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Manipulation of the bifurcation structure of nonlinear optical systems via intracavity photonic crystals is
demonstrated. In particular, subcritical regions between spatially periodic states are stabilized by modulations
of the material’s refractive index. An family of dissipative solitons within this bistability range due to the
intracavity photonic crystal is identified and characterized in both one and two transverse dimensions. Non-
trivial snaking of the modulated-cavity soliton solutions is also presented.
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I. INTRODUCTION

The effect of background modulations in the nonlinear
dynamics of broad-area photonic devices leads to control and
stabilization of spatial structures �1,2�. Recently we have
studied the formation of spatial structures in nonlinear opti-
cal devices with intracavity photonic crystals, i.e., a periodic
modulation of the material’s refractive index �3�. We ob-
served that, for some values of the cavity detuning, the linear
band gap of the photonic crystal inhibits modulational insta-
bilities that lead to the formation of periodic spatial struc-
tures �patterns�. This yields a gain of stability of the funda-
mental solution, resulting in straightforward potential
applications for the control of spatial instabilities in broad-
area photonic devices. In �3�, however, we restricted our-
selves to the case of supercritical bifurcations only. Here, we
study the effects of a periodic modulation of the refractive
index on the formation of subcritical structures. This case is
especially relevant for the observation of dissipative �or cav-
ity� solitons �CSs�. CSs are miniature beams of light, self-
localized through the material nonlinearity and stored within
an optical cavity �4�. They are robust features and can be
used as elements for optical processing in semiconductor-
based optoelectronics �5�.

In regimes where CSs exist, we observe a very different
behavior from that reported in �3�, including localized struc-
tures in different subcritical regimes where the fundamental
solution is stabilized by the intracavity photonic crystal. The
periodic modulation, coupled to the nonlinear nature of our
models, has powerful effects on the formation of subcritical
patterns and allows for the existence of an additional family
of CSs. This is an example of the nontrivial effects that a
photonic crystal may have on nonlinear systems, beyond
their usual linear effects on light propagation.

The paper is organized as follows. In Sec. II we introduce
a useful model for a broad-area Kerr medium with an intra-
cavity photonic crystal �ICPC� and briefly review supercriti-
cal bifurcations induced by the ICPC. In Sec. III subcritical
bifurcations are found and characterized. These would not
exist should the ICPC be removed from the device and are at
the basis of the formation of “modulated” localized states or
CSs. Details of the formation, shape, and stability of the
modulated CSs are provided in Sec. IV, where we show that

their presence can be better identified with Fourier filtering
techniques. Analogies and differences between the modu-
lated and the more traditionally shaped CSs are also dis-
cussed. Conclusions about the generality and universality of
the ICPC-induced subcritical bifurcations and modulated
CSs are presented in Sec. V.

II. THE MODEL

We consider an optical cavity containing a self-focusing
Kerr medium and a linear medium with a spatially modu-
lated refractive index �3�. This model is convenient for its
simplicity but the phenomena discussed in the next sections
extend to a variety of nonlinear optical cavities such as satu-
rable absorbers, optical parametric oscillators, and lasers. In
one transverse spatial dimension, the evolution of the slowly
varying amplitude of the paraxial electric field E is de-
scribed, in the mean-field approximation, by �6�

�tE = − �1 + i�� + f�x���E + i�x
2E + E0 + i�E�2E , �1�

where � is the average detuning between the frequency of the
pump and the frequency of the cavity, f�x� accounts for the
modulated refractive index in the transverse direction of the
photonic crystal, �2 is the transverse Laplacian, and E0 is the
input field. Here we consider f�x� to be a square function of
amplitude � and wave number kpc. In the absence of the
photonic crystal ��=0� Eq. �1� has a homogeneous steady-
state solution implicitly given by

Es = E0/�1 + i�� − Is�� , �2�

where Is= �Es�2. Equation �2� has a single-valued solution for
���3. Here we restrict ourselves to this range and use Is and
� as convenient control parameters. The homogeneous solu-
tion is stable for Is�1 and becomes modulationally unstable
at Is=1 with critical wave number kc=�2−�, leading to the
formation of a stripe pattern.

For ��41/30, the transition associated with the modula-
tional instability is subcritical �6,7� so that stable homoge-
neous and patterned solutions coexist for intensities Is�1,
below the instability. Inside this subcritical regime, localized
structures, the so-called cavity solitons, have been found.
The existence and bifurcation diagrams of such structures
have been studied in �8�.
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Figure 1 shows the bifurcation structure of the critical
pattern for two values of the detuning, one below 41/30 and
one above. In Fig. 1�b�, for instance, the pattern coexists
with the homogeneous solution for 0.939� Is�1.0. For later
comparison, single-peak localized solutions exist for
0.9628� Is�0.9715.

III. SUBCRITICAL PATTERNS

In �3� we analyzed the effects of an ICPC on the forma-
tion of supercritical patterns. We found that periodic modu-
lations with a large enough amplitude inhibited pattern-
forming instabilities. When the ICPC is included in the
simulations with a relatively high amplitude ��=O�1��
we observe the following scenario in the detuning range
−2���1.5 �see Fig. 2�.

�1� For negative or small positive values of �, the ICPC
shifts the first instability of the homogeneous solution, and
also the range of parameters where modulated solutions ex-

E
E

FIG. 1. Bifurcation diagram of a pattern with the critical wave
number kc without ICPC ��=0�. �a� Supercritical bifurcation for
�=−2. �b� Subcritical case for �=1.5. Solid �dashed� lines indicate
stable �unstable� solutions. The dot-dashed line in �b� shows the
bifurcation line of a pattern with k=2kc, which is also unstable.

E
E

FIG. 2. Bifurcation diagram of the fundamental solution with
ICPC for �=0.75. �= �a� −2.0 and �b� 1.5.

FIG. 3. Fundamental solution of the ICPC system with �=1.5
and �=0.75. Is= �a� 0.3 and �b� 0.6.

(a)

(b)

FIG. 4. Marginal stability curve of the homogeneous solution
without photonic crystal ��=0� for �= �a� −2 and �b� 1.5. The hori-
zontal dashed line shows the threshold for pattern formation. The
two vertical dotted lines indicate the critical kc and photonic crystal
kpc wave numbers. The vertical distance from the marginal stability
curve to the threshold line is an indication of the stability of pertur-
bations corresponding to that wave number.
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ist, to higher values of the input intensity without, however,
changing the supercritical nature of the bifurcation �see Figs.
1�a� and 2�a��.

�2� For positive values of � above 41/30, where one finds
a subcritical instability without the ICPC �see Fig. 1�b��, the
ICPC completely alters the bifurcation diagram and sup-
presses any instability and pattern solution �see the curve in
Fig. 2�b� corresponding to �=0.75 and �=1.5�. For these
values of the parameters, one would in principle expect sub-
critical spatial instabilities, but the fundamental solution re-
mains stable, although it abruptly modifies its profile. For
�=1.5 �Fig. 2�b��, for instance, it changes from a low-
amplitude modulation for low values of Is to a highly anhar-
monic pattern with twice the amplitude upon a relatively
small increment of the intracavity intensity �Fig. 3�. We note,
again, that there is no coexistence between the fundamental
solution and high-amplitude patterns.

We interpret this phenomenon as a resonance of the wave
number k=2kc with the modulation introduced by the photo-
nic crystal �kpc=2kc�. In �3� we studied the effects of a peri-
odic modulation of wave number kpc=4 on the formation of
patterns in the detuning range −6���1.73. Pattern inhibi-
tion occurred when kc	kpc /2=2, i.e., for values of the de-
tuning around �=−2. In that case, the response of the system
to the ICPC was very small, according to the large and nega-
tive decay rate of perturbations at k=kpc �see Fig. 4�a��. The

ICPC, however, had the property of modifying the dispersion
relation of the cavity, introducing a band gap. Here, instead,
we are interested in regimes where CSs exist. In our system,
this takes place above �=41/30, and this corresponds to a
situation where the critical wave number is small and the
wave number kpc=2kc is only weakly dumped �see Fig.
4�b��. In this case the mechanism for the band-gap inhibition
of spatial instabilities �see �3�� fails and the system presents a
strong response to the perturbation introduced by the modu-
lation. A strong response to the ICPC enhances the amplitude
of the fundamental solution, and destroys the formation of
subcritical patterns at kc.

For ��41/30 the ICPC progressively removes subcritical
patterns for increasing values of the modulation amplitude �.
Figure 5 shows such transition for �=1.5 and values of �
between those of Figs. 1�b� and 2�b�, i.e., �=0.1, 0.2, and
0.4.

When increasing the amplitude of the modulation � we
observe a progressive stabilization of the fundamental solu-
tions for large values of Is �Fig. 5�a��. This mechanism is
different from the band-gap inhibition studied in �3�. Here,
the fundamental solution becomes stable through a locking
with the periodic forcing introduced by the photonic crystal,
similar to the case studied in �1�. In this case, however, the
modulation is in the refractive index instead of in the input
pump. Eventually, the fundamental solution becomes stable
for all values of the pump except for values between the two
bifurcation points that lead to the pattern with k=kc �Fig.
5�b��. Both bifurcations are subcritical and the fundamental

a)

c)

b)

E
E

E

FIG. 5. Bifurcation structure of a pattern with the critical wave
number in the presence of photonic crystals of amplitudes �= �a�
0.1, �b� 0.2, and �c� 0.4 ��=1.5�.

(a)

(b)

FIG. 6. �Color online� Near field of coexisting fundamental
�left� and pattern �right� solutions in 2D for Is=0.7 and �=1.2.
Simulations have been performed on a 128�128 rectangular grid
with dkx=0.097 and dky =�3dkx.
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solution stably coexists with the pattern in two different re-
gions of the parameter space. In the absence of ICPC, the
fundamental solution is typically �except for systems with
peculiar symmetries� unstable in the subcritical region at
large values of the input pump �Fig. 1�b��. Remarkably, the
new region of coexistence between the fundamental and the
pattern solutions close to the reverse �second� subcritical bi-
furcation is much larger in parameter space than the first one.
For instance, in the system without a photonic crystal, for
�=1.5 the pattern and homogeneous solution coexist and are
stable for 0.938� Is�1.0 while with a gentle periodic modu-
lation �such as with �=0.2� this region shifts to 0.6936� Is
�0.72 and a completely new and broader region appears for
0.891� Is�1.006. We note that the size of the second sub-
critical region is 0.115 as compared with 0.062 in the case
without a photonic crystal. This is roughly an 85% incre-
ment, greatly enhancing the possibility of realizing localized

structures in a regime of bistability due to the ICPC. The
existence of such localized structures is investigated in the
next section.

Finally, on increasing the amplitude of the modulation
even further, the unstable region shrinks in parameter space
until it disappears completely. The fundamental solution is
then the only possible stable output of the system. However,
there is a resonance between the fundamental solution and
the ICPC that modifies greatly the shape of the fundamental
solution, as explained above.

In two transverse spatial dimensions the scenario is quali-
tatively the same for the first subcritical bifurcation. For
larger values of the input pump, however, oscillatory insta-
bilities hinder the behavior observed in one dimension �1D�,
and, in particular, prevent the observation of the additional
subcritical region for large intracavity intensities. These os-
cillatory instabilities are commonplace in the 2D Kerr cavity
model due to the collapse dynamics reminiscent of the soli-
tons in the 2D nonlinear Schrödinger equation �9�. Figure 6
shows the coexisting 2D fundamental and pattern solutions

FIG. 7. Intensity profile of the coexisting �a� fundamental and
�b� pattern solutions for Is=0.96 and �=1.5 in the presence of a
periodic modulation of amplitude �=0.2.

FIG. 8. �a� Intensity of a single-peak localized structure �CS�
and �b� the intensity difference between the CS and the fundamental
solution in the subcritical regime for large values of Is. �b� Field
difference �destructive interference� between the CS and the funda-
mental solution. Here Is=0.96, �=1.5, and �=0.2.

3

2a

1
3u

3

2a

3u

FIG. 9. Snaking of a single-peak localized structure. Solid
�dashed� lines indicate stable �unstable� solutions. The lower panels
show the transverse profile of the structures corresponding to lines
labeled 3, 2a, and 3u, respectively. The localized structure corre-
sponding to line 1 is the single-peak CS shown in Fig. 8.
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due to the modulational instability enhanced by the ICPC at
lower values of Is. Here we consider a photonic crystal with
hexagonal symmetry and wave number kpc=�3kc.

IV. LOCALIZED STRUCTURES

In this section we investigate the existence of CSs in the
region of coexistence between the fundamental and the pat-
tern solutions for appropriate values of the input pump. We
consider here �=0.2 and �=1.5 but the shape and character
of the modulated CS remain unchanged for wide ranges of
parameter values. Both solutions coexist for 0.891� Is
�1.006 �Fig. 5�b��. Figure 7 shows the intensity profile of
the fundamental and pattern solutions.

The fundamental solution is �trivially� modulated at the
same periodicity �pc=2� /kpc as the ICPC, while the pattern
has a wavelength equal to 2�pc and consists of high peaks on
top of a lower modulation at kpc. The coexistence of a fun-
damental and a pattern solution often leads to the existence
of localized solutions �the CSs� that consist of an oscillation
of the pattern embedded in the fundamental solution. Indeed,
such solutions exist. Figure 8�a� shows the profile of a

single-peak CS generated by seeding a peak of the pattern on
the fundamental solution. In order to recover more familiar
shapes of CSs, we also plot the intensity of the difference
between the CS and the fundamental solution EFS �see Fig.
8�b��.

This CS exists for 0.917� Is�1.021, a parameter range of
size 0.104. This range may appear small but it should be
compared with its counterpart of 0.0087 for a CS without the
ICPC. This region of CS existence is thus more than ten
times broader than the original one. From an experimental
point of view, this indicates that the CS might be far more
easily created and observed in systems with an ICPC than
without.

As for CSs in photonic systems with no background
modulations, a family of �multipeaked� localized states
whose bifurcation diagram presents snaking �10–12� is
found. In Figs. 9 and 10 we show the snaking for the single-
and two-peak CSs, respectively. We observe anomalous
snaking with respect to the homogeneous case. In particular,
in Fig. 9 we found that the single-peak CSs do not connect
directly with the three-peak CSs as commonly observed in

4

22b

4u

4

2b

4u

FIG. 10. Same as in Fig. 9 for the two peaks CS. In this case,
line 2 corresponds to Fig. 12 below.

FIG. 11. Example of a complementary localized structure con-
sisting of three oscillations of the fundamental solution surrounded
by the pattern �a�. This corresponds to two holes in the pattern �b�.
Again Is=0.96, �=1.5, and �=0.2.

FIG. 12. Same as in Fig. 8 but for a two-peak CS.
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homogeneous systems. In our case, the line of single-peak
solutions �1� folds back first trough an unstable three-peak
CS �3u�, and then through a two-peak structure with a miss-
ing peak �hole� at its center �2a�, i.e., a two-homoclinic orbit.
In homogeneous systems N-homoclinic orbits appear in
separated bifurcation lines, while in the ICPC system they
merge with the fundamental snaking of one-homoclinic or-
bits. Similarly, in Fig. 10 the snaking of the fundamental
two-peak CSs entangles with a two-homoclinic orbit consist-
ing of two peaks with two holes in the middle �2b�. The
unusual properties and robustness of these structures cannot
be explained by the general theory for normal CSs �10–12�
since this should be modified to include the periodic forcing
due to the ICPC. Localized states between two periodic so-
lutions, although of a different nature from the ones investi-
gated here, have also been studied in �13�.

Together with CSs, one can also find the complementary
localized structures consisting of holes in the pattern solu-
tion. Figure 11 shows an example of such a structure con-
sisting of a two-hole localized structure in an extended pat-
tern.

The CSs presented in Figs. 8, 11, and 12 may difficult to
detect in the near-field intensity because of the limited ex-
cursion difference between the fundamental and pattern so-
lutions. In of Figs. 8�b� and 12�b� we presented the intensity
of the field difference between the CS and the fundamental
solution. The localized character of the CS is now apparent.
It is, however, difficult to perform difference measurements
in real experiments since they require the storage of the fun-
damental solution and/or interferometric accuracy. An easier
way to detect the presence of a CS in the modulated output
of an ICPC device is to construct its far-field �Fourier trans-

form� distribution in the focal plane of a converging lens.
Figure 13 shows the far field of the fundamental, the pattern,
and the CS where the k=0 bias component has been re-
moved. The broadening of the Fourier spectrum around k
=0 is a clear signature of the presence of the CS �see Fig.
13�c�� since it is due to the matching of the fundamental and
pattern solutions that build the localized structure. We have
observed similar broadenings for the entire family of CS
solutions generated by the ICPC. In the far field it may be
difficult, however, to distinguish between localized structures
with different numbers of peaks. A solution is to use Fourier
filtering in the far field to characterize the localization of the
ICPC-induced CSs. In Fig. 14 we present the inverse Fourier
transform of the CS after only the main Fourier component
of the fundamental solution has been removed by appropriate
filtering �2�. The result is basically the same as subtracting
the whole fundamental solution �Fig. 8�b��. Although the fi-
nal signal has been attenuated, the localized character of the
CS and its number of peaks are now evident.

Finally, for completeness, we present in Fig. 15 a local-
ized solution in the presence of ICPC in two transverse di-
mensions. The parameter values are those corresponding to
Fig. 6. We stress again that temporal oscillations prevent the
observation of steady localized states in 2D in our model for
large values of Is where the second subcritical regime is ob-
served in 1D. However, for lower values of Is in the first

FIG. 13. Far field �Fourier transform� of �a� the fundamental, �b�
the pattern, and �c� the single-peak CS. Again Is=0.96, �=1.5, and
�=0.2.

FIG. 14. Inverse Fourier transform of the far field of the CS of
Fig. 8 after the wave-vector components of the fundamental solu-
tion have been filtered out. Again Is=0.96, �=1.5, and �=0.2.

FIG. 15. �Color online� Same as in Fig. 6 for a ten peak local-
ized solution.
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subcritical regime, stable localized peaks of the pattern are
found embedded in the fundamental solution �see Fig. 15�.

Elimination of the temporal oscillations in 2D may allow
for the observation of steady localized structures around the
second subcritical regime. This, together with the use of
ICPC in other models of photonic devices to localize light in
two transverse dimensions, is presently under investigation.

V. CONCLUDING REMARKS

We have studied the effects of a periodic modulation of
the refractive index, i.e., a photonic crystal, on the formation
of subcritical patterns and the existence of CSs. We have
observed how the competition of linear effects of the ICPC
such as the creation of a transverse photonic band gap, with
nonlinearity leads to unexpected and useful phenomena. In
subcritical regimes, the ICPC resonates with the cavity non-
linearity to progressively destroy patterned solutions. This is
another aspect of the ICPC ability to inhibit modulational
instabilities �3�. We have, however, demonstrated that for
values of the modulation amplitude of the refractive index
below the quenching of the instability new subcritical re-
gions are created by the ICPC. These subcritical regimes
appear as reverse bifurcations and are extremely wide �easily
wider by a factor of 10� when compared to subcritical re-
gions without the ICPC. Because of their large size, full
families of localized states �CSs�, due to the resonance be-
tween nonlinearity and photonic crystal, are nested in the
bistability region of the subcritical bifurcations in both one

and two transverse dimensions. These localized states repre-
sent a family of CSs connecting two spatially modulated
solutions. Their detection in the near-field intensity distribu-
tion can be overshadowed by the lack of contrast between
amplitudes of the two separate modulations. For this reason
we have described two methods for CS detection. In the first
one, we consider the intensity of the difference between the
CS and the fundamental solution. This method works, but it
may be difficult to implement experimentally since it re-
quires the storage of the fundamental solution and/or inter-
ferometric accuracy. The second method for a clear detection
of the CS induced by an ICPC is based on the far field and
Fourier filtering, and can not only detect the localized nature
of the CS but also reveal the number of peaks of the CS.

The results presented here have been obtained in a proto-
typical model for optical pattern formation, but their validity
should extend to other systems more relevant for practical
applications such as models for semiconductor lasers. Local-
ized states, snaking, and subcritical bifurcations induced by
periodic modulations of parameters are universal features in
the study of complex systems and should be observable in a
variety of scientific disciplines outside optics.
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