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Abstract—We numerically find that higher privacy and secu-
rity in all-optical chaos-based communication systems can be
achieved when the closed loop scheme is used in the receiver
architecture, instead of the more traditional open loop scheme.
Our results show that the extraction of the encoded message
demands a larger amplitude of the message when the open loop
receiver is used than when the closed loop is implemented. A large
amplitude of the encoded message compromises the performance
and security of the system.

Index Terms—Optical feedback, semiconductor lasers, syn-
chronization, dynamics, chaos.

I. INTRODUCTION

HAOS-BASED communications have emerged as an

alternative technique to improve privacy and security in
communication services, especially after the field demonstra-
tion in the optical link of the metropolitan area of Athens,
Greece [1]. One of the main questions that remains open is
how much security can the technique offer?

While in all-optical chaos-based systems the emitter ar-
chitecture usually includes a semiconductor laser subject to
optical feedback from an external or integrated mirror, the
receiver system can operate subject to the same feedback
architecture (closed loop scheme) or without the optical
feedback (open loop scheme) [2], [3]. The main advantages
and disadvantages of these schemes can be summarized as
follow. Since in the open loop the receiver is not subject
to feedback, this configuration is mechanically more stable
and easier to implement. The open loop receiver is also
very robust against frequency detuning and small parameters
mismatch [4], [5], and has a shorter resynchronization time in
case the connection is suddenly interrupted [6], [7]. On the
contrary, the closed loop is less stable. Therefore, the external
or integrated feedback cavities of the emitter and receiver have
to be matched within sub wavelength precision, otherwise the
synchronization quality is very poor [8]. The closed loop is less
robust than the open loop and has a longer resynchronization
time [7]. For all these reasons, a receiver with an open loop
scheme has been massively used for demonstration purposes
[9], [10]. However, there is one point related to the security of
the encoding that has not been considered in detail so far [5].
In general, the degree of synchronization in the open loop is
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worse than that in the closed loop [11], [12], specially when
the open loop is working in the strong injection regime [13].
Only if the complete synchronization condition is achieved
[7], [11], [12], the correlation of an open loop receiver with
an emitter can be larger than that of a closed loop receiver,
and can actually amount to almost 1 under certain conditions
[15]. Due to the extreme experimental difficulties to attain
complete synchronization [14], we assume that the open loop
can only work in the strong injection regime. In this regime,
the correlation between an emitter and an open loop receiver is
not good enough and, although chaos pass filtering properties
have been experimentally demonstrated with this scheme [16],
[17], messages with large amplitude have to be used. At this
point is where the security is compromised. The use of large
amplitude modulations makes the message less encrypted and,
in many cases, a simple linear filtering process can recover
most of the information. Consequently, its performance is
strongly limited when a secure transmission is intended.

Security aspects are often associated, by many researchers,
directly to the receiver architecture although the security
is related only indirectly with the receiver characteristics.
Security is related to the difficulty of extracting the message
from the chaotic carrier without using the authorized receiver.
Two kinds of attacks can be considered. A software attack
requires direct information from the signal that is transmitted.
If the signal is extracted with enough sampling precision
(usually picoseconds precision is required, hardly difficult
to be obtained experimentally) time series analysis could be
performed and, in some cases, the message could be partially
extracted [18]. The second attack is a hardware one. The idea
in this case is to use a receiver similar to the authorized one
without knowing the specifications of the latter. This is a very
difficult task since laser parameters and operating conditions
of the emitter are key parameters for the system design and
should be kept private. For this second attack, an open loop
receiver would be the first and easiest choice. However, as we
will show later, the encrypted information cannot be retrieved
if the amplitude of the encoded message is small enough.

It is our aim in this letter to show that privacy and security
in all-optical chaos-based communication systems can only be
achieved when small amplitude messages are used, which can
be only recovered with a closed loop receiver.

II. RESULTS AND DISCUSSION

We have performed numerical simulations using the stan-
dard rate equations model for two emitter and receiver lasers
unidirectionally coupled. The equations for the slowly varying



amplitude of the electric field E(t) and the carrier number
N(t), assuming single mode operation and low to moderate
feedback strengths, read:
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where M (S) refers to the master (slave) laser. The gain
Gars = 9(Nars — No) /(1 + 5P (1) P(t) = [E@) is
the laser intensity. For simplicity, we have assumed identical
internal laser parameters and operating conditions and ne-
glected noise effects in the lasers. a = 5 is the linewidth
enhancement factor, 7, = 2 ps is the is the photon lifetime,
TNy = 2 ns is the carrier lifetime, g = 1.5 - 10-8 ps*1 is
the differential gain coefficient, N, = 1.5 - 108 is the carrier
numbers at transparency, s = 5- 1077 is the gain compression
coefficient, I;;, = 14.7 mA is the threshold current, 7 = 1
ns is the feedback delay time and -y is the feedback strength.
The term x,E s (t) only appears in the equation for the slave
laser (SL) and it accounts for the injection of the master laser
(ML) field into the SL. Without loss of generality we consider
instantaneous injection from ML to SL and neglect the optical
phase in the coupling term since it can be rescaled into Eg(t).

The scheme we have chosen to encode the information
is the chaos modulation (CM) scheme, since it is known
to be more secure than other encryption methods from the
perspective of information theory [19]. Similar results would
be obtained if other encoding formats such as chaos shift
keying or chaos masking were used, as will be briefly
shown later. In the CM scheme the message is encoded by
modulating the transmitter’s chaotic intensity according to:
PT(t) = (1 — Em(t))P]\/[(t), where PT(t) (P]\/[(t)) is the in-
tensity of the transmitted signal including the message (carrier
only), € is the amplitude of the modulation and m(t) is the
message being transmitted equal to 0.5 (-0.5) for a “1” (“0”)
bit. The message can be recovered at the receiver side as
m/(t) = (1 — Pp(t)/Ps(t)) /e. The extraction of the message
is possible if the SL reproduces mainly the chaotic carrier.
For Ps(t) = Py(t) (ideal synchronization) the message is
perfectly recovered. For Pg(t) = Pp(t) (perfect locking) the
message cannot be recovered.

To quantify the degree of correlation between two signals
the cross-correlation function is typically used. However, we
prefer to use the average mutual information (MI) since it is
more powerful and gives more useful information. MI is a
non-linear measure of the similarities between two quantities
x, y and is defined as [20] J,, = Zi’j pijlogs[pij/ (Pips)]s
where p;; is the joint probability of x = z; and y = y;,
p; (p;) is the probability of x = x; (y = y;). This quantity
essentially measures the extra information one gets from a
signal when the outcome of the other signal is known. For two
independent signals p;; = p;p;, and Jy, is zero. Otherwise,
Jzy will be positive, taking its maximum value for identical
signals. Here we compute the MI between the optical intensity
of the ML (Py(t)) and SL (Ps(t)), denoted as J,,,s and the
MI between the transmitted signal, Pr(¢), and the slave signal

Ps(t) (Jis). Both quantities, J,,,s and Jy, are evaluated when
a message of 1Gbit/s is codified in the output of the ML. In
the synchronization regime J,,s > Jis and the receiver is able
to filter out the message.
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Fig. 1.  Color online. Average mutual information between the ML and
SL in the closed loop scheme vs. coupling strength (A for J;s and B for
Jms). The inset shows the difference between both MI values. Parameters:
v =7Ys = 25 nsfl, I =2I;p, € = 0.05.
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Fig. 2. Color online. Same as Figure [T] but for the open loop (yg = 0).

In Figures [T] and 2] we show the results of the MI computed
for the closed loop and open loop, respectively. It can be
seen that the discrimination between the master output and
the transmitted signal, i.e., J,,s — J;s (shown in the insets of
the figures), is larger for the closed loop scheme than for the
open one. Moreover, only for coupling strengths larger than
100 ns~! the open loop starts to discriminate the two signals
[note the different scale of the = and y axis in Figs. [T] and [2]].
However, as will be shown below, this discrimination will not
be enough for an acceptable performance.

To better quantify the performance of the system we com-
pute the Q-factor defined as Q = (S1 — So)/ (01 + 00), Where
S1 and Sy are the average optical power of bits “1” and “0”,
and o7 and o are the corresponding standard deviations.

In Figure [3| we plot the ()-factor for open (solid line with
squares) and closed (solid line with triangles) loop receivers.
The results clearly indicate that the closed loop performs much
better, reaching much higher Q-factors (larger than 9) even
for message amplitudes as small as 2.5%. On the contrary,
the open loop can only attain Q-factors of ~5 for message
amplitudes of the order of 7.5% that, as will be shown below,
are too large to encrypt information. For the sake of complete-
ness, we also show in Fig. 3| the performance of the receivers
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Fig. 3. Q-factor for the open (M) and closed (A) loop schemes vs. the am-
plitude of the encrypted message. Solid lines correspond to the CM technique
and dashed lines to the CSK method. Parameters: I = 21, yar = 25 ns—1;
closed loop (open loop) vs = 25 (0) ns~1, k, = 80 (500) ns~1.

for the chaos shift keying (CSK) encryption method. In this
encoding scheme the message modulates the injected current
of the ML according to the expression I7(t) = (1 +em(t))1,
where m(t) is equal to 0.5 (-0.5) for a “1” (“0”) bit. As in
the case of CM, the closed loop receiver (dashed line with
triangles) performs much better than the open loop one (dashed
line with squares).
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Fig. 4. Left panels: Eye diagram for the closed (top, x, = 80 ns™1)
and open (bottom, x, = 500 ns~1) loop receivers for an encoded message
amplitude of € = 0.05. Right panels: Eye diagram of Pr(t) filtered by a 5th
order butterworth filter and a cut-off frequency of 0.8 GHz for a message of
(top) € = 0.05 and (bottom) € = 0.075.

Finally, we show in Figure ] eye diagrams of the recovered
messages using CM with 5% amplitude for the closed loop
(left upper panel) and the open loop (left bottom panel)
obtained with the authorized receivers. While the closed loop
authorized receiver perfectly recovers the message, the quality
of the message recovered by the open loop receiver is very
poor. On the right side we show the eye diagrams after a
simple linear filtering process performed on Pr(t) with (top) a
5% message amplitude and (bottom) a 7.5% amplitude. While
for the 5% amplitude the linear filtering is unable to detect the
information, the encoded message can be detected for the 7.5%
amplitude, highlighting that the information is not sufficiently
hidden into the chaotic carrier.

III. CONCLUSION

We have numerically shown that the best and most efficient
way to transmit and recover small amplitude messages, which

would guarantee a certain degree of security in all-optical
chaos-based communication systems, is to operate with the
closed loop scheme in the receiver. On the contrary, the
open loop scheme requires large amplitude messages that
compromise the security. In practice, the success of chaos-
based communications with a closed loop receiver requires the
use of stable external or integrated cavities, similar to those
that are currently being successfully developed [21].
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