures is dominated by its harmonic component [1,7–10]

〈x(t→∞)〉 = x̄(T ) cos[Ωt − φ̄(T )], (6)
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Fig. 2. (Color online) Rescaled amplitude x̄(T )/A0, defined in
equation (6), versus T for the potential (4) with k = 0.2, q = 2.
The horizontal dashed lines represent the intrawell oscillations,
equation (9), with κ = 1/|2k ln(k/2)| for T → 0, and κ = k in
the limit T → ∞.

with amplitude, x̄(T ), and phase, φ̄(T ), approximated by

x̄(T ) =
A0〈x2〉0

T

2r√
4r2 + Ω2

, (7)

φ̄(T ) = arctan(Ω/2r). (8)

Here r ∝ exp(−ΔU/T ) is the Kramers rate and 〈x2〉0
the variance of the stationary unperturbed process x(t)
(A0 = 0), both temperature dependent quantities. The
amplitude x̄(T ) can be manipulated by tuning the noise
level. Note that equations (6)–(8) hold in the linear
response theory limit, only, i.e., for A0xm 	 T and
Ω > r [11,12].

According to equation (7), in the limit T → 0 the am-
plitude x̄(T ) vanishes due to the potential barrier. The
rate r for the particle to overcome the potential barrier
decreases to zero exponentially when lowering the tem-
perature, that is r 	 Ω. The interwell jumps are thus
inhibited and the particle gets locked in either minima
with probability 1/2; hence limT→0〈x〉 = 0. In contrast,
for high temperatures, T � ΔU , r may grow much larger
than Ω and, consequently, x̄(T ) � 〈x2〉0/T . For a hard
potential with q > 2 we show below that 〈x2〉0 ∼ T 2/q,
so that, again, limT→∞ x̄(T ) = 0. The occurrence of these
limits for T → 0 and T → ∞ implies the existence of a
maximum of x̄(T ) for some optimal T ∼ ΔU . This is the
so-called spectral characterization of SR [1].

3.1 Harmonic confining potentials

However, even if the approximate results (6)–(8) describe
correctly the occurrence of SR in most bistable systems,
Figures 2 and 3 (q > 1) clearly show that for T → 0
the amplitude x̄(T ) approaches a non-zero limit x̄(0) > 0.
This is a characteristic signature of the intrawell dynam-
ics [11,12]. Moreover, for (and only for) q = 2 a simi-
lar behavior occurs also in the opposite limit T → ∞:
the curves x̄(T ) attain an horizontal asymptote, see Fig-
ure 2. The coexistence of these two asymptotes, peculiar
to q = 2, strongly suppresses the SR peak.
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Fig. 3. (Color online) Rescaled amplitude x̄(T )/A0, defined
by equation (6), versus T for the potential (4) with k = 0.2
and different q > 2 (hard potentials). The dashed lines are the
decay power law T 2/q−1.

The nonzero x̄(T ) limits for T → 0 and T → ∞ can be
explained by noticing that an overdamped Brownian par-
ticle bound to a generic harmonic potential well, U(x) =
κ(x − x0)2/2, responds to the signal (3) with amplitude

x̄ = A0/
√

Ω2 + κ2. (9)

(Note also that its variance in the absence of forcing (A0 =
0) is 〈x2〉0 = T/κ).

In the low temperature limit, T → 0, the particle de-
scribed by the Langevin equation (5) is locked in either
the right or left potential well, where it executes additional
harmonic oscillations around the corresponding minima
x0 = ±xm [1,11–13]. Such intrawell oscillations should
not be mistaken for the interwell dynamics described by
equation (6) [9]. Their amplitude is well reproduced by
equation (9) with κ ≡ U ′′(±xm) = |2k ln(k/2)|.

In the high temperature limit, T → ∞, the fluctuations
ξ(t) may grow so intense that the barrier of the bistable
potential (4) becomes ineffective; the particle is thus ef-
fectively confined into a parabolic potential with κ = k
and centered at x0 = 0. The amplitude of the periodic
component of the particle response to the external force
is then described again by equation (9) but with κ = k.

For small frequencies the rescaled amplitude x̄/A0 only
depends on the curvature of the bistable potential at x0 =
±xm for T → 0, x̄/A0 = 1/|2k ln(k/2)|, and at x0 = 0 for
T → ∞, x̄/A0 = 1/k.

The argument above can be easily generalized for any
value of q at low temperatures, but it becomes untenable
in the limit T → ∞, where nonlinearity comes into play.

3.2 Hard confining potentials

As anticipated above, at high temperatures the presence
of the central barrier can be ignored. This implies that for
T → ∞ equation (7) simplifies to

x̄(T )
A0

=
〈x2〉0

T
=

1
T

∫ ∞
0 dx x2 exp (−kxq/qT )
∫ ∞
0 dx exp (−kxq/qT )

. (10)

In equation (10) we made use of the inequality r � Ω and
of the approximate expression P0(x) = N exp(−kxq/qT )
for the stationary probability density of the unperturbed
process (5); N is an appropriate normalization constant.
Note that for sufficiently low Ω, the condition r � Ω can
be consistent with the approximations in equation (7),
whereas suppressing the potential barrier makes the very
definition of r meaningless.

An explicit calculation yields

x̄(T )
A0

=
( q

k

)2/q Γ (3/q)
Γ (1/q)

1
T 1−2/q

. (11)

Ignoring the algebraic factors we conclude that

lim
T→∞

x̄(T ) ∼ T 2/q−1. (12)

From here one can see that x̄ decreases with increasing
T only for hard confining potentials with q > 2. In par-
ticular, for the prototypical case of a quartic potential,
q = 4 [1], one finds x̄(T ) ∼ 1/

√
T , as confirmed by the

simulation results (see Fig. 3). For q = 2, one recovers the
harmonic limit discussed in the foregoing subsection.

The decay law of x̄(T ), equation (12), is clearly a
consequence of the nonlinearity of the potential. In-
deed, the same power law can be recovered by im-
plementing the stochastic linearization scheme of refer-
ence [14]: in Gaussian approximation, for q an integer,
lim|x|→∞ U(x) = κx2/2 with κ = (q−1)!!k〈x2〉q/2−1

0 ; from
the relation 〈x2〉0 = T/κ, holding for harmonic potentials,
equation (12) follows.

Moreover, x̄(T ) cannot decrease faster than T−1,
which happens for q → ∞. It should be noticed that
x̄(T ) ∼ T−1 is the decay law predicted in two-state model
approximation [7], where 〈x2〉0 is replaced by x2

m (i.e., a
constant).
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Fig. 4. (Color online) Rescaled amplitude x̄(T )/A0 versus T
for the potential (4) with k = 0.2 and q = 1.5 (soft potential).
The horizontal dashed lines represent the horizontal asymp-
totes 1/Ω (see text). In place of the SR peak an inflexion point
is detectable for low Ω = 2πν.

3.3 Soft confining potentials

Equation (12) for q < 2 suggests that x̄(T ) may diverge at
high temperatures. However, when dealing with soft po-
tentials, the linear theory approximations (6)–(8) must be
used with caution. In the limit T → 0 the interwell oscil-
lation amplitude (7) is known to apply only for very small
perturbation amplitudes [4]: this explains the residual A0

dependence of the low T plateaus reported in Figure 4.
More importantly, in the high T limit, although the

barrier of a soft potential is awash with noise, confinement
gets so weak that the particle is driven up and down the
potential walls primarily by the deterministic force A(t),
rather than by the noise. (For a comparison, we remind
that a particle falls from ±∞ down to ±xm in a finite time
for q > 2 and in an infinite time for q < 2). In conclusion,
on assuming that the Brownian particle oscillates as if it
were (almost) free, its amplitude would read

lim
T→∞

x̄(T ) ∼ A0/Ω. (13)

x̄(T ) is then expected to develop high T plateaus also
for q < 2, but, in contrast with the cases discussed in
Section 3.1, such plateaus are inverse proportional to the
drive frequency (also for low frequency drives, see Fig. 4).

In the case of sub-harmonic bistable potentials the
hallmark of SR is thus the monotonic increase of the re-
sponse amplitude with T , as opposed to the occurrence
of a maximum often detected in the super-harmonic po-
tentials. Such a behavior resembles the phenomenon of
“SR without tuning” discussed in reference [15], with the
important difference that here it has been observed in a
single unit, rather than in a summing network of N ex-
citable units.

4 Conclusions

We conclude this note with two important remarks:

(i) The coexistence of two locally stable minima sepa-
rated by a potential barrier is commonly advocated

to explain the occurrence of a SR peak in a continu-
ous bistable dynamics. Here we have shown that this
keeps being true as long as the confining action ex-
erted by the potential is super-harmonic. Most no-
tably, for harmonic and sub-harmonic potentials the
periodic component of the system response may in-
crease monotonically with the noise level.

(ii) In many experimental reports (see, for a review,
Ref. [16]), the authors tried to characterize the SR
peak by means of equation (6), without paying much
attention to the T dependence of the quantity 〈x2〉0.
In some cases they adopted an outright two-state
model with 〈x2〉0 = x2

m [7]. This led to a poor fit
of the decaying tail of x̄(T ), whereas a more accurate
fit could have given a valuable clue to better model
the system at hand [17].
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