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Synchronization properties of three delay-coupled semiconductor lasers
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We present detailed numerical studies of the dynamics of three semiconductor lasers when interacting in a
linear chain through the mutual injection of their optical fields. In particular, we focus on the synchronization
properties of the coupling-induced dynamics and the role of the delay in the interaction between the lasers. The
recently experimentally and numerically demonstrated zero-lag synchronization [Fischer et al., Phys. Rev. Lett.
97, 123902 (2006)] between the outer lasers in the chain is here further analyzed in detail along with a study
of the robustness of this phenomenon. In addition, the propagation properties of perturbing pulses and of

harmonic modulation are discussed.
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I. INTRODUCTION

Collective behavior of coupled nonlinear oscillators is a
fascinating subject which has captured the attention of re-
searchers in very different fields [1,2]. Among the most
prominent examples of emergent behaviors in such complex
systems, synchronization describes the process by which
rhythms of interacting entities are adjusted when they are
properly coupled [2,3]. Synchronization has been found in a
variety of systems that can be described as multiple weakly
interacting subsystems such as biological [4-6], chemical
[7], physical [8-10], and social systems [11]. In most of the
studies carried out so far, the interaction between systems
has been considered instantaneous, i.e., the information is
transferred from one system to the other without delay.
Whether this assumption is valid or not depends mainly on
the comparison between the internal time scale of the sys-
tems under consideration and the time it takes for the infor-
mation to propagate from one system to the other. In many
examples the internal time scale is much slower than the
information propagation time and thus the assumption of in-
stantaneous coupling is valid; an instantaneous coupling also
facilitates the analytical or numerical study which otherwise
is more complicated due to the inclusion of time delays in
the modeling equations. However, in the field of optics there
is a simple and particular example for which the assumption
of instantaneous coupling fails: when coupling two or more
semiconductor lasers (SLs) in a face-to-face configuration
[12,13]. Free-running SLs behave as damped oscillators
whose internal frequency of intensity pulsations lies in the
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gigahertz range. Consequently, and due the finite speed of
light, the interaction between two or more SLs coupled face
to face at distances of millimeters or longer must be de-
scribed in terms of delayed couplings. This is particularly
important when the interaction between the systems is bidi-
rectional or in general subject to feedback loops. It is impor-
tant to note here that delayed couplings have turned out to
have relevance in various other systems, e.g., in slime molds
[14], and very prominently in neurons in the brain [15,16].

Despite the paradigmatic character of the configuration,
delay-coupled oscillators were first studied only at the end of
the 1980s [17] and, with respect to lasers, two face-to-face
delay-coupled SLs were studied only at the end of the 1990s.
Experimental and numerical studies have demonstrated that
the coupling-induced dynamics of two identical lasers might
spontaneously result in a temporal symmetry breaking
[13,18-25]. When two semiconductor lasers are interacting
through the mutual injection of their coherent optical fields,
instead of showing identical behavior, the two twin lasers
develop an achronal generalized synchronization between
them. This type of synchronization is characterized by the
appearance of significant peaks at = 7in the cross-correlation
function between the laser intensities, with 7 being the cou-
pling time [13,21-23]. The coupling-induced dynamics of
systems that are bidirectionally and symmetrically coupled
do not synchronize at zero lag, although the zero-lag identi-
cal synchronization is a mathematical solution. However, it
turns out not to be stable. This has been particulary analyzed
for two bidirectionally coupled SLs [26-28].

One of the first proposals to obtain zero-lag synchroniza-
tion between the dynamics of three SLs placed far apart was
given by Sivaprakasam and co-workers [29]. In their scheme
a SL subject to optical feedback is bidirectionally coupled to
a free-running laser [30]. When the output of the second
laser is unidirectionally coupled to a third one, the time shift
can be compensated by the propagation distance, and even
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be nullified. More recently, Yamamoto et al. introduced an-
other configuration, based on a central laser, unidirectionally
injecting two outer lasers with equal relaxation oscillation
resonances. The two outer lasers exhibited synchronized
emission, with higher correlation among them than to the
driver [31].

From a different perspective, investigations of three in-
stantaneously coupled semiconductor or solid-state lasers in-
teracting through their overlapping optical fields were per-
formed by Winful [32] and Roy and collaborators [33].
These authors found that, when arranged in a linear chain, an
identical synchronization between the first and third lasers
appears, while the temporal traces of either of the outer la-
sers and the central one are rather uncorrelated.

All these various findings call for a deeper study of how
the introduction of finite communication time delays be-
tween the lasers affects or shapes the synchronization prop-
erties of interacting SLs and other oscillators. In particular, it
was not obvious whether lasers interacting through the same
topology of mutual connections but with a non-negligible
delay time were able to synchronize at all.

To address these issues, we study here the synchronization
characteristics of three delay-coupled semiconductor lasers
arranged in an open-end (linear chain) configuration. In par-
ticular, we extensively review the main properties of the
zero-lag synchronization between the outer elements of the
array that has been reported experimentally and numerically
in Ref. [34]. There, it was demonstrated that even in the
presence of long coupling delays the dynamics of the first
and third laser self-organized to produce an identical and
isochronous signal. Surprisingly, the central laser, which me-
diates in the communication between the outer ones, was
found to correlate with the dynamics of the outer lasers, lag-
ging behind by the coupling delay. In addition, we demon-
strated that the onset of the zero-lag synchronization is inde-
pendent of the particular choice of oscillator and can also be
demonstrated in a similar configuration of delay-coupled
neurons [34]. We identified the requirement for the robust
zero-lag solution as having a central relay element which
equally redistributes the incoming signals to both outer ele-
ments [35]. Since then, various other works have supported
this finding, demonstrating zero-lag synchronization in simi-
lar coupling configurations with other oscillating elements
[36-38] and analyzing the stability of the zero-lag solution
[39,40].

After introducing the modeling equations and parameters
in Sec. II, we present our main result in Sec. III. We focus on
the open-end configuration of three mutually delay-coupled
SLs. The characterization of the coupling-induced instabili-
ties, as well as the transition from the two-laser to the three-
laser setups is explored there. The leader and laggard roles of
the relay element are also analyzed as a function of the cou-
pling strength. Section IV is devoted to assessing the robust-
ness of the synchronization solution by exploring the effects
of different mismatches and dynamical perturbations. Fi-
nally, a discussion of our results in comparison to other set-
ups studied in the literature is presented in the Discussion
section.
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FIG. 1. (Color online) Open-end scheme of three mutually
coupled semiconductor lasers interacting bidirectionally with a time
delay.

II. MODEL

The system under investigation consists of three single-
mode SLs coupled in a linear array configuration via the
delayed mutual injection of their lasing modes. For numeri-
cal purposes the modeling is performed at the level of rate
equations according to Ref. [12], which take into account the
different delayed coupling terms between the SLs.

The adaptation of such a modeling to the case of three
mutually-coupled SLs interacting in an open-end configura-
tion (as sketched in Fig. 1) reads
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where E, (f) is the complex amplitude of the optical field
generated by laser m and N,, represents the corresponding
carrier number. |- --|| denotes the amplitude of the complex
field. The nonlinear gain function G(N,,,||E,,[|?) is given by

g(Nm _ NO)
L+5|E,[°

G(Nm’

Em”) = -7 (7)
Initially, most of the internal laser parameters are assumed
identical for the three lasers and are the same as in [34]; the
linewidth enhancement factor a=3, the differential gain g
=1.2X 107 ns~!, the transparency value for the carrier num-
ber Ny=1.25 X 108, the saturation coefficient s=5X 1077, the
photon decay rate y=496 ns™!, and the carrier decay rate
7,=0.651 ns~!'. With these internal parameters the threshold
current of the three lasers is /=17.35 mA. In the former
equations, the reference frequency for the slowly varying
amplitude of the electric fields is chosen to be Q=(w;+ w,
+ws3)/3, where w; is the central frequency of each solitary
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laser. Detunings (Aw;) are taken with respect to ). Unless
other coupling conditions are explicitly mentioned, the cou-
pling strengths and delay times are assumed to be identical in
the two coupling branches of Fig. 1; kj,=kKy=K3=Kn3
=20 ns™! and 7,=7;=T3=753=3.65 ns. The chosen cou-
pling delays correspond to a physical separation between
each pair of lasers of more than 1 m. In addition, to limit the
parameter space, we restrict the propagation phases to be
equal, with ¢,=d¢,=¢3,=¢,3=0rad. Nevertheless, we
have checked that the choice of ¢;;#0 and also choosing
them as having different values do not change the qualitative
features of the dynamical behavior found.

For the numerical integration, a second order Runge-
Kutta method adapted to handle delay-differential equations
with multiple constant delays is used in all the simulations
presented here [41].

III. DYNAMICS OF THREE SEMICONDUCTOR LASERS
IN AN OPEN-END ARRAY

A. Coupling-induced instabilities

In order to explore the instabilities emerging from the
mutual coupling of three semiconductor lasers interacting
with a time delay, we first set the lasers to operate in a highly
symmetric configuration namely, within a perfect free-
running frequency matching (Aw;=Aw,=Aw;=0) and a
moderate and identical current pump I=1,=1,=13=27.5 mA.
With this level of pumping the solitary relaxation oscillation
frequency (ROF) of the three lasers amounts to 4.33 GHz.

Once coupled under these conditions, the three semicon-
ductor lasers are observed to enter into a dynamical regime
similar to the coherence collapse (CC) [42,43]. In this regime
the optical intensity of each laser fluctuates in a chaotic man-
ner. Remarkably, after some transient, the chaotic traces of
the outer lasers, i.e., SL1 and SL3, although initially uncor-
related, start to become more and more alike up to the point
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FIG. 2. Temporal traces of the optical intensity of the three
lasers in the open-end configuration. k=20 ns~! and 7=3.65 ns.
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FIG. 3. Cross-correlation functions for the open-end configura-
tion with three lasers. k=20 ns™' and 7=3.65 ns.

that they end up being perfectly synchronized without any
lag [34]. Numerically computed traces of the intensity dy-
namics of the three lasers demonstrating this effect are
shown in Fig. 2. To check the statistical significance of this
synchronization phenomena we have simulated Eqgs. (1)—(6)
starting from various nonidentical initial conditions for the
lasers. All the simulations returned the same results: zero-lag
synchronization of the lasers occupying the outer positions.
At this point it is worth remembering that the symmetry
under the exchange between lasers 1 and 3 only assures the
existence of a synchronized solution, but not its stability
[44]. Remarkably, the stability of the zero-lag solution is
maintained even in the presence of arbitrarily long coupling
delays [34,39]. Also, considering spontaneous emission noise
in the rate equations only slightly reduces the correlations
between the outer lasers.

The cross-correlation analysis between the intensity time
series additionally reveals a considerable degree of similarity
between the traces of either of the outer lasers and the central
one. In Fig. 3 it is observed that, once properly shifted, a
significant degree of correlation (~0.8) exists between the
traces of either of the lasers occupying the outer positions
and the laser 2. The lag for which the maximum of the cross-
correlation function appears corresponds to the coupling time
7. The asymmetric cross-correlation function between SL1
(or SL3) and SL2 indicates that the outer lasers are advanc-
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FIG. 4. Maximum of the cross-correlation function between
pairs of SLs as a function of their common coupling strength «.

ing the dynamics of the central one by the coupling delay 7.
Thus, remarkably, the mediator element is lagging behind the
synchronized outer units for which it is acting as a relay. This
type of dynamics excludes the interpretation of the central
element as a simple master slaving the outer lasers, and il-
lustrates the collective self-organized dynamics of the net-
work of lasers induced by the mutually reciprocal connec-
tions.

1. Influence of coupling strength

In the following we investigate how this synchronization
scenario depends on the coupling strength between lasers.
We proceed by adiabatically increasing the coupling strength
between the three SLs and computing the dynamics for each
value of the coupling rate. The common coupling strength
K=K|y=Ky = Ky3=Ks, is varied from 0 to 30 ns~!. The com-
mon coupling delay time is maintained constant at 7
=3.65 ns. For each time series, we determine the maximum
of the cross-correlation function between pairs of lasers. The
results in dependence on the coupling strengths are shown in
Fig. 4. It is worth mentioning that for most of the coupling
strength values the three lasers operate in the hyperchaotic
CC regime although some windows of periodic behavior are
also observed for small coupling rates. Interestingly, regard-
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less of the dynamics exhibited by the lasers, the perfect syn-
chronization at zero lag between the outer units extends to
the whole range of couplings explored. No coupling thresh-
old for the transition from unsynchronized to synchronous
motion is observed for this pair of lasers which achieve the
synchronization state for arbitrarily small couplings (a differ-
ent scenario can appear when the outer lasers are simulta-
neously subject to feedback from an external reflector and
consequently develop their own dynamics even when un-
coupled). The central laser, on the other hand, exhibits
changes of the correlation coefficient with the outer units
from a value close to 1 obtained for small couplings and
periodic dynamics to a value around ~0.8, which is attained
for large coupling strengths, a regime in which chaotic dy-
namics develops. We also found that from coupling rates «
=6 ns~! the lag between SL2 and SL1 (or SL3) stabilizes
around 7, i.e., the central laser lags behind the outer ones.
For small coupling strengths, where the dynamics is peri-
odic, the cross-correlation function turns out to be rather
symmetric and a leader-laggard behavior cannot be clearly
distinguished.

2. Transition from the two-laser case to the three laser-chain

The different synchronization properties of setups with
different numbers of lasers (two and three coupled lasers
have been mainly considered in the literature) motivated us
to study how such a transition occurs. To better understand
the link from the two-coupled laser problem to our case with
three interacting lasers, we performed the following numeri-
cal simulation. Instead of symmetrically increasing the cou-
pling strength between the three lasers we start from a con-
figuration where only SL1 and SL2 are interacting with a
constant coupling strength (k;,=x,;=20 ns~!). Laser 3 is put
into play by continuously increasing the coupling rates x,3
=Ky, from 0 to 30 ns~!. Therefore, we can study in detail the
transition from the known cases of leader-laggard dynamics
for two lasers to the zero-lag synchronization situation for
three lasers. In Fig. 5 the correlation properties of the solu-
tions are shown.

We observe that the maximum of the cross-correlation
function between the outer lasers increases with the coupling
strength up to the value of ky;=x3,=20 ns, i.e., the degree
of correlation is maximum in the most symmetrical situation.
The lag between SL1 and SL3, determined via the maximum
of the cross-correlation function, is again zero for most of the
coupling rates investigated. Regarding the role of the central
laser, one can see that the amount of correlation between
either of the outer lasers and the central one also grows,
exhibiting a peak at x,;3=#k3,=20 ns~!. After that point, the
correlation between SL1 and SL2 starts to decrease, while
the correlation between lasers 2 and 3 saturates at a value
around ~0.7. It is interesting to note that, for example, at
Ky3=K3,=30 ns~!, the interaction between lasers 2 and 3 is
stronger than when the coupling is set at x;=k3,=20 ns~!
and nevertheless, the correlation between these two lasers is
higher in this last case for symmetry reasons. Regarding the
lag analysis, we observe that for moderate to large coupling
values (=10 ns™!) both outer lasers advance the dynamics of
the central one by a time 7.
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FIG. 5. Maximum of the cross correlation between the pairs of
SLs as a function of the coupling strength between SL2 and SL3

(K23=K3).

So far we have considered only symmetric mutual inter-
actions between any pair of lasers. This is, for any pair of
lasers (n,m) the coupling strength was such that «,,,= ,,,. In
such situations the central laser is always receiving more
optical injection than the outer ones because it is the only
one that is simultaneously linked to two lasers. To check
whether the synchronization solutions we have observed un-
til now are maintained when this situation is modified, e.g.,
when SL2 receives less optical injection than SL1 and SL3,
we perform the following numerical simulations. We fix the
coupling strengths from SL2 to the outer lasers at k,;=kK»3
=20 ns~!, and scan the input coupling of SL2 from &,
=K3,=0 up to 30 ns~'. The correlation analysis is presented
in Fig. 6.

We find that the synchronization between SL1 and SL3 at
zero lag is stable under all considered conditions. Regarding
the leader-laggard role between any of the outer lasers and
the central one, we find a change of role occurring at «,
=K3,~ 10 ns~!. This is the symmetric situation in which the
center laser gets in total as much input as the outer lasers. We
first analyze the case for coupling strengths below such a
critical rate. In that region the cross-correlation function be-
tween any of the outer lasers and SL2 typically shows two
peaks at = 7. However, in such functions the peak associated
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FIG. 6. Maximum of the cross correlation between the pairs of
SLs and lag at which this maximum appears as a function of the
central laser input strength (kj,=K3,).

with the situation in which the central laser advances the
extreme ones is only a bit higher than the other peak, which
is related to the situation that the outer lasers are advancing
the central one. Since the difference between the two peaks
is comparatively small it becomes difficult to speak about a
true leader-laggard dynamics. For coupling strengths above
~10 ns™!, the difference between peaks is much larger than
in the previous case, hence indicating a well-posed leader-
laggard dynamics in which the central laser lags. For this
large-coupling regime, the dynamics of SL1 and SL3 are
always found to advance the central one by the injection
delay time 7.

It is worth elaborating at this point more on the situation
Ki2=kK3=10 ns™! and k,;=k»3=20 ns~! in which the center
laser gets in total as much input as each of the outer lasers.
Since we do find zero-lag synchronization of SL1 and SL3,
the dynamics is in this case identical to the case of two
mutually delay-coupled lasers, as discussed in [13]. SL2 re-
ceives as much delayed coupling as SL.1 and SL3 separately.
Our results reported here are indeed fully compatible with
the earlier interpretation of generalized synchronization be-
tween neighbored delay-coupled lasers, the instability of the
zero-lag synchronization of SL2 with respect to SL.1 and SL3
and the determination of the leader-laggard role via detuning.
Under these conditions zero detuning represents the switch-
ing point for the center laser to lead or lag in its dynamics as
in [13]. For the situation, as studied mostly in this manu-
script, that kj,=K|,= Kky3= kK3, large detunings are required in
order to switch the leader-laggard role between center and
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outer lasers. The influence of detuning is discussed in more
detail in the following section.

B. Robustness of the synchronized solutions
1. Influence of the detuning

The ability of a set of oscillators to synchronize is
strongly dependent on how far their solitary frequencies are.
Considerations of detuning leads to the concept of Arnold
tongue. For laser oscillators the role of a moderate detuning
between the free-running optical frequencies of two coher-
ently coupled edge-emitting lasers has been found to estab-
lish a leader-laggard role, with the high-frequency laser ad-
vancing the dynamics of its counterpart [13,21]. Since a
small detuning is almost unavoidable in real experiments,
there is a strong motivation to observe the effects of detuning
in an open-end array of lasers.

We recover here the first considered (standard) coupling
conditions by setting all the coupling constants at K=k,
=Ky =Ky3=K3,=20 ns~!, and the delay times at 7=7,=17,
=Ty3=T3,=3.65 ns. We start with the case where the outer
lasers share a common solitary frequency (Aw;=Aw;=0)
and we only allow for a detuning with respect to the central
laser (Aw,#0). The central laser frequency detuning is
scanned from —22.5 up to 22.5 GHz in Fig. 7. The graphics
show that the zero-lag synchronization between SL1 and
SL3 is perfectly maintained in all the range of values con-
sidered for the detuning. The data reported in Ref. [34] sup-

PHYSICAL REVIEW E 78, 066202 (2008)

port this view since experimentally the zero-lag synchroni-
zation was observed up to several tens of gigahertz. In most
cases, both outer lasers advance the dynamics of the central
one and only for very high positive detunings this lag
changes its sign. However, looking in more detail at this
hypothetical reversal of the leader-laggard role we must no-
tice that it occurs for a value of the detuning where the linear
correlation between the central and outer lasers is almost lost
(at Aw,=18 GHz the maximum of cross-correlation function
is just ~0.2). In fact, around = 7 the cross-correlation func-
tion also presents two negative peaks reaching the value of
~—0.5 (not seen in Fig. 7 since there only the absolute
maxima of the cross-correlation functions are represented),
hence indicating that actually an anticorrelated dynamics
with time lag between the central and the outer lasers is
taking place. Nevertheless, it is important to emphasize here
again that for the condition in which the input and output
couplings of the central laser are equal (k,+ K3,=Ky3=Kp])
the switching of roles between leader and laggard occurs at
zero detuning.

If a detuning occurs between the outer units (Aw;—Aw;
#0), we have numerically tested that the synchronized solu-
tion is much more sensitive. The robustness of the isochronal
sync between SL1 and SL3 is observed to amount to a few
hundreds of MHz (see Fig. 8). The relative dynamics, i.e.,
the leader-laggard role if any, between the three lasers out-
side the zero-detuning point becomes difficult to interpret
since the correlation coefficient drops very fast down to zero.

2. Influence of pumping mismatch

Another important control parameter in this system is the
electrical pump current. The current injected into a semicon-
ductor laser can be very well controlled and it is important to
check the stability of the synchronization solution upon cur-
rent mismatches between the coupled lasers. Different dy-
namical regimes and synchronization characteristics only ap-
pear at certain values of the injection current (low-frequency
fluctuations, coherence collapse, regular pulse packages,
etc.). For these reasons in this section we assess the effect of
different pumping levels for each laser and evaluate the ro-
bustness of the synchronization solution. As in the previous
study of the detuning effect, the coupling strengths are fixed
at Kip= K21=K23=K32=20 nS_], and the delay times at T12
=T =T)3=T3p= 3.65 ns.

We first proceed by varying the bias current of the central
laser I, from 17.5 to 37.5 mA while keeping the outer laser
pumps constant at /;=/3=27.5 mA. We find that the only
effect of increasing /, is to monotonically decrease the cor-
relation level between respective neighbors. However, the
degradation of the synchronization quality captured by the
correlation coefficient is not severe and it decreases from a
value of almost 1 for periodic regimes down to ~0.7 for
chaotic states. It is worth noting that the maximum of the
correlation between SL2 and SL1 (or SL3), is not attained in
the symmetric configuration where all three lasers are oper-
ating at 27.5 mA but at pump levels of the central laser close
to the threshold. These results together with Fig. 4 are indica-
tive of the very low optical power that is needed to bring the
outer elements SL.1 and SL3 into synchrony. Regarding the
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timing of the synchronized solutions, we find that the lags at
which the maxima of the cross-correlation functions appear
do not shift with the pump level.

Next, we consider pump mismatches between the lasers
occupying the outer positions, i.e., SL1 and SL3. The effects
on the synchronization are much more severe now. The re-
sults are summarized in Fig. 9 where the bias current of SL3
is scanned from 17.5 to 37.5 mA. There the levels of SLI
and SL2 are fixed to 27.5 mA. In such a case high correla-
tion between the outer lasers is maintained only within a
range of a few miliamperes wide. For small pump deviations,
series of bursts of desynchronization perturb the identical
synchronization solution between SL1 and SL3. Neverthe-
less, the location of the maximum of the cross correlation
function between SL1 and SL3 remains at zero lag.

3. Robustness under dynamical perturbations

In the preceding sections we have demonstrated that the
synchronization between the extreme lasers is only moder-
ately robust against a mismatch between them. In contrast,
the effect of mismatches between the central laser and the
outer units turned out to be hardly significant and the syn-
chronization between SL1 and SL3 was found to be ex-
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FIG. 9. Maximum of the cross correlation between the pairs of
SLs as a function of the current level of laser 3.

tremely robust upon changes in the parameters of central
laser [35].

These results have been obtained under the conditions of
stationary mismatches, i.e., once the differences in the natu-
ral frequencies or pumping levels were applied they were
kept constant throughout the temporal evolution of the lasers.
In this section, we investigate the effects of a dynamical
perturbation on the synchronization properties. To do so, we
simulate a pulse of current in one of the lasers and study how
this perturbation propagates in the system and affects the
synchronization solution and how fast synchronization can
be recovered after the perturbation.

Within the standard and symmetrical coupling conditions,
we start by generating a current pulse of Gaussian profile
with an amplitude of 10 mA and full width at half maximum
of 1.2 ns in the central laser. This pulse is superimposed to
the constant bias drive at 27.5 mA. The time series of the
three lasers, the pulse profile, and the synchronization error
and sync plot for SL.1 and SL3 are depicted in Fig. 10. The
synchronization solution between the outer lasers is perfectly
maintained, even during the time the perturbation reaches the
lasers SL1 and SL3, one coupling time after the pulse was
generated. The perturbation remains completely unnoticed
from the synchronization point of view. This can be under-
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FIG. 10. (a), (b), and (c) contain the temporal traces of the
optical power of the three lasers, (d) represents the applied current
pulse wave from, while the sync error and sync plot between lasers
1 and 3 are shown in (e) and (f), respectively. Perturbation is ap-
plied on SL2.

stood in the sense that such a symmetric perturbation applied
to the center laser affects and modifies the synchronization
manifold, but does not represent a perturbation transverse to
the synchronization manifold.

Perturbations transverse to the synchronization manifold
are realized by asymmetrically perturbing one of the outer
lasers. We investigated this by applying the same pulse now
to one of the lasers occupying the outer positions. The result
is depicted in Fig. 11, clearly showing that the synchroniza-
tion error between lasers 1 and 3 becomes different from
zero, but almost only during the pulse duration. This means
that just after the perturbation on SL1 ends this laser is al-
most immediately resynchronizing due to the continuous
coupling that it receives from the central laser. There is no
need to wait until the pulse is reaching the third laser (~27)
to reinforce synchrony [35]. This result is quite different if
compared to the expected resynchronization times for two
face-to-face coupled lasers. In such a case, replicas of the
original disturbance in the synchronization error are expected
for time 7 and multiples of this value after the onset of the
pulse generation. In our case, however, once the perturbation
reaches the central laser, it is symmetrically distributed to-
ward SL1 and SL3 due to the similar values of the coupling
coefficients, again only affecting the synchronization mani-
fold and not the directions transverse to it. This leads to
extremely fast synchronization times which in our case
amount to the decay time of the ROF, which is usually
shorter than any of the propagation delays involved.

In cases where the amplitude of the pulses was increased
up to 50 mA (note that this value is almost double the bias
current level) or the width of the pulse enlarged up to 12 ns
(a value much larger than the coupling delay time), the same
characteristics were found. Hence, the synchronization be-
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FIG. 11. (a), (b), and (c) contain the temporal traces of the
optical power of the three lasers, (d) represents the applied current
pulse wave from, while the sync error and sync plot between lasers
1 and 3 are shown in (e) and (f), respectively. Perturbation is ap-
plied on SLI.

tween lasers is proven to be quite stable under dynamical
perturbations pushing away the solution from the synchroni-
zation manifold.

C. Filtering properties

If in addition to the collective dynamics of coupled sys-
tems an external perturbation is superimposed, the elements
of the system can respond in different ways. The character-
ization of such responses to different types of perturbations
is an important property. Among examples of such behaviors
one can find regimes where a system can faithfully follow
the evolution of an external perturbation and others where
the elements filter out the external influence. This reaction is
in general dependent on the systems being externally per-
turbed, as well as the amplitude and frequency content of the
perturbation [13]. Important applications in the field of opti-
cal cryptography rely on the filtering properties of chaotic
lasers [45-47]. For instance, previous studies have exploited
selective filtering properties by a SL to decode a message
embedded into a chaotic carrier [47-49].

In this section, we study the filtering properties of a chain
of three mutually coupled SLs. More precisely, we charac-
terize the degree to which the different systems react to am-
plify or suppress a given external fluctuation. To this end, we
proceed by adding to one of the lasers a sinusoidal modula-
tion with a given frequency [I;=1; s+ moa SIN(27v;1)] to
the bias current. The constant component of the currents of
all three lasers is set to 27.5 mA, while the coupling con-
stants (K=K =Ky3=k3=20 ns"!) and the delay times
(710=Ty = T23=T3,=3.65 ns) are fixed at typical values. Fig-
ure 12 shows the time series of the three lasers and their
power spectra, when laser 2 is modulated with an amplitude
of 2 mA at 1.25 GHz.
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FIG. 12. (Color online) Power spectra and time series of the
three lasers. The central laser is modulated at 1.25 GHz with an
amplitude of 2 mA. The bias of all three lasers is 27.5 mA. The bias
of all three lasers is 27.5 mA. The arrows indicate the peaks related
to the modulation of SL2.

A clear peak appears in the spectrum of laser 2 at the
frequency of modulation. Smaller peaks also appear at the
spectra of lasers 1 and 3 at the same frequency bin. Next, we
record the difference in the height of these peaks as a func-
tion of the modulation frequency.

We start by scanning the central laser modulation fre-
quency from 0.25 to 5 GHz in 0.25 GHz steps. The pump
level has been chosen as 27.5 mA, resulting in a relaxation
oscillation frequency of 4.33 GHz. We determine the differ-
ence in the height of the spectral peaks between the outer
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FIG. 13. (Color online) Modulation suppression in dB as a func-
tion of the modulation frequency of the central leser. The modula-
tion ratios obtained in lasers 1 and 3 are identical do we represent
only one of them. Dashed line, Aw,=0 GHz; dotted line, Aw,
=15 GHz; solid line, Aw,=—-15 GHz.
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is shown as a solid (dashed) line. Top panel, Aw;—Aw;=0 GHz,
middle panel, Aw;—Aw;=15 GHz; bottom, Aw;—Aw;=-15 GHz.

lasers and the central one. The results are indicated by the
dashed line in Fig. 13. We observe that for the explored
range of frequencies a stronger suppression of the perturba-
tion occurs at low frequencies where the suppression rates
are quite high. The coefficient of modulation suppression
decreases as the frequency increases. Still, for the frequen-
cies explored (up to 5 GHz) the suppression level stays
larger than 10 dB.

In case we allow for a detuning of the free-running optical
frequencies between lasers (Aw, # 0) we can obtain different
filtering properties. Figure 13 (dotted line) shows the modu-
lation suppression as a function of the modulation frequency
when Aw,=15 GHz. We find even higher suppression in the
low-frequency domain. For the negative detuning case Aw,
=-15 GHz the modulation suppression coefficient qualita-
tively shows the same features as its positive counterpart (see
solid line of Fig. 13).

Now, we perform the same type of analysis but when laser
1 is modulated (see Fig. 14). For positive detuning, we ob-
serve how the ability of the central laser to filter the sinu-
soidal component coming from laser 1 is maintained at an
almost constant level around 16 dB. For negative detuning,
however, the suppression ratio of the central laser is signifi-
cantly higher for lower frequencies and it decays as the
modulation frequency increases. The differing suppression
behavior depending on the detuning is similar to the behavior
described in [13]. A laser lagging in dynamics filters a per-
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turbation more strongly than a laser leading in its dynamics.
Another point worth mentioning is that from the lower panel
of Fig. 14 we observe that for frequencies higher than
2 GHz, the central laser has a better suppression ratio than
laser 3. This means that the modulation induced in laser 1 is
better reproduced in the distant laser 3 than in its immediate
neighbor SL2.

D. Synchronization for asymmetric coupling times

So far we have taken both branches of the network mod-
ule in Fig. 1 to be identical and have chosen the same cou-
pling times. But, will synchronization remain and be stable if
different lengths for the paths between lasers are considered?

This question has been investigated by setting the cou-
pling delay times in both branches to be very different. We
choose 7,=7,=7,;=12 ns and 7,=7y3=73,=3 ns. For mod-
erate coupling strengths, now the synchronization between
SL1 and SL3 appears when comparing P, () with P;(¢
+ A7), where A7=7;,—7,. This is, the outer laser of the short-
est branch (in this case SL3) is able to advance the behavior
of the other one (SL1), which is more than 15 ns apart, by
the difference of coupling times. Other sets of values for the
coupling times have been tested (such as 7,=7,=7;=5 ns
and 7,=753=73,=0.2 ns) and in all cases a synchronization
solution with lag 7,— 7, have been attained between SL1 and
SL3. Note that in the latter case, without the presence of a
third laser the pairs of mutually-coupled lasers (1,2) and
(2,3) would exhibit very different dynamical regimes due to
the disparity in the coupling delays between the lasers. Nev-
ertheless, it is a remarkable fact that when all three lasers are
present SL1 and SL3 are able to perfectly synchronize [39].

The cross-correlation functions show a multipeak struc-
ture. The location of the relative maxima can be related to
the delay times and their differences. Figure 15 contains the
cross-correlation functions for the three pairs of lasers (1,2),
(2,3), and (3,1) when 7,=1.5 ns and 7,=3.6 ns. Different
delay values have been simulated and in all cases the main
peaks of the cross-correlation functions appeared at the lags:
(7,,—7,,27,—7,) for the pair of lasers (1,2), (7,73, 7,—27,)
for the lasers (2,3), and (7;,— 7,) for the pair composed of the
outer lasers 3 and 1.

IV. DISCUSSION AND CONCLUSION

In this paper we have focused on the problem of three
delay-coupled SLs, and more specifically on the properties of
the zero-lag synchronization solution found in Ref. [34]. The
influence of the coupling strength between the lasers as well
as the transition from the two-laser to the three-laser problem
has been investigated. At the same time the robustness of the
solution has been proven against mismatches in pump level
and natural detuning. To test the dynamical robustness of the
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FIG. 15. Cross-correlation function between pairs of lasers with
different coupling times. 7,=1.5 ns and 7,=3.6 ns. The coupling
strength is fixed to k=20 ns™.

zero-lag solution we have also applied different types of per-
turbations. We obtain a strong tendency to fast resynchroni-
zation. The filtering properties to a sinusoidal modulation of
the current pump of the different lasers and the finding of
identical synchronization with time shift in the case of asym-
metric coupling delays completed our study.

A different situation was proposed recently by some of us
in Ref. [34]. In that paper we reported the observation of
zero-lag identical synchronization between two arbitrary dis-
tant SLs bidirectionally coupled via a relay element, which
can be either another SL or even a passive and linear element
such as a partially transparent mirror [35], placed in a chain.
Unlike the mechanism proposed by Sivaprakasam and co-
workers [29] the emergence of zero lag and identical syn-
chronization between the outer elements is a consequence of
a true collective behavior between all the elements of the
chain and cannot be explained by a combination of two dif-
ferent mechanisms.

Isochronous synchronization between delay-coupled la-
sers has recently also been found in coupled ring and chain
topologies [50]. See Refs. [51,52] for a discussion of the
dynamics of three semiconductor lasers arranged in a circular
array.
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