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Predict-prevent control method for perturbed excitable systems
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We present a control method based on two steps: prediction and prevention. For prediction we use the
anticipated synchronization scheme, considering unidirectional coupling between excitable systems in a
master-slave configuration. The master is the perturbed system to be controlled, meanwhile the slave is an
auxiliary system which is used to predict the master’s behavior. The prevention is obtained by sending a control
signal to the master system, which temporarily lowers its excitability threshold and prevents its future reaction
to the external perturbation. We demonstrate theoretically and experimentally that an efficient control may be

achieved.
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I. INTRODUCTION

A classical problem in engineering science is the control
of dynamical systems [1]. While earliest applications in this
field aimed to inhibit the instabilities in electronic devices,
control studies turned, later on, into other areas. Of particular
interest are the applications to medicine since transitions
from regular to irregular oscillations of many organs of the
human body have been found to be associated with a dis-
eased behavior. As an example, the heart beat has been found
to undergo chaotic behavior during arrhythmias and other
heart diseases [2].

One of the best known methods for stabilizing unstable
periodic orbits is the one introduced by Ott er al. [3]. It uses
a small perturbation in some parameter of the system to sta-
bilize an unstable orbit into a periodic one. The delayed-
feedback control, introduced by Pyragas [4], intends the
same but uses a self-feedback loop and works when the feed-
back delay time is close to the period of the unstable orbit
that one aims to stabilize. It has been experimentally imple-
mented in optical systems [5], chaotic flows [6], and cardiac
systems [7] among others. Control of chaotic dynamics with
external nondelayed-feedback stimuli has been reported in
many models including those for neural systems [8] and
heart muscle [9].

In this paper we present a control method with particular
application, but not necessarily limited, to excitable systems.
These systems have been used to model the behavior of
many cell types, including the typical spiking dynamics of
heart cells and neurons. Excitable systems are characterized
by a highly nonlinear response to an external perturbation:
if the perturbation is sufficiently small, the system returns
smoothly to its steady state; if the perturbation exceeds a
certain threshold, the system fires an excitable spike, some-
times called the action potential. During a refractory period
following the spike, perturbations of moderate amplitude do
not alter much the dynamics of the system. According to the
classification of neural dynamics introduced by Hodgkin,
class 1 excitable systems undergo a saddle-node bifurcation
whereas class 2 excitable systems undergo a Hopf bifurca-
tion. Although excitable systems can involve a large number
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of variables (as in the case of neurons), their essential fea-
tures can be captured with a much more reduced description.
We will be using in this paper the one-variable Adler (phase)
and the two-variable FitzHugh-Nagumo systems as ex-
amples. They are very simple models of class 1 and class 2
excitable dynamics, respectively. The proposed control
method relies on the phenomenon of anticipated synchroni-
zation. Synchronization refers to the collective timing of
coupled systems, from simple oscillators and clocks to some
vital functions found in living organisms, among many oth-
ers [10,11]. Anticipated synchronization refers to a particular
regime, first studied by Voss [12], which appears in unidirec-
tionally coupled systems in a master-slave configuration. In
this regime, two dynamical systems synchronize in such a
way that the slave system, y(z), anticipates the trajectory of
the master, x(t). Taking advantage of anticipated synchroni-
zation we propose a control method designed to correct un-
wanted dynamical behaviors. We apply the method to exter-
nally perturbed excitable systems. First, we show how it can
be implemented to suppress unwanted spikes produced by
the effect of external random perturbations in the prototype
Adler system. We then prove that the control method can
also work under nonideal conditions, such as the presence of
noise in the dynamics and parameter mismatch between mas-
ter and slave. Finally, we demonstrate experimentally the ef-
ficiency of the proposed method by experiments in electronic
circuits whose dynamics mimics that of the FitzHugh-
Nagumo set of equations.

II. MODEL

Our control scheme uses the anticipated synchronization
scheme, in which master, x(z), and slave, y(z), systems fol-
low the following general evolution equations:

x(t) =f[x(0)] + I(1) + €(1), (1)

y(0) =fly(n]+ K[x(1) - y(r - 7)]. 2)

The function f{x] defines the dynamical system under
consideration, K is a general coupling function satisfying
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FIG. 1. Schematic presentation of the predict-prevent control
method. The input signal I(¢) is applied only to the master system
x while its influence on the slave y is indirectly through the unidi-
rectional coupling Kx. The slave dynamics has a delayed loop
Ky,=Ky(t- 7). The control signal is applied whenever a condition
for the slave variable is satisfied.

K[0]=0, and 7 is the delay time in the feedback loop of the
slave. The function I(¢) represents an external perturbation
accounting for unexpected inputs acting upon the master dy-
namics. €(z) is the control function added, when required, to
the master in order to suppress unwanted behavior, as we
will explain in detail later. As proven by Voss [12], the mani-
fold y(r)=x(r+17), i.e., the slave anticipates by a time 7 the
dynamics of the master, can be a (structurally) stable solution
of Egs. (1) and (2) in the unperturbed case I=€=0. Antici-
pated synchronization has been studied theoretically and ex-
perimentally in many systems [13-22] (see also [23] for a
short review). In this paper, we use the aforewritten version
of the dynamical equations in order to suppress spiking in
the master system induced by a random perturbation I(z).
The main idea is that the decision to activate the control
procedure (1) is triggered by the behavior of the slave sys-
tem. Since the slave system anticipates the behavior of the
master, the control procedure can act earlier and then can be
more effective than the case where its activation is triggered
by the dynamics of the master.

III. NUMERICAL RESULTS

A. Suppression of a single spike

For the sake of concreteness, we start by considering two
unidirectionally coupled Adler systems (phase equations)
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FIG. 2. (Color online) Evolution of the master system cos[x(7)]
(solid line) and the slave system cos[y(z)] (dashed line) obtained
from a numerical integration of Egs. (3) and (4). External perturba-
tions of intensity /,=0.64 are applied at times =200 and =250
(shown at the bottom of the figure). In the first perturbation (¢
=200) we see clearly that the slave anticipates the dynamics of the
master. In the second perturbation (r=250) the spike of the master
has been suppressed by applying a correcting pulse of amplitude
€o=0.04 when the trajectory of the slave crosses the reference level
cos(x)=0.707 (dashed horizontal line). We have used the param-
eters ©=0.95, K=0.6, 7=1.5, and a reaction time 7z=1.

[24] in the general master-slave configuration introduced
before,

X(t) = u—cos[x(1) ]+ I(z) + €(1), (3)

y(1) = p —cos[y(#)] + K sin[x(r) — y(t = 7)]. 4)

M, K, and 7 are constant parameters. Throughout the paper,
we will take the values ©=0.95, K=0.6, and 7=1.5, which
satisfy the conditions for anticipated synchronization
[17,23]. Note that the external perturbation I(z) is applied
only to the master system x(7) while it acts on the slave
system y(¢) only indirectly through the coupling term. We
use a 27 periodic function for coupling, appropriate for the
angular-type variables we consider. The slave is driven by
the master and subject to its own feedback loop, of strength
K, producing the anticipated synchronization regime. As dis-
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FIG. 3. (Color online) Correction of a series of spikes. The external perturbation /(z) consists of a series of random pulses (vertical lines

al the bottom of both panels) following a Poisson distribution with a given mean value (r)=500. Independent noises of intensity D=0.01
have been added both to the master and to the slave. Left panel: control of magnitude €,=0.3 with a response time 7z=1 using a criterion
based on the slave variable y, as explained in the text. There are 72 excitations altogether and the method manages to suppress the spikes in
all but four cases. Right panel: control of magnitude €,=0.85 with the response time 7z=0 and a control based on the master variable x(z).
In this case there are 85 excitations, and the control method allows suppressing all but five spikes. In both cases we take #,..=5 and other
parameters as in Fig. 2.
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FIG. 4. Intensities of anticipation times for unidirectionally
coupled master and slave with u=0.95 in the parameter space
(7,K). White region corresponds to the unstable or retarded slave
(no control possible), other colors corresponds to the anticipation
times 0 <7<1 (light gray), 1 <7<6 (dark gray), and 7> 6 (black).
The perturbation magnitudes are I,=1.635 (left panel) and 7,=2.8
(right panel).

cussed in [19], the feedback term lowers the excitability
threshold of the slave and allows it to react to the perturba-
tion faster than the master. Hence, the slave is used to antici-
pate the future response of the master to this perturbation.
When an unwanted spike appears in the dynamics of the
slave before it does in the master, a control mechanism is
triggered and an appropriate control stimulus &(7) is sent to
the master in order to prevent that event. The whole scheme
is shown in Fig. 1. We now give some specific details of the
method.

It is easy to see that the master system x(7) is excitable for
|| <1, with fixed points at x. = % arccos(u), and oscillatory
for |u|> 1. If the system is at the stable point x(f)=x_ and a
perturbation acts upon it for a short time, the way in which
variable x(r) returns to the stable value depends on the mag-
nitude of the perturbation. Let us assume that we apply a
single, deltalike, perturbation of magnitude I, at time #,>0,
i.e., we take I(r)=1,8(t—t,), when the system is at the stable
fixed point x(zy)=x_. The effect of such delta function per-
turbation is to instantly change at f#, the value of x(¢) such
that x(7j)=x(#;)+I,. The subsequent dynamics depends on
the magnitude of I,. If I,<2 arccos(u) the system returns
smoothly to the fixed point x_, whereas if I,>2 arccos(u)
the variable x(r) executes a full rotation (a spike) and returns
to the equivalent point 277+x_. It is the aim of our control
method to prevent those spikes. We do this by adding to the
dynamics of the master [Eq. (3)] a small corrective signal
€(t)=—¢yS(t—T,) of magnitude ¢, at time Ty,. The time Ty, is
determined by two factors: a correction criterion and a re-
sponse time. The correction criterion determines whether the
corrective signal is sent, and the response time 75 is the time
it takes the correction action to act after it has been required.
We also consider that the control mechanism has a recovery
time ... such that 7., must elapse after a control signal has
been applied before another control signal can be activated.

Let us first consider a simple control method in whic
h the correction criterion is that the variable x(r) crosses a
threshold value x,. If this happens at time ¢, then at time
Ty=t,+1g the correction acts such that x(7})=x(T,) - €, and
it will be considered effective if x(¢) is brought back to the
stable region. The sooner the correction action is taken, the
smaller the magnitude of the correction ¢, is needed. In any

PHYSICAL REVIEW E 79, 046203 (2009)

FIG. 5. (Color online) Trajectories of the master (upper trace)
and slave systems (lower trace) in an experimental implementation
of the anticipated synchronization scheme in an electronic circuit
simulating the FitzHugh-Nagumo neuronal dynamics.

event, even for a zero response time, 75=0, the condition
€)>Xo—x, must be satisfied in order to bring back x(r) from
the threshold value x to the stable region.

Our method works similarly but the decision of activating
the corrective signal depends on the dynamics of the auxil-
iary system y(z), coupled to x(r) using the anticipated syn-
chronization scheme discussed previously. The main idea is
that the dynamics of y(¢) anticipates that of x(¢) and hence
the correction criterion y(z)>x, happens earlier. Conse-
quently, this is an important advantage of the method: a
much smaller magnitude €, is needed to suppress the undes-
ired firing. Alternatively, a larger reaction time can be used to
decide whether to apply the correcting signal. The correction
criterion is now modified to the following: if y(¢) crosses the
threshold value x, then a deltalike correction of magnitude
—¢ is applied to the variable x(¢). The same conditions for
reaction and recovery times discussed before also apply here.

We now compare in detail the control methods using the
criterions based on the y(z) or the x(r) variables. When using,
for example, a threshold value xy= /4, our numerical results
show that for a response time #z=0, a value €,=0.468 is
needed when using the criterion on the x(¢) variable, while a
much smaller value €,=0.022 suffices in our scheme using
the criterion based on y(r). The same result applies in the
case of a nonzero response time. If 7z=1, ¢, reduces from
0.834, when using the criterion of x(7), to 0.0307, when using
our method, or from 1.751 to 0.0426 if tx=2. For t3=3 the

046203-3



CISZAK et al.

PHYSICAL REVIEW E 79, 046203 (2009)

(a)

(b)

FIG. 6. (Color online) Experimental verification of the predict-control method in the electronic FitzHugh-Nagumo system. The small
vertical lines at the top of each figure are the external perturbations, and the lower traces are the master’s variable. In the right panel, the
spikes have been controlled using a criterion based on the dynamics of the slave (not shown). The left panel shows that the same procedure
fails to prevent the spikes if the criterion is applied using the master’s variable.

method based on x(7) is unable to control the system while
for our method it suffices to take €,=0.0597. In Fig. 2 we
show that our control method is efficient and indeed enables
the suppression of a single spike.

B. Systems with noise

In a typical control situation, the arrival of the pertur-
bation and the consequent generation of spikes would
be random. To model this, we consider a train of perturba-
tions arriving at times ¢; such that the time intervals ¢, ;—t;
are distributed according to an exponential distribution
of mean value (r). We also add to both Egs. (3) and (4)
independent white noise terms D&(r) with correlations
(&(t)E(t"))=8(tr—1"). The left panel of Fig. 3 shows the result
of our control method while the right panel shows the control
method based on the x(¢) variable. It can be observed that the
intensity €, of the control is smaller with our method and the
spikes are better suppressed. Finally, we have checked that
our control method still works well when the auxiliary sys-
tem is not an identical copy of the master system.

C. Determination of the control region

The control is efficient as long as the anticipation time
between the master and slave is nonzero and positive. Only
in such a case an ahead prevention is possible. Consequently
it is important to estimate the parameter ranges for 7 and K

for which the efficient control is possible. The results of Fig.
4 show that the anticipation times become smaller for stron-
ger external perturbations in x(z). This is due to the fact that
when the perturbation is stronger the response time of x(f) is
faster. This induces a decreasing in the anticipation times
since the highest possible anticipation times are bounded by
the response times of the master (see Ref. [19] for details). In
consequence the slow response systems or those that are
slightly perturbed can be better and more efficiently con-
trolled.

IV. EXPERIMENTAL IMPLEMENTATION

In order to assess the practical usage of our method we
have implemented experimentally an electronic version of
the FitzHugh-Nagumo neurons, another type of excitable
system [25]. The details concerning the experimental setup
can be found in [16]. For this work the setup was modified
introducing a monostable circuit that generates a pulse with
programmable variable width and delay when the slave sys-
tem signal crosses a threshold. The pulse is applied as a
corrective signal to prevent firings of the master. The com-
plete diagram of the setup can be found in [26]. Our experi-
mental findings qualitatively agree with the numerical pre-
dictions. Figure 5 shows a snap shot taken from the
oscilloscope showing the dynamics of the master and the
slave systems with response to a perturbation applied only to
the master. It can be clearly seen that the slave anticipates the
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firing of the master by roughly 400 ws. In Fig. 6 we show
time traces taken from the oscilloscope. The left panel shows
the results when the master system is controlled using its
own output. In this situation it is almost impossible to cancel
the firing. The right panel shows the results using our control
method based on the anticipating slave. Note that all spikes
have been suppressed in this particular realization of the ex-
periment, a typical situation.

V. CONCLUSIONS

In conclusion, we have proposed a predict-prevent control
method and shown its feasibility for the suppression of
spikes in perturbed excitable systems. The method consists
of two steps: (1) prediction made by the slave system with
the use of the anticipated synchronization scheme and (2)
correction applied to the master in order to suppress its un-
wanted response. We have demonstrated numerically and ex-
perimentally the efficiency of the method.

Our method displays some of the most advantageous
characteristics of the delayed-feedback control methods of
Ott et al. [3] and Pyragas [4] but nevertheless differs essen-
tially from them. The method uses the delayed feedback, as
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in the delayed-feedback control method, but the use of it has
completely different scope: it is used in an auxiliary slave
system to process the information (predict) and decide
whether to activate or not the control. Once the decision of
activating the control has been taken, a small perturbation is
applied to the master in order to prevent its firing.

At variance with previous methods, our technique is more
efficient because the real-time prediction by the slave allows
for a fast decision making. It is also less invasive since it
uses localized small feedback stimuli. The proposed tech-
nique has been applied to excitable systems but we hope that
this work will stimulate additional studies in order to extend
this method to other cases, such as cardiac and neural tissues,
electric and electronic circuits, laser systems, etc., as well as
to identify possible situations of practical interest.
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