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We search for conditions under which a characteristic time scale for ordering dynamics towards
either of two absorbing states in a finite complex network of interactions does not exist. With this
aim, we study random networks and networks with mesoscale community structure built up from
randomly connected cliques. We find that large heterogeneity at the mesoscale level of the network
appears to be a sufficient mechanism for the absence of a characteristic time for the dynamics. Such
heterogeneity results in dynamical metastable states that survive at any time scale.
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I. INTRODUCTION

A key characteristic for nonequilibrium dynamics of
interacting many body systems is the relaxation time.
Typically, finite systems starting from generic initial con-
ditions far from equilibrium reach a final stationary state
or attractor in a characteristic time. For simple nonequi-
librium lattice models [1] the dynamics often leads to
an absorbing state. In some cases the system might get
trapped in a metastable state, which generally also has a
well defined expected lifetime. Frozen metastable config-
urations that persist indefinitely in the absence of fluc-
tuations are also possible. An intriguing situation occurs
when such a characteristic time cannot be defined. In
particular this has been shown to occur when the sys-
tem reaches different dynamical (nonfrozen) metastable
states with very different lifetimes [2].

The two basic inputs in a model of interacting units
are the interaction rules among units, and the network
of interactions, i.e., links in the network defining who in-
teracts with whom. The structure of this network is ex-
pected to strongly influence the dynamics and collective
behavior arising from interactions. A particular feature
of networks of social interaction is that they are struc-
tured into cohesive groups within which the internal links
are dense, and which are sparsely interconnected [3–13].
Such communities are known to have a deep impact on
the dynamics taking place in the network. For example,
for oscillators coupled via a complex network, synchro-
nization takes place first within highly interconnected
local structures, and synchronized domains expand via
intercommunity connections [14–19]. Similarly, informa-
tion has been shown to spread rapidly within communi-
ties, but slowly across the network, particularly if inter-
community links are weak [20]. Communities may also
promote the emergence and survival of cooperation [21].

In dynamics of competing options, research has fo-
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cused on the question of whether and how a system-
wide consensus is reached [4]. For a two-spin system
following the majority rule [22], network topologies with
communities can be constructed in which no consensus
will take place [23]. For a three-state model of compet-
ing options [24], the absence of a characteristic time un-
til consensus is reached [2] seems to be associated with
metastable traps caused by community structure. Dy-
namics sensitive to community structure have also been
employed for identifying communities, including various
spin systems such as in the Ising model [25, 26], the Potts
model [27, 28], and models of random walks [29–31].

The question of general conditions under which a broad
distribution of relaxation times is obtained merits a de-
tailed and systematic study. In this paper we address
this question by investigating the role of the network of
interactions, in particular its mesoscopic structure and
topological traps, in nonequilibrium ordering dynamics.
For this, we will consider the AB model [24] which de-
scribes ordering dynamics towards an absorbing A or B
state. This model is an extension of the simple two-state
voter model [32], in which dynamics at the interfaces
has been proven to evolve by curvature reduction [24]
in contrast to the noisy interface dynamics of the voter
model [33, 34]. Thus, the results reported in this pa-
per might be generic for a class of models in which the
dynamics at the interfaces is curvature driven, such as
the spin-flip kinetic Ising model (SFKI) [35]. In addi-
tion, mesoscopic community structure of the networks is
especially relevant in discussions of the AB model which
was originally motivated by studies of language compe-
tition [24, 36–38]. We focus on the question of which
features of the network topology, such as relatively iso-
lated groups of nodes, the presence of communities, their
interconnectivity, or their size distribution, give rise to
trapped metastable states. Here we study the dynamics
of the AB model in a controlled setting by constructing
test case networks in which community boundaries are
clear.

The outline of the paper is as follows: In Sec. II we
introduce and briefly review the AB model. We first
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consider random networks (Sec. III) where we identify
substructures causing broad distributions of lifetimes in
random networks with low mean degree. To explain the
observations therein, we introduce the concept of dynam-

ical robustness measured by the survival time (i.e., a char-
acteristic relaxation time) of relatively isolated groups of
nodes in a state different from the one in the final absorb-
ing state. In Sec. IV we study the effect of the presence
of communities starting from an underlying random net-
work and communities of equal size, and considering later
an exponential distribution for the sizes of different com-
munities. The results and conclusions are summarized in
Sec. V.

II. THE AB MODEL

The AB model [24] considers a set of interacting units
located at the nodes of a network. Each unit can be in
either state A or B, or in a third state AB of coexisting
options at the individual level. Thus the model describes
the competition of two nonexcluding options or states.
It can be seen as an extension of the two-state voter
model [32] by the introduction of a third nonsymmetric
mixed state. A node changes its state with a probability
that depends on the states of its neighbors in the net-
work. The fraction of neighbors of an agent in each state
(A, B, AB) are called the local densities : σA, σB , and
σAB . Transitions from A to B always take place via the
third mixed AB state. The AB model is defined by the
following transition probabilities:

pA→AB =
1

2
σB, pB→AB =

1

2
σA (1)

pAB→A =
1

2
(1 − σB), pAB→B =

1

2
(1 − σA) . (2)

The mean-field analysis of these equations shows that
there exist three fixed points with two of them stable
and one unstable. The stable fixed points correspond
to consensus in either of the two options A or B, while
the unstable one corresponds to a situation where the
three states A, B and AB coexist. In our simulations
we initially set each node in a network of size N ran-
domly to one of the states A, B, or AB. At each time
step all nodes are updated in random order according to
the transition probabilities Eqs. (1) and (2). The lifetime

of a run is defined as the number of time steps it takes
to reach either of the absorbing states. We monitor the
fraction of alive runs, that is, the fraction of simulations
which still have not reached an absorbing state at time t,

P (t) = 1 −
∫ t

0
p(t′)dt′, where p(t) is the probability dis-

tribution of lifetimes. In a two-dimensional regular and
finite lattice, the system reaches in a finite time and with
probability one an absorbing state, i.e., consensus in ei-
ther of the single-option states, A or B (with the same
probability [24]). Trapped metastable states have been
observed in the AB model dynamics in a two-dimensional
lattice, in which they take a stripelike form [24], but with
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FIG. 1: (Color online) Fraction P (t) of runs alive at time t
for Erdős-Rényi (ER) networks with different average degrees
(�: 〈k〉= 10, △: 〈k〉= 5). Solid symbols, network size N =
103; open symbols, N = 105. Averaged over 100 network
realizations, 100 runs in each (1000 in each for N = 103).

well-defined mean lifetime (lifetimes of these metastable
states are distributed exponentially).

In contrast with the voter model, the AB model dy-
namics is curvature driven [24], such that the A and
B domains form and grow in size by a coarsening pro-
cess in which the characteristic length of a domain, av-
eraged over different realizations of the dynamics, grows
as 〈ξ(t)〉 ∼ tγ , γ ≃ 0.5. The AB agents never form
domains but instead place themselves in the boundaries
between A and B domains, transforming the noisy inter-
face dynamics of the voter model into a curvature driven
dynamics.

In a network with community structure [39], the
boundaries between homogeneous single-option domains
tend to follow the community boundaries [2]. The most
interesting result for the AB model in these networks
is the fact that there is no characteristic time scale for
the dynamics: a power law distribution for the distribu-
tion of lifetimes is obtained with an exponent such that
a characteristic time cannot be defined. This behavior
seems to be associated with the existence of dynamical
long-lived trapped metastable states that survive at any
time scale. In order to obtain a fuller understanding of
this phenomenon, in the remaining part of the paper we
study the AB dynamics in networks with a predesigned
mesoscopic structure.
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III. THE AB MODEL IN RANDOM
NETWORKS

A. Erdős-Rényi Networks

Here we first consider the Erdős-Rényi (ER) random
network topology [40], in which each of the possible links
between the N nodes is present with probability p. The
network can equivalently be characterized by the aver-
age degree 〈k〉= p(N − 1). We find that in Erdős-Rényi
networks the fraction of alive runs P (t) depends unex-
pectedly on link density [Fig. 1], such that, for high link
densities up to a fully connected network, P (t) is clearly
exponential, but for low link densities it turns out to
be broader, indicating the existence of metastable states.
The cases of 〈k〉 = 10 and 〈k〉 = 5 are selected to illus-
trate this difference.

The metastable states are visualized by displaying the
fraction fm of nodes in the minority state (the state A
or B that becomes the minority and finally dies out)
in individual runs [Fig. 2(a)]. Figure 2(b) shows that
metastable states do not arise for 〈k〉 = 10. The observed
metastable states concern only a very small fraction of
nodes. Further analysis reveals that they are associated
primarily with “branches”. We use the term branch here
to indicate maximal treelike substructures that are con-
nected to the rest of the network through a node that
has degree k > 2, which we will call here the root node of
the branch [see Fig. 3(a) for illustration]. Branches can
be removed from the network (except for the root node)
by successively removing nodes of degree k = 1 until all
the remaining nodes have degree k ≥ 2, i.e., by taking
the two-core of the network [41]. We call the maximal
network distance from the root node to any other nodes
in the branch the diameter of the branch. Figure 3(a)
displays schematically the difference between the ER net-
works with 〈k〉 = 5 and 10 with respect to the presence
of branches. In the ER networks with 〈k〉 = 10 typi-
cally only branches with unit diameter are present, while
branches with diameter 2 or 3 arise frequently in ER nets
with 〈k〉 = 5, often with bifurcations.

Taking the two-core of ER networks with 〈k〉 = 5 and
running the AB model in the resulting networks con-
firms the role of branches in producing a deviation from
an exponential distribution in P (t), see Fig. 3(b). The
metastable states disappear and an exponential lifetime
distribution is recovered. In very sparse ER networks,
illustrated by the case 〈k〉= 2 in Fig. 3(c), a slight de-
viation not explained by branches remains that could be
attributed to the largely chainlike structure of the net-
works [44]. However, the branches are clearly responsible
for the longest-lived metastable states.

B. Dynamical robustness and survival times

In order to characterize the behavior of relatively iso-
lated groups of nodes that remain in the minority state
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FIG. 2: (Color online) Time evolution of the fraction fm of
nodes in the state (A or B) that became the minority and
finally died out, in several individual runs. (a) ER 〈k〉 = 5,
N = 105; (b) ER 〈k〉 = 10, N = 105.
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FIG. 3: (Color online) (a) Schematic illustration of branches
in the different ER networks studied. The root nodes are
indicated by open circles. (b) The fraction of alive runs P (t)
for ER networks with 〈k〉 = 5 and N = 105, and their two-
cores. (c) ER networks with 〈k〉= 2 and N = 2×103, and their
two-cores. Averaged over 100 network realizations, 100 runs
in each (5000 network realizations for two-core of 〈k〉= 2).

after most of the network has homogenized in either state
A or B, we introduce the concept of dynamical robust-

ness against invasion for a given topological structure.
It concerns a group of nodes G subjected to dynamics
of competing options. It measures the resistance of G
against consenting to outside pressure applied to G by
its neighbors G′ [Fig 4]. We initialize the nodes in G to
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state B, and fix the nodes in G′ permanently to state A.
The dynamical robustness of G is then characterized by
a survival time, τ , defined as the characteristic time it
takes for G to homogenize to state A. A substructure G
is dynamically robust when it has a large survival time.
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FIG. 4: Characterization of the dynamical robustness against
invasion for a given topological structure G. We show a
schematic view for two example cases: (a) a branch excluding
the root node and (b) a clique.

As an example, consider the dynamical robustness of
branches with diameters 2 and 3, one of them containing
a bifurcation [Fig. 5]. The time it takes for each of these
topologies to homogenize to the consensus state appears
to be distributed exponentially, P (t) ∼ e−t/τ but with a
different characteristic time τ , corresponding to different
time scales. For a branch with given diameter, bifurca-
tions increase the survival time. It is noteworthy that,
compared to the times it takes for an Erdős-Rényi net-
work with no branches to reach consensus [Fig. 3(b)], the
time that a single branch may remain with the minority
opinion is very long.

Each branch of different diameter, and with a differ-
ent number of bifurcations, produces an exponential life-
time distribution with a different characteristic time τ .
The combination of various time scales leads to the ob-
served broader than exponential lifetime distribution in
low-link-density ER networks.

IV. THE ROLE OF COMMUNITIES

A. Networks with equally sized cliques

In this section, we discuss the effect of communities on
lifetimes of the system, using simple test networks with
equally sized communities. To keep things as clear as
possible, we use cliques, i.e., fully connected graphs, as
communities. We denote by kc,out the clique out-degree,
or the number of links connecting each clique to outside
nodes (note that the term out-degree here does not refer
to directed edges). For a node in a clique of size s, we
denote the number of links to the other nodes within the
clique by kn,in = s − 1, and the average number of links
to nodes outside the clique by 〈kn,out〉 = kc,out/s .

We employ two different methods for connecting the
cliques. In the first construction, kc,out is equal for all
cliques. We label these networks EDH, for equal out-
degree and homogeneously sized cliques. The kc,out link
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FIG. 5: (Color online) Fraction of alive runs P (t) for a chain (a
branch with no bifurcations) with diameter 2 (open circles), a
branch with diameter 2 with a single bifurcation (diamonds),
and a chain with diameter 3 (solid circles), initialized such
that the nodes denoted by open squares are permanently set
to one state, and the remaining nodes are initially set to the
opposing state. We performed 10 000 runs in each topology.

ends are assigned to randomly selected nodes in each
clique, and then randomly paired, under the condition
that two link ends from the same clique are not allowed
to be connected [Fig. 6(a)]. In the second construction,
we begin with an ER network, with high link-density to
avoid branches with diameter larger than 1, and replace
its nodes with equally sized cliques (Fig. 6(b)). Each
link of the underlying Erdős-Rényi network, connecting
two cliques, is again assigned to a uniformly randomly se-
lected node in each clique. We label these networks ERH,
as they are based on an underlying ER network, and con-
sist of homogeneously sized cliques. In ERH networks,
kc,out is distributed according to the Poisson distribution
of the underlying ER network.

FIG. 6: Generation of networks with equally sized cliques: (a)
EDHand (b) ERH. To obtain an ERH network of size N , we
begin with an underlying ER network with N/s nodes, where
s is the clique size.

We run the AB model dynamics in different realiza-
tions of the EDH and ERH networks with 〈kc,out〉 = 10
and various clique sizes s, always starting from ran-
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dom initial conditions. Let us first obtain a detailed
view of the time evolution of the dynamics by moni-
toring the fraction of agents in each state within each
clique. Note that, because the AB agents do not tend to
form AB domains, the densities fA and fB of A and B
agents within each clique will be practically complemen-
tary (fB ≈ 1 − fA). Figure 7 displays fA within each
clique for a run in an ERH network, indicated by gray
scale from white (all A agents) to black (no A agents).
Each row corresponds to one clique. The randomly ini-
tialized cliques very rapidly homogenize to either state A
(white) or B (black). The plot shows that cliques remain
homogenized to either state A or B during most of the
run, and that they do not often flip from one state to the
other (this is also true for the EDH networks, not shown).
Two of the clusters remained in the minority state B for
long after the rest of the network was homogenized to
the opposing state, indicating a metastable state. These
appeared frequently in the ERH networks, in contrast to
the EDH networks.

FIG. 7: Time evolution of the fraction of A agents fA in each
clique, labeled with IDs from 1 to 100, in a single run in an
ERH network with clique size s = 10, N = 1000, and 〈kc,out〉
= 10. The resolution is 10 time steps.

Two typical runs that developed metastable states in
the ERhom network topologies are presented in Fig. 8,
employing two measures: the number nm of agents in
the minority state [Fig. 8(a)], and the interface density
ρ, i.e. the fraction of links that connect nodes in differ-
ent states [Fig. 8(b)]. Run (2) corresponds to the detailed
view in Fig. 7. We see that nm decreases in steps of size
s, indicative of cliques that are homogenized to the mi-
nority state, which are consenting to the majority state
one by one. The number of minority agents rarely in-
creases in the ERH networks. A closer inspection of the
network topologies shows that the cliques that remain in
the minority state longest have a relatively small num-
ber of out-links, although not necessarily only one (in
runs (1) and (2) displayed in Fig. 8, kc,out = 4 and 6,

respectively).
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FIG. 8: (Color online) Time evolution of (a) the number nm

of agents in the minority state, and (b) interface density ρ,
for two typical runs that developed metastable states in an
ERH network, s = 10, 〈kc,out〉 = 10, N = 1000.

In order to shed more light on how cliques with various
out-degrees resist changing their state, we study them in
a controlled setting. In accordance with our definition
of dynamical robustness, we initialize all agents within
the clique to the state B, and the links leading out of
the clique are connected to nodes permanently in state A
[as shown in Fig 4(b)]. As cliques remain mostly homog-
enized to one state during the evolution of the dynam-
ics, the resulting lifetime distributions are also relevant
for understanding the resistance of communities against
changing their state within the network. Figure 9(a) dis-
plays the observed fraction of alive runs for cliques of
various sizes s and out-degrees kc,out. The distributions

are roughly exponential, P (t) ∼ e−t/τ , and it turns out
that their survival times τ show a clear trend with the ra-
tio r = kn,in/ 〈kn,out〉= s(s−1)/kc,out, which appears to
be an appropriate topological measure of the dynamical
robustness for cliques. Figure 9(b) displays the relation
τ(r), determined for cliques of fixed size with varying
clique out-degree. The time scales associated with the
invasion of cliques grow rapidly with r.

Finally, let us observe the fraction of alive runs P (t) in
the networks with equally sized cliques. In EDH networks
with clique sizes s = 6, 8, 9, and 10, and clique out-degree
kc,out = 10, P (t) has an exponential tail [Fig. 10(a)],
indicating that the presence of communities alone is not
sufficient for a broad distribution to appear. In these
networks, all cliques have equal dynamical robustness.
In contrast, in the ERH networks the resulting fractions
of alive runs P (t) are clearly broader than exponential,
as depicted in Fig. 10(b) for clique sizes s = 3, 6, and
10, and average clique out-degree 〈kc,out〉 = 10. The
variance in dynamical robustness caused by the different
clique out-degrees seems to play an important role.

We probe the effect of the most isolated node groups in
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FIG. 9: (Color online) Dynamical robustness of cliques [as in

Fig 4(b), see text]. (a) The fraction of alive runs P (t) ∼ e−t/τ

shows a trend with r = s(s − 1)/kc,out. Various ratios r are
each represented by two pairs of (s, kc,out). From left to right:
r = 2: (6,15) and (3,3); r = 3: (6,10) and (4,4); r = 5: (6,6)
and (5,4); r = 7: (8,8) and (7,6); r = 10: (6,3) and (10,9).
We performed 10 000 runs in each topology. (b) Dependence
τ (r). Clique sizes s = 6 (�), s = 10 (∗), and s = 13 (◦), and
kc,out ranging from 1 to 15, 20, or 30 respectively, leading to
the displayed r values.

the ERH networks by eliminating the least well connected
cliques, i.e., those that are connected to the network by
a single link. This is done by taking the two-core of the
underlying ER network before replacing its nodes with
cliques. We call these networks PERH for“pruned”ERH.
Figure 10(c) displays P (t) for ERH and PERH networks
with s = 10 and 〈k〉 = 10. It is seen that pruning the net-
work results in a distribution that decays slightly faster,
but remains broader than exponential. This gives further
confirmation that the metastable states with various time
scales produced by cliques with different out-degrees are
responsible for the broader than exponential lifetimes in
the ERH networks.

The fraction of alive runs P (t) in the ERH networks
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FIG. 10: (Color online) Fraction of alive runs in EDH, ERH,
and PERH networks with N ≈ 103 and kc,out = 10. (a)
EDH with clique sizes s = 6, 8, 9, and 10. (b) ERH networks
with clique sizes s = 3, 6, and 10. (c) The ERH with s = 10
together with the corresponding PERH network. All cases
averaged over 100 network realizations (except 103 for ERH
s = 6), with 100 runs in each.

shown in Fig. 10(b) has broad tails that appear power-law
like. Moreover, they appear to broaden with increasing
clique size. Approximating these tails by power laws, the
exponents would however be far larger than those ob-
served in the networks studied in [2], in which the range
of exponents was such that the variance of the lifetimes
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was not defined. Hence the distributions observed here
are fundamentally different from the findings in [2]. In
order to obtain broader lifetime distributions, we appar-
ently need a broader distribution in the dynamical ro-
bustness of communities, which in the case of cliques can
be achieved by increasing variance in r. As it is more
practical to obtain large variance in r by varying s than
kc,out, we take this approach in the following section.

B. Networks with a broad size distribution of
clique sizes

In this section, we study a network consisting of cliques
with equal out-degree kc,out and with an exponential
clique size distribution, shifted to obtain minimum clique
size smin. We construct networks from Nc cliques whose
sizes s are obtained as s = ⌊x⌋ + smin, where ⌊ ⌋ refers
to rounding downwards and x is drawn from the ex-
ponential distribution p(x) = 1

µexp(−x/µ), leading to

p(s) ∼ exp(−(s−smin)/µ) for integer values of s starting
from smin. As with the EDH networks, the kc,out out-
links of each clique are randomly assigned to its nodes,
and link ends are randomly paired, except that no two
link ends from the same clique are connected. We label
the networks as EDE, for equal out-degree and exponen-
tial clique size distribution.

The communities in this network will display a very
large variance in dynamical robustness. In Sec. IVA we
saw that the factor τ(r) of the exponential lifetime dis-
tribution of a clique being “invaded”, grows very rapidly
with r, which in turn grows approximately as r ∼ s2.
Again, cliques remain homogenized to either of the states
A or B most of the time (not shown), but it turns out that
some of the smaller cliques frequently adopt the state of
a larger clique homogenized to the minority state. Fig-
ure 11(a) displays the fraction fm of nodes in the minor-
ity state in a few typical runs that developed metastable
states in the EDE networks. A close-up of the same runs
[Fig. 11(b)] shows that the number nm of minority nodes
fluctuates above a baseline of roughly 11−13 nodes. This
seems to indicate a relatively large clique homogenized
to the minority state that is “converting”its smaller (and
hence less dynamically robust) neighboring cliques to the
minority state, thereby producing around itself a buffer

of cliques in the minority state. This assumption is con-
firmed by closer inspection of the networks, as well as by
Fig. 11(c), which shows the number Nc,m of clusters in
which more than 90 % of the agents are in the minor-
ity state. Much of the time there is only one cluster in
the minority [corresponding to the baseline in Fig. 11(b)],
while it is frequently joined by other, mostly smaller clus-
ters, judging by the combination of nm and Nc,m.

The buffering effect is an additional ingredient caus-
ing metastable states with various time scales, beyond
the dynamical robustness that depends on r. We studied
it in a more controlled setting using networks consist-
ing of a single large clique and a large number of small

cliques, with equal kc,out, connected similarly as in the
EDH networks. The P (t) resulting in these networks had
an exponential tail (not shown), suggesting that buffer-
ing is again a process that would individually have an
exponential lifetime distribution, but broader distribu-
tions are produced when a combination of substructures
with different dynamical robustness is present.
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FIG. 11: (Color online) Two typical runs that developed
metastable states in EDE networks with kc,out = 3, µ = 1.2,
smin = 3, and Nc = 270, leading to N ≈ 103. Time evolution
of (a) the fraction and (b) the number of agents in the state
that became the minority, and (c) the number of cliques in
which more than 90 percent of agents were in the minority
state.

The EDE networks are seen to give rise to very broad
lifetime distributions, shown in Fig 12 for smin = 3,
µ = 1.0...2.0, kc,out = 3, and N ≈ 1 000. Approximat-
ing the tails of the fraction of alive runs by a power law
P (t) ∼ t−η, the best fits to the cases with µ = 1.0 and
µ = 1.2 have exponents η = 1.51 and η = 1.3, respec-
tively. Values 1 < η < 2 imply that the variance of the
lifetime probability density distribution p(t) is not de-
fined. In this way, we recover the result found in [2],
where a characteristic lifetime could not be defined be-
cause of the existence of trapped dynamical metastable
states. The best fit to the case with µ = 1.5 has an
exponent smaller than unity, η = 0.92, indicating that
a mean lifetime is not defined either. We note that for
each network realization, the community sizes are sam-
pled from a distribution, and the observed broad lifetime
distribution is a result of averaging over several runs in
many network realizations.
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FIG. 12: (Color online) Fraction of alive runs P (t) in EDE
networks with various factors µ of the clique size distribution
p(s) ∼ exp(−(s− smin)/µ) with smin = 3. From left to right:
µ = 1.0, 1.2, 1.5, 2.0 and Nc = 280, 270, 260, 225, leading to
N ≈ 1 000. Clique out-degree kc,out = 3. Results are averaged
over 1 000 network realizations (2 000 for µ = 1.0) with 10
runs in each. The fitted lines are power laws P (t) ∼ t−η with
exponents from left to right: η = 1.51, 1.3, 0.92.

V. CONCLUSIONS

In this study we set out to determine minimal net-
work features that would produce broad lifetime distri-
butions for the ordering dynamics described by the AB
model. We have introduced the concept of dynamical ro-
bustness against invasion in relation to the dynamics of
competing options to describe the resistance against out-
side influence of topological substructures that involve
relative isolation from the rest of the network. Dynam-
ical robustness is characterized by the survival time of
the substructure, i.e., the characteristic time needed for
this set of nodes before changing its option toward the
one of the surrounding majority. In all of the topolo-
gies in which a broader than exponential distribution for
the relaxation time of the whole system arose, we have
identified substructures that individually have exponen-
tial lifetime distributions, implying a well defined survival
time for such topologies. The broad distribution appears
because of the heterogeneity of these substructures, such
that the network has a variety of different substructures
with different survival times.

In an Erdős-Rényi network, branches were seen to
produce exponential lifetime distributions when isolated
from the rest of the network. Their dynamical robustness
has been proven to be affected by the diameter as well as
the number and location of bifurcations. Lifetime distri-
butions also appear to be exponential for isolated cliques,
and the ratio r = kn,in/ 〈kn,out〉 has proven an appro-

priate topological measure to characterize the dynamical
robustness of a clique.

In the case of networks with mesoscale structure built
up from randomly connected cliques, it has been seen
that simply the presence of communities is not a suf-
ficient condition to produce a broader than exponential
lifetime distribution. This was demonstrated by networks
consisting of cliques with equal size and same out-degree,
and hence equal dynamical robustness (EDH), where the
lifetime distribution for the whole network has proven to
be exponential. Although the interactions between the
cliques in a network may cause clique lifetimes to devi-
ate from those that arise in isolation, the broader than
exponential lifetime distributions observed for ERH and
EDE may in part be explained by the different dynamical
robustness against invasion of the cliques forming the net-
work, leading to a combination of exponential processes
with various time scales. The most interesting feature is
obtained for EDE networks where we have recovered the
main results in [2], i.e. very broad P (t) with a best power
law fit such that the second moment of the distribution
is not defined, and therefore there does not exist a char-
acteristic time scale for the dynamics. The results in this
paper might be generic for a class of models where the
dynamics at the interfaces is curvature driven.

In summary, complementing studies on the effects of
heterogeneous interacting agents (a research line of grow-
ing interest [42]), we have seen that heterogeneity at the
mesoscale level of the network of interaction results in
non-trivial effects in the dynamics of ordering processes.
A large variability in the dynamical robustness of differ-
ent topological substructures appears to be a sufficient
mechanism for the absence of a characteristic time for the
dynamics. This mechanism causes the existence of dy-
namical metastable states that survive at any time scale.
Substructures might have a well defined survival time,
but the existence of a variety of substructures with dif-
ferent dynamical robustness (characterized by different
survival times) results in a very broad P (t) that does not
allow to identify a characteristic relaxation time for the
whole system.
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[33] I. Dornic, H. Chaté, J. Chave, and H. Hinrichsen, Phys.

Rev. E 87(4), 045701(4) (2001).
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