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Abstract. We study an Ising model in a network with disorder induced by the presence of both attractive
and repulsive links and subjected to a periodic subthreshold signal. By means of numerical simulations
and analytical calculations we give evidence that the global response of the system reaches a maximum
value for a given fraction of the number of repulsive interactions. The model can represent a network of
spin-like neurons with excitatory and inhibitory couplings, or a simple opinion spreading model. In this
context, attractive/repulsive links represent friends and enemies. “Divide and Conquer” refers to the fact
that in order to force a society to adopt a new point of view, it helps to break its homogeneity by fostering
enmities amongst its members.

PACS. 89.75.Fb Structures and organization in complex systems – 87.19.ln Oscillations and resonance –
05.45.-a Nonlinear dynamics and chaos

1 Introduction

In nonlinear systems, the right amount of noise can am-
plify the response to a weak periodic signal. This construc-
tive effect of noise, known as stochastic resonance, was
first proposed to explain the occurrence of ice ages [1,2],
and has since found applications in such diverse areas as
lasers [3], SQUIDS [4], or neurons [5], just to mention a
few [6,7].

The mechanism of stochastic resonance involves a
matching between the frequency of the external signal and
a stochastic frequency induced by the noise. The proto-
typical system is one in a bistable potential subjected to
a periodic modulation signal and to noise. A weak, sub-
threshold, signal cannot, by itself, make the system switch
between its equilibrium states. When driven only by noise,
the system is able to jump between the two minima, with
a mean frequency which depends on the intensity of the
noise as given by the celebrated Kramers’ formula [8]. It is
then possible to tune the noise intensity in order to match
the noise induced jumping frequency with the frequency of
the forcing. At this point, we have an amplified coherent
response. Based on those simplified ingredients, stochastic
resonance has been applied to many areas and situations,
and extended from systems with a few degrees of freedom
to systems composed by many units.
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It was shown in reference [9] that diversity or hetero-
geneity, in the form of quenched disorder, can play the
same constructive role as noise. The authors considered
a system composed by many coupled bistable units, sub-
jected to an external weak periodic signal. Diversity is
introduced as variability of a parameter that controls the
relative stability of each bistable state of the potential.
When the units are identical (and both states are equally
stable for all units) the signal is subthreshold and, be-
cause of the coupling, all units remain in the same state.
As diversity increases, the signal becomes, for half of its
period, supra-threshold for some of the units and forces
those units to jump from their less stable state to the
other. In the other half of the period, the signal becomes
supra-threshold for a different set of units. The units which
follow the signal pull the other units, to whom they are
attractively coupled, and the collective effect is that a sig-
nificant fraction of the units is able to respond to the ex-
ternal forcing. For this mechanism to be effective, the units
cannot be too diverse, because then some of them would
offer too much resistance to follow the signal. But they
can not be too similar either, because then there wouldn’t
exist a big enough fraction that can follow the signal. The
optimal value of diversity is the one that makes the sys-
tem more sensitive to the external signal. The collective
effect can be understood as the result of the degradation
of entrainment induced by diversity, a similar effect to
that induced by noise [10]. This degradation results in the
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lowering of the effective potential barrier separating the
two stable states of the collective system. The barrier can
then be more easily overcome by the external forcing. One
of the main points made in [9] is that it is the loss of en-
trainment that drives the resonance effect. This loss of
entrainment can be induced by diversity [9], by noise (in
the case of extended stochastic resonance [11,12]), or by
some other source. Along these lines, the role of the het-
erogeneous complex network topology in the amplification
of external signals has been addressed in [13], and Chen
et al. [14] have shown how structural diversity enhances
the cellular ability to detect extracellular weak signals.
The interplay between noise and diversity in an ensem-
ble of coupled bistable FitzHugh-Nagumo elements sub-
ject to weak signal has been considered in [15]. There are
other manifestations of the disorder induced resonance ef-
fect, stressing the constructive role of disorder in different
types of systems. The role of diversity in the preference of
the agents has been considered in [16], and in a system of
globally coupled linear oscillators in [17]. Perc et al. [18],
discuss the combined influence of several types of disorder
on stochastic resonance, in generic soft matter systems.
They show that random bonds (spin glasses in the maxi-
mal disorder limit), decrease the level of noise needed for
an optimal response. In this work, we focus on competitive
interactions alone, as an alternative to noise.

The presence of both repulsive and attractive interac-
tions is not unusual in systems with many units. The exis-
tence of inhibitory and excitatory connections in the brain
neurons, or a society with friends and enemies are exam-
ples of such systems. The emergence of a coherent behav-
ior in the absence of forcing and in the presence of repul-
sive links was treated in [19]. There it was shown that one
can obtain a more coherent behavior, in the form of syn-
chronized pulsing, by adding an optimal amount of long-
range repulsive couplings in a mixture of excitable and
oscillatory units described by the Hodgkin-Huxley model.
In the same reference, a similar improvement of the inter-
nal coherence in an Ising model with a simple majority-
like dynamics in the presence of long-range repulsive links
was also shown. Also in [20], an intermediate amount of
repulsive links was found to trigger collective firing in an
ensemble of active-rotators [21] in the excitable regime.
The role of diversity in heterogeneous excitable media was
considered in [22] where the author demonstrates that di-
versity in a parameter can cause the emergence of global
oscillations from individually quiescent elements in a sys-
tem of van der Pol-FitzHugh-Nagumo elements. The com-
bined effects of noise and variability in the synchroniza-
tion of neural elements has been studied in [23], while
reference [24] unveils the general mechanism for collec-
tive synchronized firing in excitable systems arising from
degradation of entrainment originated either by noise, di-
versity or other causes.

In this work we study a periodically forced system
where the only source of disorder is competitive interac-
tions and show that competition in the sign of interactions
may also lead to a resonance effect. This resonance can be
interpreted as an optimal transmission of the information

carried by the external signal, in a kind of “divide and con-
quer” effect. The paper is organized as follows: in Section 2
we introduce the model and present the results of numer-
ical simulations that show the existence of the resonance
effect; in Section 3 a mean-field approximation, which is
able to reproduce qualitatively the simulations results is
detailed; in Section 4 we discuss in detail the mechanisms
that may lead to the resonance, both from microscopic
and macroscopic points of view; finally, in Section 5, we
end with some brief conclusions and outlooks.

2 Model and results

2.1 Model

We consider a set of N spin-like (Ising) dynamical vari-
ables µi(t) which, at a given time t, can adopt one of two
possible values, µi = ±1. We will sometimes use the lan-
guage of a magnetic system, but our aim is quite general
and these states can represent, for instance, two differ-
ent opinions (in favor/against) about a topic, the state of
a neuron (firing/not firing), or several other interpreta-
tions [19,25]. The variables are located on the nodes of a
given network whose links represent interactions. We as-
sign a weight ωij to the link connecting nodes i and j and
consider only the symmetric case ωij = ωji (or an undi-
rected network). According to the discussion above, we
let the weights take positive or negative values: ωij = 1 or
ωij = −κ with κ > 0. The neighborhood of node i is the
set V (i) of nodes j for which a connecting link between
nodes i and j exists.

The spin variables evolve according to the following
dynamical rule: at time t one of the variables, say µi, is
chosen at random. The value of this variable is updated
according to:

µi(t+τ) =






sign
[∑

j∈V (i) ωijµj(t)
]

w.p. 1 − |a sin(Ωt)|,

sign [sin(Ωt))] w.p. |a sin(Ωt)|,
(1)

(w.p. stands for “with probability”). In both cases, if the
expression within square brackets is equal to zero, the
variable does not change: µi(t + τ) = µi(t). The first
case represents a weighted “majority-rule” in which the
state of the spin is determined by the sign of its local field
hi(t) =

∑
j∈V (i) ωijµj(t). The second case represents the

effect of an external forcing of frequency Ω – the intensity
a < 1 determines the rate at which the signal influences
the dynamics of the variable µi. The choice of the time
step τ = 1/N defines the unit of time as N updates. We
consider both regular lattices (with k neighbors) and ran-
dom networks of the small-world type. The latter are con-
structed according to the algorithm proposed by Watts
and Strogatz [26]. Denoting by q the rewiring probability
(percentage of short-cuts), the limit q = 1 corresponds to
a random Erdös/Rényi-type network, q = 0 is a regular
ring-network and intermediate values of q define a small-
world network. We have also considered a square lattice
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in which a node is linked to the k = 8 nodes of its Moore
neighborhood. In each case, links are assigned a strength
−κ with probability p or a strength 1 with probability
1 − p. In the case of a random network, the number of
links (degree) ki of node i is a random variable with prob-
ability Pki and average 〈ki〉 = k. Denoting by k+

i and k−
i

respectively the number of positive and negative links of
node i, its degree is ki = k+

i + k−
i and 〈k+

i 〉 = (1 − p)k,
〈k−

i 〉 = pk.
It is worth noticing that, from the formal point of view,

the majority-rule is equivalent to a heat-bath stochastic
dynamics in the limit of zero temperature [27]. The Hamil-
tonian is H = −

∑
〈i,j〉 ωijµiµj (the sum runs over all pairs

of neighbors) and the majority-rule always leads to a con-
figuration with less or equal energy. If all the weights ωij

are positive, the ground states are µi = +1 or µi = −1,
∀i, and these ground states are reached independently of
the initial condition. If there is a fraction of negative links,
the system is of the spin-glass family. The (in general un-
known) ground state can have many metastable configu-
rations nearby and the use of the majority-rule may trap
the system in one of them.

As a way of quantifying the coherence of the global
response to the forcing, we chose the spectral amplification
factor R, defined as the ratio of the output to input power
at the corresponding driving frequency [28]:

R =
〈

4
a2

∣∣〈〈m(t)e−iΩt
〉〉∣∣2

〉
, (2)

where 〈〈...〉〉 is a time average, m(t) is the global response
(system’s magnetization):

m(t) =
1
N

N∑

i=1

µi(t), (3)

and 〈...〉 is an ensemble average over network realizations,
initial conditions and realizations of the dynamics. Large
values for R indicate that the global variable m(t) follows
the external forcing, while small values of R indicate a
small influence of the forcing on the global variable.

2.2 Simulation results

The main result of this paper is that there is a resonance
effect, a maximum of the amplification factor R, at an in-
termediate value of the probability of repulsive links p, as
shown in Figure 1. The existence of this maximum is also
visible when looking at the amplitude of the oscillations of
the global variable m(t) – Figure 2. For small p, m(t) os-
cillates with a small amplitude (of order a) around a value
close to either +1 or −1. As p increases, one clearly no-
tices that the amplitude increases dramatically and m(t)
oscillates around 0. As p increases even further, the ampli-
tude of the oscillations decreases but the global variable
still oscillates around 0. This resonance effect appears for
all lattices considered, regular or random, for all values of
the rewiring probability q.
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Fig. 1. Spectral amplification factor R versus probability of
repulsive links p. Parameters are: a = 0.15, Ω = 2π

100 , κ = 1. In
the main graph, N = 100 and symbols correspond to topolo-
gies: ring with k = 10 neighbors (◦), square lattice with k = 8
neighbors in the Moore neighborhood (!), and random net-
works with average number of neighbors k = 10 and rewiring
probability q = 0.2 (∗) and q = 1 ("). In the inset, we chose
the random network with q = 1, k = 10, and different curves
correspond to sizes N = 100 ("), 500 (#), and 1000 (#).
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Fig. 2. Evolution of magnetization in time (random network,
q = 1, k = 10). Other parameters are: N = 100, a = 0.15,
Ω = 2π

100 , κ = 1.

As argued in [9], the existence of this resonance effect
is the result of a degradation of order. In our case, the
degradation of order has its origin in the increasing im-
portance of the inhibitory connections. This is clearly seen
in Figure 3 where we plot the standard order parameter
m0 as a function of the probability p of inhibitory links.
The optimal probability for resonance pc (location of the
peak of Fig. 1) is found near the phase transition between
the ferro and paramagnetic regions.

The existence of this order-disorder transition and its
relation to the resonance effects are reproduced by a sim-
ple mean-field theory that we develop in some detail in
the next section.

3 Mean-field approach

At each time step the magnetization m(t) may change due
to the modification of a single variable µi. The following
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Fig. 3. Average magnetization as a function of the probability
of repulsive links. Same parameter values and symbol meanings
than in Figure 1. In the regular networks, the existence of
metastable states reveals itself in a smaller magnetization at
p = 0.

relation holds exactly for the ensemble average m(t) =
〈m(t)〉:

Nm(t + τ) = Nm(t) + 〈µi(t + τ) − µi(t)|{µ(t)}〉 (4)

where {µ(t)} = (µ1(t), . . . , µN(t)) denotes the particular
realization of the µi variables and 〈. . . | . . . 〉 denotes a con-
ditional ensemble average. By identifying τ = 1/N and
rearranging we get:

m(t + τ) − m(t)
τ

= 〈µi(t + τ) − µi(t)|{µ(t)}〉

= −m(t) + 〈µi(t + τ)|{µ(t)}〉 . (5)

We now identify the left hand side as the time derivative
and use the dynamical rules given by equation (15) to
write:

dm(t)
dt

= −m(t) + |f(t)| 〈sign[f(t)]|{µ(t)}〉

+ (1 − |f(t)|)
〈

sign




∑

j∈V (i)

ωijµj(t)




∣∣∣∣∣{µ(t)}

〉

(6)

where we have used the notation f(t) = a sin(Ωt).
Since the forcing f(t) is independent of the state
{µ}, then 〈sign[f(t)]|{µ(t)}〉 = sign[f(t)]. Moreover
|f(t)|sign[f(t)] = f(t). For the last term of the right hand
side of this equation we use the mean-field approximation:

∑

j∈V (i)

ωijµj(t) ≈




∑

j∈V (i)

ωij



m(t) (7)

where we replace the value µj(t) by the average value m(t).

Now
∑

j∈V (i) ωij = k+
i − κk−

i = k+
i (1 + κ) − kiκ, and

the mean-field approximation can be rewritten as:

〈
sign




∑

j∈V (i)

ωijµj(t)




∣∣∣∣∣{µ(t)}

〉
=

(−1)Prob
([

k+
i (1 + κ) − kiκ

]
m(t) < 0

)

+ (+1)Prob
([

k+
i (1 + κ) − kiκ

]
m(t) > 0

)
=

1 − 2Prob
([

k+
i (1 + κ) − kiκ

]
m(t) < 0

)
≡ G(m(t)) (8)

from where we obtain the desired mean-field equation:

dm(t)
dt

= −m(t) + f(t) + (1 − |f(t)|)G(m(t)). (9)

The function G(m) can be easily computed in terms of
the cumulative probability function Fki of the binomial
distribution of the number of positive links, given that
the total number of links is ki. This is precisely defined
as:

Fk(x) =
∑

k+<x

(
k

k+

)
pk−k+

(1 − p)k+
. (10)

In the case m > 0,

Prob
([

k+
i (1 + κ) − kiκ

]
m(t) < 0

)
=

Prob
(

k+
i <

kiκ

1 + κ

)
= Fki

(
kiκ

1 + κ

)
, (11)

while, for m < 0,

Prob
([

k+
i (1 + κ) − kiκ

]
m(t) < 0

)
=

Prob
(

k+
i >

kiκ

1 + κ

)
= 1 − Fki

(
kiκ

1 + κ

)
. (12)

By averaging over the distribution of the number of neigh-
bors, we get:

G(m) = sign(m)
∑

ki

Pki

[
1 − 2Fki

(
kiκ

1 + κ

)]
(13)

Pki being the probability that a node has ki links. Within
the spirit of the mean-field approximation we assume that
all nodes have the same number of links ki = k and replace
the above formula by:

G(m) = sign(m)
[
1 − 2Fk

(
kκ

1 + κ

)]
. (14)

In case of no forcing, f(t) = 0, the equilibrium value m0

of the magnetization satisfies m0 = G(m0). A standard
analysis of this equation predicts a phase transition sepa-
rating a regime of non-zero stable solutions ±m0 '= 0 from
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Fig. 4. Average magnetization as a function of the probability
of repulsive links according to the mean-field theory for κ = 1.

a regime in which the only solution is m0 = 0. The coex-
istence line is m0 = 1 − 2Fk

(
kκ

1+κ

)
and the critical point

occurs at Fk

(
kκ

1+κ

)
= 1/2. In Figure 4 we plot the equi-

librium magnetization m0 as a function of the probability
p for fixed k. It is clear from this figure that the mean-field
approximation reproduces the loss of order that arises as
the proportion p of negative links increases, although the
precise location of the transition point is not well repro-
duced.

In Figure 5 we plot the amplification factor computed
after a numerical integration of equation (9). Qualita-
tively, the results agree with those of simulations presented
in the previous section: there is a resonance effect, i.e. the
response shows a maximum as a function of p. The maxi-
mum value is reached for a value pc, close to that signaling
the order-disorder transition. Furthermore, it can be no-
ticed that the size of the amplification region, defined as
the set of values of p for which R > 1, is similar to the size
of the transition region, defined roughly as the set of val-
ues of p for which the magnetization satisfies m(p) < 0.5
and the maximum is achieved at a value of p such that
m(p) ≈ 0.2–0.3. As the average number of neighbors k
increases, the size ∆p of this region decreases as k−1/2

and it disappears in the limit k → ∞. Since the relative
dispersion in the number of positive links also scales as
σ[k+]/〈k+〉 ∼ k−1/2, one is tempted to attribute the exis-
tence of the resonance to the existence of such a dispersion,
a fact already stressed in the study of synchronized oscil-
lations induced by diversity [20]. This is supported by a
modified version of the mean-field approach in which the
dispersion is strictly equal to 0. This can be achieved by
using in (14) the probability distribution that would arise
if all nodes had the same number k+

i of positive links,
namely Fk(x) = 0 if x < pk and Fk(x) = 1 if x > pk. As
shown in Figure 5, in this case the amplification region
has disappeared altogether.

However, it should be noted that the response in the
transition to the amplification region is not continuous in
this mean field case. There is a jump at a value p∗, such
that R(p → p−∗ ) = 1 but R(p → p+

∗ ) > 1. As discussed
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Fig. 5. Spectral amplification factor versus probability of re-
pulsive links according to the mean-field theory for a = 0.15,
Ω = 2π

100 , κ = 1.

later, this discontinuity arises because, in the mean field
scenario, the dynamics is governed by a bistable poten-
tial. The onset of amplification corresponds to the system
being able to jump the potential barrier.

4 Mechanism

4.1 Microscopic point of view

We now give an explanation of some features of the ob-
served resonance from a microscopic point of view, i.e.
analyzing the evolution of individual values of µi.

According to the rules (15), a chosen node takes the
sign of the external signal with a probability |a sin(Ωt)|,
independently of the current system configuration. To en-
hance resonance, there are two necessary requirements af-
ter a node has changed its state: to maintain the per-
turbation in the next time steps, and to spread it to its
neighbors. The crucial issue is then how the local configu-
ration of nodes and links helps (or hinders) this ordering
process.

To spread a perturbation, it would be an advantage
to have all-attractive couplings; however, to maintain its
state, the node cannot be too constrained by its neigh-
bors. With a high homogeneity of the neighbors states
and a positive connection with all of them, a perturbed
spin would likely be forced to go back to its original state
next time it is selected. At the other extreme, when all
its connections are negative, a perturbed node is also very
much constrained by the state of its neighbors, the lo-
cal field being maximal for a local anti-ferromagnetic or-
dering. At an intermediate level of positive and repulsive
connections, we have the optimal state. It has a capacity
to spread a perturbation to the whole network, but con-
strains minimally a node that has been perturbed. Due to
the combination of attractive and repulsive links, the local
field around a node is close to zero. Therefore, if a node
changes its state, it possibly won’t be forced to return to
its previous position after consulting with its neighbors.
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Fig. 6. Spectral amplification factor versus probability of re-
pulsive links for a random network with q = 1, a = 0.15,
Ω = 2π

100 , κ = 1. Main graph uses N = 1001 while the inset
shows the case N = 201.

On the other hand, it is easy to spread a perturbation: if a
node had previously a zero local field, after one neighbor
has changed, the balance is broken, and it has to align
with that neighbor, if the connection is positive.

This microscopic picture will help us to understand
some of the observed features. For example, in Figure 6
we show that the amplification region ∆p decreases with
increasing k whereas pc tends to 0.5. Both facts agree qual-
itatively with the predictions of the mean-field theory. It
is clear that for large k the condition of a local field close
to zero can only be satisfied for a probability of repulsive
links near 0.5. This is easily illustrated when one considers
the case of p far from 0.5 and a uniform magnetization (at
the peak of a signal’s cycle). Getting a local field close to
zero when the connectivity is high requires many neigh-
bors flips. Since the unit to be updated is chosen randomly
at each time step, it is likely that a unit is chosen twice
before enough of its neighbors have been perturbed. On
the other hand, p = 0.5 is the upper limit for the amplifi-
cation region, because a majority of positive links is nec-
essary to have perturbation spreading. As the proportion
of repulsive links approaches 0.5, more neighbors have a
negative connection and they will exert, when perturbed,
an influence opposite to the signal.

Note that for the resonance to disappear we need for-
mally the limit k → ∞. In a finite network, the maximum
value is k = N − 1 and, as shown in Figure 6 for N = 201
and N = 1001, the resonance does not disappear com-
pletely even for the maximum connectivity.

As we did in the mean-field treatment, and in order to
isolate the influence of competitive interactions from the
disorder induced by the dispersion in the number of links,
we also present in Figure 7 results from random networks
when all nodes have exactly the same number of neigh-
bors k and the same proportion p of repulsive links [29].
At variance with the previous results, an almost total re-
duction of the amplification region can be achieved even
for finite values of N , for large enough k. This proves that
diversity in the number of positive links is an important
ingredient for the resonance effect.

Fig. 7. Spectral amplification factor versus probability of re-
pulsive links for a “no-dispersion” network in which all sites
have the same number of positive and negative links. Due to
the particular way the network is constructed [29], only values
of p = k/N where the total number of neighbors per site, k, is
an even integer number are allowed. Parameters are N = 1001,
a = 0.15, Ω = 2π

100 , κ = 1 (main graph) and N = 201 (in-
set). Note that the amplification region shrinks as k increases.
For comparison, we also include as dotted lines the results of
Figure 6.

Why does dispersion matter? The precise mechanism
is hard to grasp, but it is certainly related to a degradation
of order at local level. To decrease the chance of having
perturbed neighbors driving several units in the direction
opposite to the signal, there have to be many nodes with
a clear majority of positive links. But as we saw above –
assuming every node had the same number of negative
links – those units require many neighbors flips, to main-
tain their local field close to zero. However, if the nodes are
heterogeneous, an unit with a lower than average number
of repulsive links can profit from those neighbors that have
many negative connections to other nodes. Since those are
more susceptible to changes, their presence decreases the
local field, thereby diminishing the need for many neigh-
bors updates. This result confirms the importance of di-
versity in making the phenomenon more robust, but also
shows that we can have an amplification even without di-
versity.

4.2 Macroscopic point of view

In this subsection, we consider the explanation of the res-
onance from the macroscopic point of view, i.e. we look
at the behavior of the collective variable (magnetization)
m(t). We assume that the dynamics of this macroscopic
variable in the no-forcing case, f = 0, can be described
in terms of relaxation in a potential function V (m). The
absolute minima ±m0 of the potential give the rest states
which are separated by a potential barrier ∆V . This pic-
ture has proved to be valid in other problems with di-
versity in the parameters [9] and it certainly holds in the
mean-field limit where, according to the previous section,
the dynamical equation is dm

dt = − dV
dm with a potential
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Fig. 8. Distribution of stable states at the optimal probability
pc = 0.25 in the case of an unforced random network with
q = 1, N = 100, k = 10, κ = 1 starting from three different
initial conditions: all spins equal to +1 (data set indicated as
m(t = 0) = 1), all spins equal to −1 (m(t = 0) = −1) and
spins take randomly the value ±1 (〈m(t = 0)〉 = 0).

V (m) = m2

2 − M(p)|m| with M(p) = 1 − 2Fk

(
kκ

1+κ

)
run-

ning from M(0) = 1 to M(1) = −1. There are two minima
of the potential, m0 = ±M(p) for M(p) > 0, and a single
minimum m0 = 0 for M(p) < 0, or p > pc, the critical
point. For small p the barrier separating the two minima
∆V = M(p)2

2 is high and it can not be overcome by the
effect of the weak forcing f(t). The only effect of the forc-
ing is a small oscillation around one of the minima (chosen
by the initial conditions). As p increases, the two minima
of the potential get closer to each other and the barrier
separating them decreases such that, at a particular value
of p the forcing is able to overcome the barrier and m(t)
oscillates between the two minima ±m0. As p crosses the
critical value pc, the two minima merge at m0 = 0, the
barrier disappears and the effect of the forcing is reduced
again to small oscillations around a single minimum.

To apply this potential image beyond the mean-field
approximation we need to include an important modifi-
cation. As discussed before, the energy landscape is that
of a spin-glass with many metastable states and two ab-
solute minima ±m0. As a consequence, in the no-forcing
case, the final state reached depends strongly on initial
conditions. This is illustrated in Figure 8 where we plot
the probability distribution of the final magnetization. If
the initial state is the ordered state µi = +1 (resp. −1) ∀i,
the final magnetization is peaked near m = 1 (resp. −1).
If the initial state adopts µi = ±1 randomly, then the fi-
nal magnetization is peaked around m = 0. This reflects
the existence of many barriers separating the metastable
states from the absolute minima of the potential. When
the forcing is introduced, it has to be able to overcome
all these intermediate barriers. The final image is that of
a particle moving in a “rugged” potential. As p increases,
the height of those barriers decreases and the forcing is
able to explore a larger fraction of the configuration space,
but not necessarily leading to trajectories ending in the
absolute minima of the potential. This can be seen in Fig-
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Fig. 9. Evolution of the magnetization following a weak signal
a = 0.08, Ω = 2π

100 , in the case of a random network, q = 1,
k = 10, κ = 1.

ure 9 where we show the effect of a forcing weaker than
that used in Figure 2. The magnetization oscillates around
a mean value that drifts with time. If we enlarge the pe-
riod of the forcing – Figure 10 – the oscillations become
wider and the system has now enough time to reach the
equilibrium minima close to m0 = ±1 [30].

5 Conclusions

We have used Monte Carlo simulations and analytical
(mean field) calculations to investigate the response of a
system of two-state units, with both attractive and repul-
sive interactions and majority-rule dynamics, to a weak
periodic signal. For both regular and random networks, we
have found that competing interactions can enhance the
system response – a kind of “divide and conquer” strat-
egy. In each case, a resonance was found for an optimal
percentage of negative links which depends on the model
parameters. Applications include opinion dynamics and
neuron networks but the model is generic enough to pre-
dict that the same type of effect can be found in other sys-
tems. We have carried out a detailed analysis for an opin-
ion model first introduced by Zanette and Kuperman [25]
but we want to stress that the “microscopic” details of the
model are not essential for the resonance phenomenon. In
fact, we have considered other models with modified ver-
sions of the updating rules and still the same main results
hold. For instance, instead of a sinusoidal time dependent
probability of following either the external signal or the
weighted majority, we have tried a constant probability a.
The dynamical rules are then modified to:

µi(t + τ) =






sign
[∑

j∈V (i) ωijµj(t)
]

w.p. 1 − a,

sign [sin(Ωt))] w.p. a.

(15)

Another modification considers that the effect of the exter-
nal influence is a factor to be considered simultaneously
with the majority rule. In this case, the updating rule
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333.3 .

becomes:

µi(t + τ) = sign



 1
ki

∑

j∈V (i)

ωijµj + a sin(Ωt)



. (16)

In both modified versions we have confirmed our main re-
sult, namely that there exists a value of the probability of
repulsive links p for which the response adopts a maximum
value.

We have discussed in some detail the microscopic
mechanism for the amplification. We argued that the flex-
ibility of the system to follow the external signal requires
that the local field seen by each unit is kept close to zero
and analyzed how this condition might be achieved in
some parameter limits.

A macroscopic analysis, in terms of a relaxation dy-
namics in a bistable potential, is able to explain the mean-
field results. It is difficult to use this description beyond
the mean field treatment, due to the presence of many
metastable configurations. Because of their presence, a
large response, corresponding to oscillations around (sym-
metrical) absolute minima can be obtained for a suffi-
ciently slow forcing.

There are studies that point to the role network topol-
ogy plays in synchronization or response to stimuli [31].
Analyzing the effect of coupling strength, degree distri-
bution and other network characteristics on the coherent
response may shed some light on how the mechanism can
be optimized.
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