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Abstract

We analyze the joint effect of contaminants and nutrient loading on population dy-

namics of marine food chains by means of bifurcation analysis. Contaminant toxicity

is assumed to alter mortality of some species with a sigmoidal dose-response rela-

tionship. A generic effect of pollutants is to delay transitions to complex dynamical

states towards higher nutrient load values, but more counterintuitive consequences

arising from indirect effects are described. In particular, the top predator seems to

be the species more affected by pollutants, even when contaminant is toxic only to

lower trophic levels.
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1 Introduction

Marine waters and in particular coastal waters are increasingly exposed to

anthropogenic pressures represented not only by the growing input of nutrients

and contaminants related to urban, agricultural and industrial activities, but

also by the exploitation of coastal areas for aquaculture, fishing and tourism.

Since the resources of the coastal zone are exploited by different stakeholders,

it is essential to improve our knowledge on the ecosystem’s vulnerability to

stressors and protect those areas through a sensible management.

The interaction of pollutants and nutrients on aquatic ecosystems is diffi-

cult to evaluate, since many direct and indirect effects have to be considered.

Contaminants can have instantaneous effects, such as massive killings after

an accidental contaminant release. Other toxic effects, such as genotoxicity

and reproductive failure are less evident and they act on a longer time-scale;

however, they represent an important risk for the ecosystem. Furthermore, if

the contaminant is lipophilic, bioaccumulation should be considered. On the

other hand, an increase of the nutrient load can have the direct effect of rais-

ing the primary production at the bottom of the food chain and consequently

increasing the concentration of the organic matter in the system. But a higher

concentration of organic matter can affect the bioavailability of the contami-

nants and therefore the fate of pollutants in the aquatic environment and their

effects on the impacted ecosystem [1].

Thus, contaminants affect aquatic ecosystems through direct and indirect ef-

fects [2], from acute and/or chronic toxicity on sensitive species to disruption
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in the food web structure. Some species might be more sensitive than oth-

ers to a particular chemical, but since the different populations are linked

to each other by competition and predation, species which are not directly

stressed may respond indirectly [2]. Within a food web, community-level rela-

tions arise from unobservable indirect pathways. These relations may give rise

to indirectly mediated relations, mutualism and competition [3]. In some cases

environmental perturbations alter substantially the dynamics or the structure

of coastal ecosystems and the effect may produce the occurrence of a trophic

cascade and eventually the extinction of some species [4]. A better understand-

ing of the relative importance of top-down (e.g. overfishing) versus bottom-up

(e.g. increased nutrient input causing eutrophication) controls is essential and

can only be achieved through modelling [5].

Sudden regime shifts and ecosystem collapses are likely to occur in stressed

ecosystems. Catastrophic regime shifts have been related to alternative stable

states which can be linked to a critical threshold in such a way that a gradual

increase of one driver has little influence until a certain value is reached at

which a large shift occurs that is difficult to reverse [6,7]. The shape of eco-

toxicological dose-response curves [8], showing a sharp increase in the effect

of toxic substances above a critical value, facilitates the occurrence of regime

shifts under pollutant pressure.

In this study we consider the combined effects of contaminant substances

and nutrient load in the framework of a simple tritrophic food chain model.

We restrict our study to contaminants, such as s-triazines, which affect the

mortality in particular trophic levels, but which do not bioaccumulate in time

nor along the food chain. When studying the dynamics of simple food chain

and food web models, it is also important to bear in mind that the response
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might depend on the complexity of the represented system. Chaotic dynamics,

for example, seems to be more frequent in simple ecosystem models or in

models with a high number of trophic levels [9]. Thus, we will focus only on

the first qualitative changes of behaviour occurring when increasing nutrients

from low values, and how this is changed by pollutants, and not on the complex

sequences of chaotic states which may occur at high nutrient availability, whose

details are more affected by the trophic structure of the model.

Since we do not include any microbial recycling loop, sediment or oxygen dy-

namics, or shading effects, complex eutrophication behaviour typical of coastal

ecosystems [10], e.g. anoxic crises, alteration of nutrient cycling, macroalgal

blooms, etc, will not occur in our model. We rather concentrate on the simplest

scenarios occurring during enrichment and its modification by contaminants,

discussing particularly the indirect effects which lead to counterintuitive be-

haviour.

2 Model formulation

We consider [11–13] Canale’s chemostat model (CC), which is an extension of

the tri-trophic food-chain Rosenzweig-MacArtur model (RMA) that has been

extensively studied in theoretical ecology [14–21]. This model was previously

used to analyze the dynamics of a food chain consisting of bacteria living

on glucose, ciliates and carnivorous ciliates [11,12], but can be adapted to

represent an aquatic food chain with a constant nutrient input. The CC model

is similar to the RMA model, but there is an additional equation representing

the input of nutrient, and it considers the losses due to the flushing rate:
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Ṅ = D(I −N)− P
a1N

b1 + N
, (1)

Ṗ = P
[
e1

a1N

b1 + N
− a2Z

b2 + P
− d1 − f1D

]
, (2)

Ż = Z
[
e2

a2P

b2 + P
− a3F

b3 + Z
− d2 − f2D

]
, (3)

Ḟ = F
[
e3

a3Z

b3 + Z
− d3 − f3D

]
. (4)

In this study the variables N , P , Z, F represent the nitrogen concentration in

the different compartments of the system (nutrient, phytoplankton, zooplank-

ton and fish, which will be also denoted with the alternative names of nutrient,

prey, predator, and top-predator, respectively) expressed in units of mgN/l.

Our default parameters (see Table 1) are from [22], as used in the aquatic

food chain model presented in [23]. Apart from unessential scaling differences,

most of the parameters are of the same order as in [20,13], except that we

use larger mortality values and, accordingly, smaller flushing rates to avoid

complete extinction of the ecosystem. Our base mortalities and the rest of

parameters are consistent with the ones used in the pelagic ecosystem model

in [24] which, as discussed in that reference, are adequate for the oligotrophic

subtropical ocean. I is the nutrient load or nutrient input into the system.

D is a flow rate quantifying water renewal in the system, which affects the

species through the flushing rates fi (i = 1, 2, 3). di are the specific mortali-

ties, bi half saturation constants for the Holling type-II predation functions, ai

are maximum predation rates, and ei efficiencies. We note that the following

condition should be satisfied by the equation parameters:

eiai > di + Dfi (i = 1, 2, 3), (5)

since this “avoids the case where predator and top-predator cannot survive,

even when their food is infinitely abundant” [25]. Contaminant toxicity is
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incorporated in our model by an increase in mortality. We consider three

different scenarios in each of which the contaminant affects the mortality of

only one of the compartments:

dj = d
(0)
j + ∆dj

(
(Cj)

6

(Cj)6 + 0.56

)
(6)

j = 1, 2, and 3 labels the three trophic levels: prey, predator and top-predator,

Cj is the dimensionless concentration of the contaminant affecting the level j,

normalized in such a way that for Cj = 0.5 the toxicity achieves half its max-

imum impact on mortality, and a sigmoidal function (Fig. 1) has been used

to model the mortality increase from a baseline value, d
(0)
j , to the maximum

mortality, d
(0)
j + ∆dj, attained at large contaminant concentrations. This rep-

resents typically the shape of the dose-response curves found when assessing

toxic effects of chemical on biological populations [8]. The values of d
(0)
j and

∆dj used are written in Table 2. Other works that have studied bifurcations

due to mortality changes in the CC model [13] have normally considered a lin-

ear increase. Considering a sigmoidal response allows the identification of the

range of mortality values which are to be expected in the presence of a given

contaminant, and thus permits to focus in such range. But once the relevant in-

terval is identified the bifurcation behavior can be studied as a function of the

mortalities di. This was done in Ref. [13] with emphasis in steady coexistence

solutions. Here, in addition to exploring a different set of base parameters and

to focusing in the mortality range implied by the contaminant characteristics

in Table 2, we also perform continuations of cyclic solutions and find some

period doubling bifurcations which would eventually lead to chaos.
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3 Steady states

This system presents the following set of fixed points: The nutrient-only state

(Nu):

N = I,

P = 0, (7)

Z = 0,

F = 0.

The nutrient-phytoplankton state (NP):

N =
b1(d1 + Df1)

a1e1 − d1 −Df1

,

P =
De1

(
b1(d1+Df1)

a1e1−d1−Df1
+ I

)

d1 + Df1

, (8)

Z = 0,

F = 0.

There are two solutions (NPZ) characterized by the absence of the top preda-

tor:

N =
b1D + a1P −DI ±

√
4b1D2I + (−b1D − a1P + DI)2

2D
,

P =
b2(d2 + Df2)

a2e2 − d2 −Df2

, (9)

Z =−(b1d1 + b1Df1 + d1N − a1e1N + Df1N)(b2 + P )

a2(b1 + N)
,

F = 0.

but only the one with the positive sign of the square root is positive definite.

Finally, there are three internal fixed points (NPZF), in which all species occur

at positive densities. From the equation for Ṅ , (1), an equation for P as a
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function of N is obtained. Introducing it into (2) together with the expression

for Z = Z̄ which is obtained from (4), we get the following equation for N :

[A1N
3 + A2N

2 + A3N + A4] = 0 (10)

where

A1 = D(a1e1 − d1 −D0f1),

A2 =−a2
1b2e1 −D(d1 + Df1)(2b1 − I) + a1(b1De1 + b2(d1 + Df1) + a2Z̄ −De1I),

A3 = b1(−D(d1 + Df1)(b1 − 2I) + a1(b2(d1 + Df1) + a2Z̄ −De1I)), (11)

A4 = b2
1D(d1 + Df1I).

The values of the remaining variables at the three internal fixed point solutions

can be written in terms of Z̄ and of the three values of N = N̄ obtained from

the cubic (10):

N = N̄ ,

P = D0(I − N̄)
b1 + N̄

a1N̄
,

Z = Z̄ =
b3(d3 + Df3)

a3e3 − d3 −Df3

, (12)

F =
(a2e2P − b2d2 − b2Df2 − d2P −Df2P )(b3 + Z̄)

a3(b2 + P )
.

It turns out that only one of the three fixed point solutions is positive for the

parameter values in Table 1.

The above are all the biologically relevant fixed points. There are four addi-

tional mathematical steady state solutions, but some populations take negative

values on them.
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4 Stability and bifurcation analysis

We have analyzed the dynamics of the CC food-chain models for several pa-

rameter values by direct numerical integration of the model equations, and by

bifurcation analysis carried on with the software AUTO [26]. Background on

the different types of bifurcations can be found in [27,28]. We consider only

bifurcations of positive solutions and, as stated in the introduction, we find

but we do not describe in detail the routes to chaotic behaviour occurring at

high nutrient load. For low and intermediate nutrient load we find that the

relevant attractors are the fixed points described above, and also two limit

cycles, one involving the variables N , P and Z, lying on the F = 0 hyper-

plane, and another one in which all the species are present. These attractors

are represented in Fig.2.

4.1 The non-contaminant case

First, we consider system behaviour for the case of mortalities at their base

values, i.e. in the absence of contaminants. This will serve as a reference for

later inclusion of contaminants. Fig.3 shows the sequence of bifurcations when

increasing the nutrient input I. For very low input, only nutrients are present

in the system (solution (7)). When I > ITB1, with

ITB1 =
b1(d1 + Df1)

a1e1 − d1 −Df1

, (13)

phytoplankton becomes positive in a transcritical bifurcation (which we call

TB1) at which the NP state (8) becomes stable. Since ITB1 = 0.0008909 is

very small, this bifurcation can not be clearly seen in Fig. 3. From this value

on, further enrichment leads to a linear increase of phytoplankton (8), until a
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second transcritical bifurcation, TB2, at which zooplankton becomes positive

and the NPZ solution (9) becomes stable. It happens at

ITB2 =
(d1 + Df1)(P

NPZd1 − PNPZa1e1 − b1De1 + PNPZDf1)

De1(d1 − a1e1 + Df1)
(14)

where PNPZ is the expression for P in the NPZ solution, (9). From this

point the zooplankton starts increasing (keeping phytoplankton concentration

at a constant value) until a new bifurcation TB3 occurs, at which the fish

concentration starts to grow from zero while zooplankton remains constant,

phytoplankton increases, and nutrients decrease (this is the positive interior

solution NPZF, Eq. (12)). The value of ITB3 is given implicitly by:

dTB3
3 =

ZNPZa3e3 − ZNPZDf3 − b3Df3

ZNPZ + b3

(15)

where ZNPZ is the expression for Z in the NPZ solution, (9).

We note here one of the first counterintuitive indirect effects present in the

food-chain dynamics: In the NPZF solution, increase of nutrient input leads

to decrease in nutrient concentration (see Fig. 3). The reason is the top-down

control that the higher predator begins to impose on zooplankton, leading

to positive and negative regulation on the compartments situated one or two

trophic levels below Z, respectively.

Shortly after becoming unstable at TB3, the fixed point NPZ experiences a

Hopf bifurcation (HB1) which leads to a limit cycle on the NPZ hyperplane.

Since the whole hyperplane has become unstable before this bifurcation occurs,

this cycle has no direct impact on long time dynamics, although it can affect

transients, and it will become relevant when adding contaminants. The steady

state coexistence of the three species at the NPZF fixed point remains stable

until a new Hopf bifurcation HB2 occurs at which the fixed point becomes
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unstable and oscillations involving the three species and the nutrients (Fig.

2) occur. The destabilization of steady state coexistence by the appearance of

oscillations, which could facilitate extinctions if the amplitude of oscillation is

sufficiently large, is the well known “paradox of enrichment”, first mathemat-

ically described by Rosenzweig [29]. A good overview of the studies connected

with this issue can be found in the paper [30]. See also [31–34].

Gragnani et al.[20] demonstrated that the dynamics of Canale’s model for in-

creasing nutrient supply is qualitatively similar to the one of the RMA model.

After the stationary and cyclic states described above, chaotic behaviour fol-

lowed by a different cyclic behaviour with higher frequency are found. Also,

the maximal average density of top-predator is attained at the threshold be-

tween chaotic and high frequency cyclic behaviour. We do not describe these

states further but concentrate on the modifications arising from toxic effects

of contaminants on the dynamics, for small and moderate nutrient loading.

4.2 Contaminant toxic to phytoplankton

We now introduce contaminant C1. It increases the mortality of phytoplankton

according to expression (6) for i = 1. The main bifurcations are shown in the

2-parameter bifurcation diagram of Fig. 4 as a function of d1 and I (with values

of C1 also indicated). Expressions for the bifurcation lines TB1, TB2 and TB3

as a function of I and C1 can be obtained simply by replacing the mortality (6)

into the corresponding expressions (13), (14), and (15), respectively. The same

can be done numerically for the Hopf bifurcation lines HB1 and HB2. Because

of the sigmoidal effect of the contaminant (6), its impact is mild for C1 ¿ 0.5,

and it will saturate for C1 À 1. Thus, in both limits the bifurcation lines would
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become parallel to the C1 axis if plotted in terms of C1 and I. The interesting

behaviour is for intermediate values of C1, to which most of Fig. 4 pertains. In

this range the bifurcation lines are displaced towards higher values of I. That

is, the first effect of the contaminant is to stabilize the simplest solutions, the

ones which are stable at lower nutrient load, delaying until higher nutrient

loads the transitions to the most complex solutions.

But this stabilizing effect is different for the different solutions, and the most

important qualitative change occurs at point M in Fig.4. It is a codimension-2

point at which the transcritical bifurcation TB3, involving the NPZ and the

NPZF fixed points, and the Hopf bifurcation HB1 of the NPZ point, meet. A

new Hopf bifurcation line of the NPZF equilibrium, HB3, emerges also from

that point. The cycle created at HB3 consists in oscillations of all the four

variables, similar to the cycle created at HB2. Other characteristics of the

organizing center M is that the Hopf bifurcations change from subcritical to

supercritical character across it, and also that a line (not shown) of saddle-

node bifurcations of the cycles created at HB1 and HB3 emerges also from

M. There are a number of additional structures in parameter space emerging

from double-Hopf points, and transcritical bifurcations of cycles which we do

not describe further here.

Despite the complexity of the above scenario, its effect on the bifurcation

sequence when increasing nutrient level (up to moderate levels) in the presence

of contaminant values beyond M is rather simple (see Fig.5): since the lines

TB3 and HB1 have interchanged order, the Hopf bifurcation HB1 in which

a stable limit cycle is created in the hyperplane F = 0 occurs before the

appearance of a positive NPZF equilibrium. As a consequence, fish remains

absent from the system even at relatively high nutrient levels. This is one of the
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counterintuitive outcomes of indirect effects: adding a substance which is toxic

for phytoplankton makes fish disappear, whereas the oscillating phytoplankton

levels are indeed comparable with the ones at zero contaminant (see Fig. 5).

As in the absence of a contaminant, period doublings and transition to chaos,

which we have not analyzed in detail, occur with further increases in the value

of I.

A different view of the transitions can be given by describing the bifurca-

tions occurring by increasing the contaminant concentration (or d1) at con-

stant I. Fig. 6 shows that for an intermediate value of the nutrient load,

I = 0.15 mgN/l. The NPZF fixed point is stable at low contaminant, but

oscillations appear when crossing the HB3 lines. Very shortly after that, this

limit cycle involving all species approaches the F = 0 hyperplane until col-

liding with the cycle lying on that plane, which involves only the N , P , and

Z species. At this transcritical bifurcation, this limit cycle from which fish

is absent becomes stable and is the observed solution for larger C1 or d1. As

before, adding a substance which is toxic for the bottom of the trophic chain

has the main effect of suppressing the top-predator.

4.3 Contaminant toxic to zooplankton

The 2-parameter bifurcation diagram of Fig. 7 displays the behaviour as a

function of I and the zooplankton mortality d2, as affected by contaminant

C2. As before, the mortality expression (6) for j = 2 can be inserted in the

expressions (analytical or numerical) for the bifurcations TB1, TB2, TB3,

HB1, and HB2 to elucidate the impact of the contaminant C2, acting on

zooplankton, on the food chain dynamics. As in the C1 case, the bifurcation
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lines become displaced to higher nutrient load values, so that the sequence of

bifurcations of Fig. 3 becomes delayed to higher values of I. In contrast with

the C1 case, the TB3 and HB1 lines do not cross, so that there are no further

qualitative changes with respect to the case without contaminants (Fig. 3), at

least up to moderate values of I.

Another view of the consequences of Fig. 7 can be seen in Fig. 8, which

shows the different regimes attained at a fixed intermediate value of I (I =

0.15 mgN/l) and increasing C2 or d2. The most remarkable indirect effect

is that, for d2 < dTB3
2 = 0.2592 day−1 (C2 < CTB3

2 = 0.5103), zooplank-

ton remains constant despite the increase of C2 which is toxic to it. The

net effect of C2 in this range is to decrease the amount of fish until extinc-

tion. Only for C2 > CTB3
2 contaminant kills zooplankton until extinction at

d2 = dTB2
2 = 0.374 day−1 (C2 = CTB2

2 = 0.7406).

4.4 Contaminant toxic to fish

The simplest bifurcation lines are shown in Fig. 9 as a function of I and

d3, the fish mortality affected by contaminant C3. As in the cases before,

bifurcations are delayed to higher values of I when contaminant is present.

As in the C1 case, this delay is different for the different lines, resulting in a

crossing of TB3 and HB1 in a codimension-2 point M, joining there also to

a new Hopf bifurcation HB3 of the NPZF fixed point and other bifurcation

lines (not shown). Additional structures emerging from other codimension-2

points, such as double-Hopf points are also present but we do not study them

in detail. The qualitative behaviour when increasing I at large C3 or d3 (Fig.

10) is similar to the C1 case: there is a succession of N, NP and NPZ fixed
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points followed by a Hopf bifurcation which leads to oscillations of the N , P

and Z variables, maintaining the absence of fish from the system. Only at

relatively high nutrient values does the NPZF steady state become stable at

the subcritical branch of the Hopf bifurcation HB3 before becoming unstable

again at HB2. Two of the NPZF internal solutions (12), which, in contrast

with the C3 = 0 case, are positive here, collide at a limit point. In Fig. 9 the

line of these points as a function of the I and d3 parameters is labelled as LP.

The two solutions exist above that line, and cease to exist below. The sequence

of bifurcations encountered when increasing C3 or d3 at constant intermediate

values of I is also similar to the C1 case of Fig. 6 in that the NPZF stable

fixed point becomes a cycle involving all the variables when HB3 is crossed,

and in that it approaches the F = 0 plane shortly afterwards. The details are,

however, more complex because of the presence in phase space of additional

unstable cycles.

5 Discussion and conclusion

Because of the assumed sigmoidal influence of contaminant on mortality, toxic

effects on our food chain model have a distinct effect at low and at large

concentrations, with rather fast transition behaviour in between.

At small and moderate contaminant concentrations the main effect is a dis-

placement of the different bifurcations towards higher nutrient load values,

so that transitions to states containing less active compartments, and states

without oscillations, become relatively stabilized. Contaminants increase the

stability of the food chain with respect to oscillations caused by increased

nutrient input. A similar outcome has been observed in [35] for a food-chain
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model composed of a toxin producing phytoplankton, zooplankton and fish

population. In that study chaotic dynamics can be stabilized by increasing

the strength of toxic substance in the system.

For higher contaminant values, in most of the cases there is a reordering of

the different transitions, giving rise to the appearance of new bifurcations

which change qualitatively the sequence of states encountered by increasing

nutrient input. The main effect, even in the cases in which such reordering

does not occur (the case of C2 contaminant), is that the top predator becomes

the most depleted, being even brought to extinction. This strong impact of

the contaminant on the higher predator occurs even in the cases in which

the direct toxic effect is on lower trophic levels. It seems that the increased

mortality at lower trophic levels becomes nearly compensated by a debilitation

of top-down control exerted by higher predators. Obviously, the top predator

can not benefit from this mechanism, thus becoming the most affected.

Extrapolation of the above findings for real ecosystems may be problematic,

because of the much higher food web complexity found in nature. We believe

however that the counterintuitive indirect effects described above should be

kept in mind when analyzing the complex responses that ecosystems display

to changes in external drivers such as nutrient load and pollutants, and that

the detailed identification of them performed here can help to interpret some

aspects of the behaviour of real ecosystems.
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Table 1

Parameters of the CC model.

Parameters value Units

Nutrient input I 0.15 mg N/l

Inflow/outflow rate D 0.02 day−1

Max predation rate a1 1.00 day−1

a2 0.50 day−1

a3 0.047 day−1

Half saturation cont b1 0.008 mg N/l

b2 0.01 mg N/l

b3 0.015 mg N/l

Efficiency e1 1.00 -

e2 1.00 -

e3 1.00 -

Mortality(base values) d1 0.10 day−1

d2 0.10 day−1

d3 0.015 day−1

Flushing rate f1 0.01 day−1

f2 0.01 day−1

f3 0.01 day−1
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Table 2

Contaminant parameters for the three compartments, j = 1, 2, 3.

j d
(0)
j ∆dj

1 (prey) 0.1 0.5

2 (predator) 0.1 0.3

3 (top-predator) 0.015 0.015
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Figure captions

Fig.1. Sigmoidal response of mortality to the concentration of the toxic con-

taminant, according to Eq. (6).

Fig.2. (a). Projection on the PZF subspace of a trajectory which starts close

to the NP fixed point, approaches the NPZ one, and finally is attracted by

the NPZF fixed point. I = 0.4 mgN/l, C1 = C3 = 0, and C2 = 0.8. This

shows the approximate location of these points and that only the NPZF one

is stable for these parameter values. (b) Cyclic behaviour: Thick line is a

trajectory leading to an attracting limit cycle on the NPZ hyperplane for

I = 0.1 mgN/l, C1 = C2 = 0, and C3 = 0.8 ; dotted line is a trajectory

attracted by the limit cycle involving all the variables for I = 0.24 mgN/l,

C1 = C2 = 0, and C3 = 0.2.

Fig.3. Bifurcation diagrams of the four variables as a function of nutrient

input parameter I in the absence of contaminants. Thick lines and full sym-

bols denote stable fixed points and maxima and minima of stable cycles, re-

spectively, and thin lines and open symbols, unstable ones. The names of

the fixed points are indicated. The relevant bifurcations (described in the

main text) occur at ITB1 = 0.0008909 mgN/l, ITB2 = 0.01345 mgN/l,

ITB3 = 0.05352 mgN/l, IHB1 = 0.06101 mgN/l, and IHB2 = 0.2298 mgN/l,

locations which are indicated by arrows.

Fig.4. Some of the bifurcations occurring as a function of nutrient input I

and the phytoplankton mortality d1, in the range of values determined by the

presence of contaminant C1 affecting phytoplankton. Values of C1 are also

indicated in the upper horizontal axis. The names of the bifurcation lines are
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indicated (for the case of the Hopf lines HB1, HB2 and HB3, the name of

the fixed point involved in the bifurcation is shown in parenthesis). Crossing

the continuous lines involves a qualitative change for the state attained by the

system. Inside regions surrounded by continuous lines, the name of the relevant

stable fixed point is shown inside grey squares. Crossing the discontinuous

bifurcation lines does not involve a change in the stable state (because, e.g.,

they correspond to bifurcations of already unstable states). Immediately above

the HB2 line, a limit cycle involving all the species is the relevant attractor

for low values of d1 (or C1). The limit cycle on the F = 0 hyperplane is the

relevant attractor above the HB1 line for large d1. Additional bifurcations (not

shown) occur in other regions of the open areas above HB1 and HB2. M is a

codimension-2 point described in the main text. The dotted region identifies

areas where chaotic solutions have been found.

Fig.5. Bifurcation diagrams of the four variables as a function of nutrient

input parameter I, at a constant high value of the contaminant affecting phy-

toplankton, C1 = 0.9 (d1 = 0.586). Thick lines and full symbols denote stable

fixed points and maxima and minima of stable cycles, respectively, and thin

lines and open symbols, unstable ones. The names of the fixed points are

shown. The bifurcation points are identified by arrows. PD is a period dou-

bling bifurcation.

Fig.6. Bifurcation diagrams of the four variables as a function of d1, affected

by contaminant C1, at constant nutrient input I = 0.15 mgN/l. Thick lines

and full symbols denote stable fixed points and maxima and minima of stable

cycles, respectively, and thin lines and open symbols, unstable ones. BP is a

transcritical bifurcation of cycles. The name of the fixed points is shown. The

bifurcation points are identified by arrows.
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Fig. 7. Some of the bifurcations occurring as a function of nutrient input I and

zooplankton mortality d2, in the range of values determined by the presence of

contaminant C2 affecting zooplankton. Values of C2 are also indicated in the

upper horizontal axis. Names of fixed points and bifurcation lines are as in Fig.

4, as well as the meaning of continuous and discontinuous lines. Immediately

above the HB2 line, the relevant attractor is a limit cycle involving all the

species. Additional bifurcations (not shown) occur at higher values of I. The

dotted region identifies areas where chaotic solutions have been found.

Fig. 8. Bifurcation diagrams of the four variables as a function of d2, affected

by contaminant C2, for a constant nutrient load I = 0.15 mgN/l. Thick lines

denote stable fixed and thin lines and open symbols, unstable fixed points and

maxima and minima of unstable cycles. The names of the fixed points are

shown. The bifurcation points are identified by arrows.

Fig. 9. Some of the bifurcations occurring as a function of nutrient input I

and fish mortality d3, in the range of values determined by the presence of

contaminant C3 affecting fish. Values of C3 are also indicated in the upper

horizontal axis. Names of fixed points and bifurcation lines are as in Fig. 4, as

well as the meaning of continuous and discontinuous lines. Immediately above

the HB2 line, the relevant attractor is a limit cycle involving all the species.

Additional bifurcations (not shown) occur at higher values of I. The dotted

region identifies areas where chaotic solutions have been found. There is a

region of the area labelled as NPZF in which this stable fixed point coexists

with a stable limit cycle on the F = 0 hyperplane.

Fig. 10. Bifurcation diagrams of the four variables as a function of nutrient

input rate parameter I for a high value of the contaminant affecting fish,
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C3 = 0.7. Thick lines and full symbols denote stable fixed points and maxima

and minima of stable cycles, respectively, and thin lines and open symbols,

unstable ones. The names of the fixed points are shown. The bifurcation points

are identified by arrows. There is a small region of coexistence (between HB3

and HB2) of the stable NPZF fixed point and a stable limit cycle on the F = 0

hyperplane, which leads later to coexistence of two limit cycles.
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Fig. 1. Sigmoidal response of mortality to the concentration of the toxic contami-

nant, according to Eq. (6).
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Fig. 2. a) Projection on the PZF subspace of a trajectory which starts close to the

NP fixed point, approaches the NPZ one, and finally is attracted by the NPZF fixed

point. I = 0.4 mgN/l, C1 = C3 = 0, and C2 = 0.8. This shows the approximate

location of these points and that only the NPZF one is stable for these parameter

values. (b) Cyclic behaviour: Thick line is a trajectory leading to an attracting limit

cycle on the NPZ hyperplane for I = 0.1 mgN/l, C1 = C2 = 0, and C3 = 0.8 ;

dotted line is a trajectory attracted by the limit cycle involving all the variables for

I = 0.24 mgN/l, C1 = C2 = 0, and C3 = 0.2.
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Fig. 3. Bifurcation diagrams of the four variables as a function of nutrient input

parameter I in the absence of contaminants. Thick lines and full symbols denote

stable fixed points and maxima and minima of stable cycles, respectively, and thin

lines and open symbols, unstable ones. The name of the fixed points is indicated. The

relevant bifurcations (described in the main text) occur at ITB1 = 0.0008909 mgN/l,

ITB2 = 0.01345 mgN/l, ITB3 = 0.05352 mgN/l, IHB1 = 0.06101 mgN/l, and

IHB2 = 0.2298 mgN/l, locations which are indicated by arrows.

30



0.1 0.2 0.3 0.4 0.5 0.59

0.0

0.1

0.2

0.3

0.4

0.5

0.6

d
1

I

 

 

TB2

TB3

TB1

HB1(NPZ)

NP

NPZF

N

NPZ

HB1(NPZ)

M

HB2(NPZF)

0.397 0.467 0.535 0.630

C
1

0.0 1.0

Fig. 4. Some of the bifurcations occurring as a function of nutrient input I and

the phytoplankton mortality d1, in the range of values determined by the presence

of contaminant C1 affecting phytoplankton. Values of C1 are also indicated in the

upper horizontal axis. The name of the bifurcation lines is indicated (for the case

of the Hopf lines HB1, HB2 and HB3, the name of the fixed point involved in

the bifurcation is shown in parenthesis). Crossing the continuous lines involves a

qualitative change for the state attained by the system. Inside regions surrounded

by continuous lines, the name of the relevant stable fixed point is shown inside grey

squares. Crossing the discontinuous bifurcation lines does not involve a change in

the stable state (because, e.g., they correspond to bifurcations of already unstable

states). Immediately above the HB2 line, a limit cycle involving all the species is

the relevant attractor for low values of d1 (or C1). The limit cycle on the F = 0

hyperplane is the relevant attractor above the HB1 line for large d1. Additional

bifurcations (not shown) occur in other regions of the open areas above HB1 and

HB2. M is a codimension-2 point described in the main text. The dotted region

identifies areas where chaotic solutions have been found.
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identified by arrows. PD is a period doubling bifurcation.
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Fig. 6. Bifurcation diagrams of the four variables as a function of d1, affected by

contaminant C1, at constant nutrient input I = 0.15 mgN/l. Thick lines and full

symbols denote stable fixed points and maxima and minima of stable cycles, re-

spectively, and thin lines and open symbols, unstable ones. BP is a transcritical

bifurcation of cycles. The name of the fixed points is shown. The bifurcation points

are identified by arrows.
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Fig. 7. Some of the bifurcations occurring as a function of nutrient input I and

zooplankton mortality d2, in the range of values determined by the presence of

contaminant C2 affecting zooplankton. Values of C2 are also indicated in the upper

horizontal axis. Names of fixed points and bifurcation lines as in Fig. 4, as well as the

meaning of continuous and discontinuous lines. Immediately above the HB2 line, the

relevant attractor is a limit cycle involving all the species. Additional bifurcations

(not shown) occur at higher values of I. The dotted region identifies areas where

chaotic solutions have been found.
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minima of unstable cycles. The name of the fixed points is shown. The bifurcation
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Fig. 9. Some of the bifurcations occurring as a function of nutrient input I and fish

mortality d3, in the range of values determined by the presence of contaminant C3

affecting fish. Values of C3 are also indicated in the upper horizontal axis. Names of

fixed points and bifurcation lines as in Fig. 4, as well as the meaning of continuous

and discontinuous lines. Immediately above the HB2 line, the relevant attractor is

a limit cycle involving all the species. Additional bifurcations (not shown) occur at

higher values of I. The dotted region identifies areas where chaotic solutions have

been found. There is a region of the area labelled as NPZF in which this stable fixed

point coexists with a stable limit cycle on the F = 0 hyperplane.
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Fig. 10. Bifurcation diagrams of the four variables as a function of nutrient input

rate parameter I for a high value of the contaminant affecting fish, C3 = 0.7. Thick

lines and full symbols denote stable fixed points and maxima and minima of stable

cycles, respectively, and thin lines and open symbols, unstable ones. The name of

the fixed points is shown. The bifurcation points are identified by arrows. There is a

small region of coexistence (between HB3 and HB2) of the stable NPZF fixed point

and a stable limit cycle on the F = 0 hyperplane, which leads later to coexistence

of two limit cycles.
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