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The identification of key populations shaping the structure and
connectivity of metapopulation systems is a major challenge in
population ecology. The use of molecular markers in the theoret-
ical framework of population genetics has allowed great advances
in this field, but the prime question of quantifying the role of each
population in the system remains unresolved. Furthermore, the use
and interpretation of classical methods are still bounded by the
need for a priori information and underlying assumptions that are
seldom respected in natural systems. Network theory was applied
to map the genetic structure in a metapopulation system by using
microsatellite data from populations of a threatened seagrass,
Posidonia oceanica, across its whole geographical range. The net-
work approach, free from a priori assumptions and from the usual
underlying hypotheses required for the interpretation of classical
analyses, allows both the straightforward characterization of hi-
erarchical population structure and the detection of populations
acting as hubs critical for relaying gene flow or sustaining the
metapopulation system. This development opens perspectives in
ecology and evolution in general, particularly in areas such as
conservation biology and epidemiology, where targeting specific
populations is crucial.

conservation biology � gene flow � networks � population genetics

Understanding the connectivity between components of a
metapopulation system and their role as weak or strong

links remains a major challenge of population ecology (1–3).
Advances in molecular biology fostered the use of indirect
approaches to understand metapopulation structure, based on
describing the distribution of gene variants (alleles) in space
within the theoretical framework of population genetics (4–7).
Yet, the premises of the classical Wright–Fisher model (4, 6),
such as ‘‘migration-drift’’ and ‘‘mutation-drift’’ equilibrium (8),
‘‘equal population sizes’’ or symmetrical rate migration among
populations, are often violated in real metapopulation systems.
Threatened or pathogen species, for example, are precisely
studied for their state of demographic disequilibrium due to
decline and local extinctions in the first case, or to their complex
dynamics of local decline and sudden pandemic burst in the
second. Furthermore, the underlying hypotheses of equal pop-
ulation size and symmetrical migration rates hamper the iden-
tification of putative population ‘‘hubs’’ centralizing migration
pathways or acting as sources in a metapopulation system, which
is a central issue in ecology in general, and in conservation
biology or epidemiology in particular. Finally, complementary
methods of genetic structure analyses, such as hierarchical
AMOVA and coalescent methods rely on a priori information
(or priors) as to the clustering or demographic state of popula-
tions, requiring either subjective assumptions or the availability
of reliable demographic, historical or ecological information that
are seldom available.

Network theory is emerging as a powerful tool to understand
the behavior of complex systems composed of many interacting

units (9–11). This approach has been applied to solve a broad
array of problems (12–14). In an ecological context, it has been
applied to represent geographical landscape connectivity (15,
16), but only recently it has been adapted to represent genetic
relationships among populations or individuals (17, 18). Yet,
relevant properties of networks, such as resistance (9) to per-
turbations (i.e., node paralysis or destruction), the ability to host
coherent oscillations (19) or the predominant importance of
nodes or clusters of nodes in maintaining the integrity of the
system or relaying information through it can be deducted from
the network topology and specific characteristics (10, 11). Here,
we apply network theory to population genetics data of a
threatened species, the Mediterranean clonal seagrass Posidonia
oceanica. This clonal seagrass endemic to the Mediterranean has
the slowest clonal growth rate of all seagrasses (20) and, although
major sexual reproduction events are rare in time (21), the
relative contribution of sexual versus clonal reproduction may be
relatively high in some populations (22). P. oceanica clones
produce both male and female flowers, and the fruits are
buoyant and can drift tens of kilometers before they lose
buoyancy and the seed settles in the seafloor initiating a clone
(21). P. oceanica can also disperse from fragments, which can be
transported by currents and can eventually become rooted at
distant populations, as shown by recent analysis of patch for-
mation in P. oceanica populations (23). Moreover, limited
dispersal has been inferred (22) from its high population genetic
structure at geographic scales ranging from the whole Mediter-
ranean to regional and even local meadow scales.

We start by analyzing data at the Mediterranean scale, where
clustering of the populations distributed in 2 basins connected by
a narrow strait and that were almost isolated during the last
glaciation, was rather obvious a priori. This particular geograph-
ical and historical context facilitated the classical analysis of
molecular variance (AMOVA) and allows using this example to
validate our network analysis and confirm its potential, without
a priori knowledge or assumptions, to characterize population
genetic structure and to identify populations that are critical to
the dynamics and sustainability of the whole system. We then
compared classical and network tools at the regional scale of the
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Spanish coasts, a more common case in population genetics
where no strong expectations can be suggested as to the distri-
bution of connectivity among populations or clusters of popu-
lations. The results open major perspectives in evolutionary
ecology, and more specifically in conservation biology and
epidemiology where the capacity to target populations requiring
major efforts toward conservation or control is crucial.

Results and Discussion
We build networks of population connectivity for a system of 37
meadows of the marine plant P. oceanica, sampled across its
entire geographic range—the Mediterranean Sea—by using 7
microsatellite markers (22). The network was built by consider-
ing any pair of populations as linked when their genetic distance
[Goldstein distance (24)] is smaller than a suitably chosen
distance threshold (see Materials and Methods). We highlight
these links as the relevant genetic relationships either at the
Mediterranean (the full dataset) or at the regional (28 popula-
tions along Spanish coasts) scales.

The topology of the network obtained at the Mediterranean
scale (Fig. 1) highlights, without using any a priori geographical
information, the historical cleavage between Eastern and West-
ern basins (22) and the transitional position of the populations
from the Siculo–Tunisian Strait (see Fig. 1). Besides this graph-
ical representation, closer to reality than the usual binary trees,
indices derived from the holistic analyses of network topology
allow unraveling some dynamic properties in terms of gene flow
through this network of populations. The average clustering coef-
ficient, �C� � 0.96, is significantly higher than the one expected after
randomly rewiring the links (�C0� � 0.76 with �0 � 0.02, after 10,000
randomizations) revealing the existence of clusters of populations

more interconnected than expected by chance. The values of
betweenness centrality, quantifying the relative importance of the
meadows in relaying information flow through the network, im-
mediately highlight a meadow in Sicily (present in 21% of all
shortest paths among populations), together with another one in
Cyprus (16%), as the main stepping stones between the pairs of
populations sampled in the Western and Eastern basins, respec-
tively [Fig. 1 and supporting information (SI) Table S1]. These
results are therefore in agreement with the genetic structure
revealed with classical population genetics analysis (AMOVA),
revealing past vicariance (22) and a secondary contact zone in the
Siculo–Tunisian Strait. The metapopulation structure, the cluster-
ing and the ‘‘transition zones’’ derived from the network analysis
arise without any a priori input on clustering as needed for
AMOVA and without using geographic information that was
needed in an analysis of allelic richness previously performed to
support the existence and localization of a contact zone (22). This
example allowed us to test the accuracy of network analysis on a
population genetics dataset by comparing its results with a well-
understood case, where the expected clustering of populations and
pathways are rendered almost obvious by the geography (2 clusters
of marine populations split by land and communicating only
through a narrow strait). This comparison has been a demonstra-
tion of the reliability of network analysis for revealing the patterns
of population connectivity within a species range.

We then examined a nontrivial case: 28 populations sampled
along Spain’s continental coasts and in the Balearic islands, more
extensively and homogeneously sampled than the rest of the
Mediterranean (Table S1). Classical tools resulted in a matrix of
pairwise genetic distances (FST or Goldstein distance) showing
significant differentiation among almost all meadows (except 1

Fig. 1. The network of Mediterranean meadows in which only links with Goldstein distances smaller than the percolation distance Dp � 91 (see Fig. 5) are
present. Nodes representing populations are roughly arranged according to their geographic origin. The precise geographic locations are indicated as diamonds
in the background map. One can identify 2 clusters of meadows, corresponding to the Mediterranean basins (east and west), separated by the Siculo–Tunisian
Strait. The size of each node indicates its betweenness centrality (i.e., the proportion of all shortest paths getting through the node).
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pair) without clear relationship with geographic location, no
clear pattern of allelic richness, and a ‘‘comb-like’’ topology in an
unweighted pair group method with arithmetic mean (UPGMA)
tree, which forces dichotomous branching of the metapopulation
network (Fig. 4A; see Materials and Methods). These methods
were unable to highlight neither any particularly central position
for the populations analyzed nor the clustering of some sub-
groups that would have suggested preferential roads for gene
flow or a dominant role of some populations in the metapopu-
lation system. On the contrary, network analyses of these
populations (Fig. 2 and Table S2) revealed a centralized struc-
ture with particularly important roles for certain populations.
The degree distribution, P(k), i.e., the proportion of nodes with
k connections to other nodes, decays rapidly for large k (Fig. 3A)
and the 6 highest values are all observed in samples collected in
the Balearic Islands (Fig. 2 and Table S2). The average clustering
coefficient of �C� � 0.4 was significantly higher than that
obtained in the corresponding randomized networks (�C0� �
0.13 with �0 � 0.05 after 10,000 realizations), whereas the local
clustering decays as a function of the degree k (Fig. 3B), which
indicates that the central core is substructured into a small set of
hubs, with high connectivity and low clustering, linking groups
of closely connected nodes (i.e., with high clustering). Exami-
nation of the relationship between the degree of a node and the
average degree of the populations connected to it showed an
abundance of links between highly connected and poorly con-
nected nodes (Fig. 3C), a property termed dissortativity, present
in many biological networks (25), and confirms again a central-
ized topology. Observation of Fig. 2 indicates that seagrass
populations along the Spanish continental coasts are genetically
closer to Balearic populations than to geographically closer
populations. The highest values of betweenness centrality (Table
S2) are also attained at the Balearic populations, suggesting that
the meadows of this region play or have played a central role in
relaying gene flow at the scale of the Spanish coasts. Moreover,
the betweenness centrality increases exponentially with the

connectivity degree k (Fig. 3D). The combination of all these
findings implies a star-like structure where hubs are connected
in cascade and the central core is the set of Balearic populations.
A clear but more constrained perspective of this pattern is partly
shown by the resulting minimum spanning tree (MST) of pop-
ulations (Fig. 4B; see Materials and Methods), which, when
analyzed with the network index of betweenness centrality
highlights 3 of the major hubs encountered on the network. Yet,
some other populations identified on the network appear as
poorly connected on the MST, as a consequence of being a more
constrained method, which finds the minimal paths required to
maintain connectivity but not all of the important ones. The
importance of nonminimal paths was underlined in ref. 15 in the
context of geographical connectivity. This emphasizes again the
advantage of the network illustration and analysis. The biological
implication of these results is a great centrality of the Balearic
Islands, acting or having acted as a hub for gene flow through the
system.

Populations with high degree k might either be sources
sustaining the system (i.e., spreading propagules), or sinks
receiving gene flow from all of the other populations, or both.
The extremely low rate of sexual recruitment inferred in popu-
lations with low clonal diversity (R, see Materials and Methods)
renders those, if highly connected, much more likely to disperse
than to receive. The presence in the Balearic Islands of the 2
populations with the lowest observed clonal diversity and the
highest connectivity (Es Port, R � 0.1; k � 10; and Fornells R �
0.1; k � 15), likely representing populations supplying ‘‘genetic
material’’ to neighbor populations, suggests again that the
Balearic islands are a key region for the dynamics and connec-
tivity of the metapopulation system at the scale of the Spanish
coast. Furthermore, 8 among 16 continental populations show
extremely low connectivity (k � 0), thereby allowing identifica-
tion of those least likely to be rescued by other populations if
threatened. As in any genetic approach to metapopulation
management, the role of currently observed connectivity in

Fig. 2. The network constructed for the Spanish meadows with the ‘‘geo-
graphic threshold’’ criterion (see Fig. 6). Nodes are shown at the populations’
geographic locations. Node sizes characterize their betweenness centrality
(i.e., the proportion of all shortest paths getting through the node).
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Fig. 3. Main topological properties found by analyzing the structure of the
network of meadows at the Spanish basin scale (Fig. 2). (A) The complemen-
tary cumulative degree distribution P(degree�k). (B) The local clustering C(k).
(C) The average degree �knn(k)� in the neighborhood of a meadow with degree
k. (D) the degree-dependent betweenness, bc(k), as a function of the connec-
tivity degree k.
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future population rescuing is more important if current connec-
tivity is limited by dispersal ability rather than by factors
affecting survival after dispersal that could change in the future
in decaying populations. Additionally, given the particular mil-
lenary nature of P. oceanica clones, current genetic structure is
likely to integrate patterns of gene flow over past centuries and
thus may not reflect present-day dynamics.

Both networks, that at the scale of the whole Mediterranean
(Fig. 1) and that for the Spanish coasts (Fig. 2), presented ‘‘small
world’’ properties (26), i.e., a diameter (L � 1.39 and L � 1.63,
respectively) shorter than expected for random networks (�L0� �
1.47 with �0 � 0.01 and �L0� � 2.53 with �0 � 0.15, respectively,
after 10,000 randomizations) whereas their clustering was much
higher (see numerical values above), suggesting a highly hierar-
chical substructure of tightly connected groups linked by a few
‘‘short-cuts.’’ This evidence for the appearance of short-cuts in
gene flow at multiple geographical scales along the history of this
species, indicates that rare events of large-scale dispersal have a
significant impact on the genetic composition of populations.
This result illustrates another benefit of holistic (i.e., taking into
account all distances or relationships among agents) network
approaches. In the absence of other data, the possible existence
of sources tends to be indirectly inferred with classical tools by

pointing the populations exhibiting the highest levels of genetic
diversity. Here, network analyses revealed that, despite unusu-
ally low sexual recruitment in these particular populations, as
revealed by low clonal diversity [i.e., low relative contribution of
sexual versus clonal reproduction (22)], they are—or have
been—important as paths of gene flow in the system.

Our results demonstrate that, in line with progresses allowed
by the use of graph theory in landscape ecology (16), network
analyses provide a holistic and powerful approach to unravel
genetic structure and connectivity at different spatial scales.
First, they can be formulated as free of a priori hypotheses about
the clustering of populations or of some underlying assump-
tions—such as Fisher–Wright equilibrium—that are required to
run or interpret classical analyses, but are seldom respected in
nature. They allow to accurately study gene flow in clonal
organisms by removing the prerequisite of genotypic frequency
equilibrium required by assignment-based methods. Second,
they allow unraveling properties that could not be highlighted by
classical methods alone. The use of specific network properties
such as the betweenness centrality and the degree distribution
allows to identify populations relaying gene flow, or acting as
sources supplying the system, in addition to achieving a quan-
titative ranking of populations depending on their respective
roles in the dynamics of the system. Third, network analysis tools
provided graphical representations of the genetic relatedness
between populations in a multidimensional space (17), free of
some of the constraints (e.g., binary branching) compulsory in
classical methods describing population relationships. Finally,
network analyses are based on distances, which will allow future
users to modulate and choose, among the wide panel of distances
applicable to molecular data, the most appropriate ones for the
particular questions addressed, for the life history traits of the
model organism and for the type of molecular markers used.
Here, we chose Goldstein distance to study the integration of
gene flow over a geological time scale with microsatellite data on
a clonal seagrass presenting a pattern of strong genetic structure
and ancient divergence. Depending on the time scale that is
relevant for the questions addressed, one may choose to use
other markers and/or other distances. Additionally, comparison
of networks obtained with different markers and distances for
the same system may allow inferences as to the evolution of gene
flow and connectivity through time. To conclude, addressing
gene flow by using network tools may prove a powerful addi-
tional analysis in critical areas such as conservation biology,
dealing with threatened or invasive species, and epidemiology,
for both of which the definition of target populations to be
conserved or eradicated is of crucial importance.

Materials and Methods
Molecular Data. Approximately 40 Posidonia shoots collected at each of the 37
sampled populations (Fig. 1 and Table S1) were genotyped with a previously
selected set of 7 dinucleotide microsatellites (27) allowing the identification of
clones (also called genets for clonal plants). Clonal diversity was estimated for
each population as described in Arnaud-Haond et al. (27, 28), by means of the
clonal richness index R defined in terms of the number G of different geno-
types found in N plant samples: R � (G � 1)/(N � 1). Replicates of the same
clone were excluded for the estimation of interpopulation distances. The
matrix of interpopulation distances was built by using Goldstein metrics (24),
thus taking into account the level of molecular divergence among alleles,
besides the differences in allelic frequencies.

Networks. We first built a fully connected network with the 37 populations
considered as nodes. Each link joining pairs of populations was labeled with
the Goldstein distance among them. Because we are aiming at detecting
important key nodes to the (genetic) flow in the network, it becomes of crucial
importance to examine the situation under which the structure of the net-
work becomes disconnected into small clusters. Below that point (the perco-
lation point), the network looses its ability to transport resources across the
whole system. We then removed links from this network of genetic similarity,
starting from the one with the largest genetic distance and following in

Fig. 4. Classical tree-like representations of genetic structure for the Spanish
meadows. (A) UPGMA tree based on Goldstein distances, displaying a quite
uninformative comb-like structure. (B) Minimum Spanning Tree (MST) based
on Goldstein distance among Spanish meadows. This is the subgraph that
connects the populations at the Spanish coast scale minimizing the total
genetic distance along links, with the diameter of nodes illustrating their
index of betweeness centrality according to the topology of the MST.
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decreasing order, until the network reaches the percolation point (29), be-
yond which it loses its integrity and fragments into small clusters. This means
that gene flow across the whole system is disabled if connections at a distance
smaller than this critical one, Dp, are removed. The precise location of this
percolation point is made with the standard methodology adequate for finite
systems (29), i.e., by calculating the average size of the clusters excluding the
largest one,

�S�* �
1
N �

s�Smax

s2ns, [1]

as a function of the last distance value removed, thr, and identifying the
critical distance with the one at which �S�* has a maximum. N is the total
number of nodes not included in the largest cluster and ns is the number of
clusters containing s nodes. Here, we find Dp � 91, as shown in Fig. 5.

Once the network at percolation point is obtained, we analyzed its topol-
ogy and characteristics (See Fig. 1 and Table S1) and interpret those biologi-
cally. The first column in Table S1) contains also the estimated clonal diversity
R of the different populations, defined as the proportion of different geno-
types found with respect to the total number of collected shoots.

At the Spanish coasts scale, no percolation point is found by using the above
procedure, meaning that the genetic structure in this area is rather different
from the one at the whole-Mediterranean scale. To construct a useful network
representation of the meadows’ genetic similarity, the following alternative
process was applied to determine a relevant distance threshold, thr, above
which links are discarded (see Movie S1 with the network of Spanish basin at
a full sequence of thresholds). At a very low threshold (thr � 16), only the inner
part of a central core, constituted by some meadows from the Balearic Islands,
is connected. As the threshold is increased, new meadows (from the central
Spanish coast) become connected (thr � 20). Beyond that value, more periph-
eral meadows are connected from the northern and southern Spanish coasts.
The geographical extension of the connected cluster (Fig. 6) grows with the
distance threshold and an important jump occurs at thr � 22, when the
northern and southern coasts get connected for the first time. Further dis-
tance-threshold increase does not contribute to geographical extension.
Therefore, we find the value thr � 22 and the resulting network as appropri-
ate for topological characterization, because at this point the network con-
tains a rich mixture of strong and weak links spanning all of the available
geographic scales within the Mediterranean Spanish coasts. The determina-
tion of this ‘‘geographic threshold’’ is similar in spirit to the determination in
ref. 30 of plateaus and discontinuities in network descriptors to identify
relevant spatial scales.

Estimates of Global and Local Properties of the Network. The degree ki of a
given node i is the number of other nodes linked to it (i.e., the number of
neighbor nodes). The distribution P(k) gives the proportion of nodes in the
network having degree k.

We denote by Ei the number of links existing among the neighbors of node
i. This quantity takes values between 0 and Ei

(max) � ki(ki � 1)/2, which is the

case of a fully connected neighborhood. The clustering coefficient Ci of node
i is defined as:

Ci �
Ei

Ei
�max� �

2Ei

ki�ki � 1�
. [2]

The clustering coefficient of the whole network �C� is defined as the average
of all individual clustering coefficients in the system. The degree dependent
clustering C(k) is obtained after averaging Ci for nodes with degree k.

Real networks exhibit correlations among their nodes (25, 31–36) that play
an important role in the characterization of the network topology. Those
node correlations are, furthermore, essential to understand the dynamical
aspects such as spreading of information or their robustness against targeted
or random removal of their elements. In social networks, nodes having many
connections tend to be connected with other highly connected nodes. This
characteristic is usually referred to as assortativity, or assortative mixing. On
the other hand, technological and biological networks show rather the prop-
erty that nodes having high degrees are preferably connected with nodes
having low degrees, a property referred to as dissortativity. Assortativity is
usually studied by determining the properties of the average degree �knn� of
neighbors of a node as a function of its degree k (25, 35, 37). If this function
is increasing, the network is assortative, because it shows that nodes of
high-degree connect, on average, to nodes of high degree. Alternatively, if
the function is decreasing, as in our present case, the network is dissortative,
as nodes of high degree tend to connect to nodes of lower degree. In this last
case, the nodes with high degree are therefore central hubs ensuring the
connection of the whole system.

The betweenness centrality (38) of node i, bc(i), counts the fraction of
shortest paths between pairs of nodes that pass through node i. Let �st denote
the number of shortest paths connecting nodes s and t and �st(i) the number
of those passing through the node i. Then,

bc�i� � �
s	t	i

�st�i�
�st

. [3]

The degree-dependent betweeness, bc(k), is the average betweeness value of
nodes having degree k.

Minimum Spanning Tree. Given a connected, undirected graph, a spanning tree
of that graph is a subgraph without cycles that connects all of the vertices
together. A single graph can have many different spanning trees. Provided
each edge is labeled with a cost (in our analysis the genetic distance among the
connected populations) each spanning tree can be characterized by the sum
of the cost of its edges. A minimum spanning tree is then a spanning tree with
minimal total cost. A minimum spanning tree is in fact the minimum-cost
subgraph connecting all vertices, because subgraphs containing cycles neces-
sarily have more total cost. Fig. 4 shows the minimum spanning tree for the
Spanish meadows. The star-like structure centered at Balearic populations is
evident, although the restriction of being a tree prevents some of the well-
connected populations of the network approach to be identified here.
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Movie S1 (AVI)

Movie S1. Sequence of networks for the Spanish populations obtained at successive values of the threshold genetic distance, thr, above which links are discarded.
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Table S1. Local properties of the whole Mediterranean network for thr � Dp � 91

Region Name R bc C Region Name R bc C

Spanish Balearic
Islands

Menorca Addaia 0.67 0.0010 0.980 Spanish Iberian
Peninsula

(Ordered from
north to
south)

Cala Jonquet 0.5 0.0031 0.946
Fornells 0.1 0.0031 0.946 Port Lligat 0.28 0.0031 0.946

Cala Giverola 0.43 0 0.997
Mallorca Magaluf 0.68 0.0010 0.981

Punta Fanals 0.68 0.0010 0.981
Porto Colom 0.5 0.0031 0.946 Torre Sal 0.5 0.0010 0.981

Cabrera Es Castel 0.1 0.0010 0.981 Xilxes 0.35 0.0010 0.981
Es Port 0.1 0.0031 0.946 Las Rotes 0.73 0.0010 0.981
Santa Maria 13 0.56 0.0010 0.981 El Arenal 0.86 0.0031 0.946
Santa Maria 7 0.54 0.0010 0.981 Campomanes 0.7 0.0031 0.946

Ibiza Playa Cavallets 0.73 0.0031 0.946 LaFossaCalpe 0.77 0.0031 0.946
Calabardina 0.88 0.0003 0.997

Formentera Es Pujols 0.67 0.0031 0.946
Carboneras 0.32 0.0010 0.981

EsCalo de S’Oli 0.36 0.0010 0.981 Rodalquilar 0.53 0.0010 0.981
Ses Illetes 0.6 0.0031 0.946 Los Genoveces 0.34 0.0010 0.981
Sa Torreta 0.51 0.0031 0.946 Roquetas 0.69 0.0010 0.981

Central Basin Tunis 0.85 0 1 East Basin Cyprus Amathous ST3 0.44 0 1
Malta 0.74 0 1 Amathous ST5 0.62 0.0008 0.667

Sicily A. AzzuraST3 0.77 0.205 0.897 Paphos 0.68 0.1579 0.333
A. AzzuraST5 0.72 0.0017 0.963 Greece A. Nicolaos 0.69 0 1
Marzamemi 0.81 0.0003 0.995

Information is given for the betweenness centrality (bc) and clustering (C), as well as clonal diversity estimates (R) for each sample.
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Table S2. Local properties of the network constructed with the Spanish meadows

Region Name R k bc C Region Name R k bc C

Spanish Balearic
Islands

Menorca Addaia 0.67 0 0 0 Spanish Iberian
Peninsula

(Ordered from
north to
south)

Cala Jonquet 0.5 0 0 0
Port Lligat 0.28 0 0 0

Fornells 0.1 15 0.180 0.32
Cala Giverola 0.43 0 0 0

Mallorca Magaluf 0.68 8 0 1 Punta Fanals 0.68 1 0 0
Torre Sal 0.5 0 0 0

Porto Colom 0.5 9 0.0046 0.89
Xilxes 0.35 8 0 1

Cabrera Es Castel 0.1 5 0 1 Las Rotes 0.73 5 0 1
Es Port 0.1 10 0.0075 0.8 El Arenal 0.86 8 0 1
Santa Maria 13 0.56 10 0.0075 0.8 Campomanes 0.7 0 0 0
Santa Maria 7 0.54 10 0.0075 0.8 LaFossaCalpe 0.77 2 0 1

Ibiza Playa Cavallets 0.73 12 0.0037 0.58 Calabardina 0.88 0 0 0
Formentera Es Pujols 0.67 1 0 0 Carboneras 0.32 0 0 0

EsCalo de S’Oli 0.36 0 0 0 Rodalquilar 0.53 0 0 0
Ses Illetes 0.6 0 0 0 Los Genoveces 0.34 1 0 0
Sa Torreta 0.51 2 0 1 Roquetas 0.69 1 0 0

Information is given for the connectivity degree (k), betweenness centrality (bc) and clustering (C), as well as clonal diversity estimates (R) for each sample.
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