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Abstract

A central model in theoretical ecology considers the competition of6

a range of species for a broad spectrum of resources. Recent studies
have shown that essentially two different outcomes are possible. Either8

the species surviving competition are more or less uniformly distributed
over the resource spectrum, or their distribution is ’lumped’, consisting10

of clusters of species with similar resource use that are separated by
gaps in resource space. Which of these outcomes will occur crucially12

depends on the ’competition kernel’, which reflects the shape of the
resource utilization pattern of the competing species. Most models14

considered in the literature assume a Gaussian (bell-shaped) compe-
tition kernel. This is unfortunate, since predictions based on such a16

Gaussian assumption are not robust. In fact, Gaussian kernels are a
border case scenario of ecologically relevant kernels, and slight devi-18

ations from the Gaussian assumption can lead to either uniform or
lumped species distributions. Here we illustrate the non-robustness of20

the Gaussian assumption by simulations of the standard competition
model with constant carrying capacity and different competition ker-22

nels. In this scenario, lumped species distributions can come about by
details of the numerical implementation of the model or by secondary24

ecological or evolutionary mechanisms.
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Introduction26

A central model behind the theoretical description of competition among
dissimilar species is the model introduced by MacArthur and Levins (1967).28

In the model, species are characterized by their niche position xi, which
describes their utilization of a resource distributed as a function of x. The30

niche value xi may represent body size of predators, where the resource is
the size distribution of prey, or xi could be beak size of birds, in which32

case the resource is the distribution of seed sizes. Mathematically this leads
to a Lotka-Volterra type of competition equation, where the competition34

coefficients are a function of the distance between species on the niche axis
x. This competition kernel is usually taken to be bell-shaped Gaussian36

function of the niche difference (also called normal curve). The implication
of this choice of competition kernel is the central topic of this paper.38

The model was originally proposed as part of the hypothesis of limiting
similarity, namely that competing species can coexist only if they are suf-40

ficiently different from each other (MacArthur and Levins, 1967; Abrams,
1983). A mathematical analysis of the model revealed that arbitrarily simi-42

lar species could in fact coexist in some cases. However adding further effects
to the model, like noise (May and MacArthur (1972), but see Turelli (1978))44

or extinction thresholds (Pigolotti et al., 2007), impose a limit to the simi-
larity between species. This sensitivity to second order effects has led to the46

conclusion that the model, in its original form, is structurally unstable when
used to predict limits of similarity (Meszéna et al., 2006). The competition48

model has also been applied to describe coevolving species (MacArthur and
Levins, 1967; Case, 1981) and used in some formulations of the theory of50

island biogeography (Roughgarden, 1979). More recently the same type of
model has been simulated numerically and used as a basis for dynamical52

models of sympatric speciation (Doebeli and Dieckmann, 2000), food web
assembly and evolution (Loeuille and Loreau, 2005; Johansson and Ripa,54

2006; Lewis and Law, 2007), elucidating the relation between competition
and predator-prey interactions (Chesson and Kuang, 2008), and for explain-56

ing lumped size distributions of species (Scheffer and van Nes, 2006). For a
more extensive review of the biological applications and the generalization58

of the model see (Szabò and Meszéna, 2006). Thus, the competition model
has been fundamental for the development of basic principles in theoretical60

ecology, and it is still a core part of the vibrant topics of food web struc-
ture, assembly, and evolution though sympatric speciation. Therefore, it is62

relevant to achieve a full understanding also of the more technical aspects
of the model.64
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In almost all applications of the model the chosen competition kernel is
Gaussian. This choice facilitates mathematical analysis, and was justified66

because the exact shape of the kernel was thought to have no influence on
the fundamental results of the model. However, recent work has shown that68

the equilibrium solution can be one of two fundamentally different types,
depending on the form of the competition kernel (Pigolotti et al., 2007).70

One class of competition kernels preserves all species initially introduced in
the system, with adjustments only in their relative abundance. The final72

equilibrium is a state with species closely spaced and with roughly similar
abundances. Another class of competition kernels leads to the species being74

lumped in dense groups, separated by empty regions on the niche axis.
Subsequent invasion of new species in these ‘exclusion zones’ is not possible76

due to competitive exclusion. The condition for uniform distribution of
species is to have a positive definite competition kernel (see definition below).78

This criterion is automatically fulfilled when the kernel is constructed from
the overlap of the species utilization of the resource (Roughgarden, 1979). If80

the kernel is not positive definite, a lumpy species distribution with exclusion
zones emerges. The concern about this discovery is that, even though the82

Gaussian kernel is ecologically sound, it is exactly marginal between the
two regimes. This indicates that numerical inaccuracies and/or secondary84

ecological effects may violate the positive definiteness of the competition
kernel and cause a transition from a uniform to a lumpy species distribution.86

The objective of this paper is to raise awareness in the theoretical ecology
community of the potential pitfalls and subtleties associated with the use of88

Gaussian competition kernels or other marginal choices. Even though this
functional form appears to be natural, in particular for analytical work, it90

may not be the most prudent choice for numerical exploration of competition
models. To illustrate this, the consequences of the marginal nature of the92

Gaussian kernel in the competition model are explored. First, the sensitivity
to numerical issues is demonstrated. Then, other ecologically relevant effects94

that may lead to lumpy distributions are examined.

Methods96

The competition model considers n interacting populations, each utilizing
a common distributed resource x according to a utilization function ui(x),98

i = 1, ..., n. The dynamics of the abundance of species i, Ni, is described by
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a Lotka-Volterra set of competition equations:100

Ṅi = Ni



1 −
1

K

n
∑

j=1

GijNj



 , i = 1, ..., n, (1)

where the growth rate (considered to be the same for all species) is set to
one for simplicity, and the carrying capacity K is uniform. Competition in102

(1) is described by competition coefficients Gij which are constructed from
the overlap of utilization functions of competing species (MacArthur and104

Levins, 1967; Roughgarden, 1979):

Gij =

∫

ui(x)uj(x) dx
∫

u2
i (x) dx

. (2)

A justification of (2) rests upon considering the probability that consumer106

i meets consumer j (Levins, 1968; Roughgarden, 1979).
Often, utilization functions are ignored, and the competition coefficients108

are postulated directly. It is usually assumed that species i has an optimal
exploitation of the resource at a value x = xi, and the competition coeffi-110

cients are taken to depend on the difference between the optimal resource
values of two competing species, y = |xi − xj |, such that we can introduce112

the so-called competition kernel, Gij = G(y). Here we use a family of com-
petition functions described by a parameter p:114

Gij = G(y) = e−|(xi−xj)/σ|p , (3)

which contains the Gaussian kernel when p = 2, or the exponential one when
p = 1. The width of the kernel σ gives the range of competition on the116

niche axis. Incidentally the Gaussian kernel is obtained from Eq. (2) when
the utilization functions are also Gaussian and of the form ui = exp(−((x−118

xi)/s)
2) with s2 = σ2/2. When p < 2 the kernels are more peaked around

y ≈ 0 and for p > 2 they become more box-like (see Fig. 1).120

Note that when competition coefficients are constructed by the formula
(2), i.e. from the overlap of two utilization functions, they are always positive122

definite, meaning that
∑

ij aiGijaj ≥ 0 for any set of numbers ai (Rough-
garden, 1979). This property holds for the family of kernels (3) for p ≤ 2,124

but not for p > 2 (Fig. 1). The Gaussian kernel is therefore marginal in
the sense that, corresponding to the limit case p = 2, even a very small126

perturbation may violate its positive definite character, generally believed
to be an ecological requirement arising from expression (2).128
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Figure 1: Three interaction kernels (top) and species distributions arising
from simulation of the model after 1000 generations (bottom). a) Exponen-
tial competition (p = 1); b) Gaussian competition (p = 2); and c) box-like
competition (p = 4). Simulations are initiated with 200 species randomly
distributed, K = 10, and σ = 0.3.

An intuitive explanation for the appearance of the exclusion zones for
p > 2 is the following. Interaction kernels with large p have a box-like shape.130

In these cases species compete very strongly with other species, roughly
within a distance ±σ from their own niche value. Species with a niche x in132

that range will therefore not be able to invade the resident species, leading
to the exclusion zones between them. When p is decreased, the resident134

species compete less and less with neighbouring species, until the exclusion
zones disappear, leading to the possibility of continuous coexistence.136

Understanding the fact that the transition occurs at p = 2, and also
the coexistence of more than one species in each cluster, requires a mathe-138

matical stability analysis of the model. Consider the uniform solution with
all species having the same abundance and perturb each population by a140

small quantity ∆Ni, which can be either positive or negative. If the com-
petition kernel is not positive defined, there are sets of perturbations such142

that
∑

∆NjGij∆Ni is less than zero. One can show that such perturbations
are amplified by the dynamics, making the uniform solution unstable. The144

system will then evolve to a clustered state, where the distance between
clusters is proportional to the interaction range σ.146

We simulated the model (1) with competition kernel (3) for 1000 gener-
ations and 200 species initially at random niche positions. The width of the148

kernel is σ = 0.3 and the carrying capacity is K = 10. The niche range is

5



taken to be x ∈ [0, 1]. The standard mathematical way to avoid effects due150

to the borders of the niche space is to adopt periodic boundary conditions
(e.g. Scheffer and van Nes (2006)). These are introduced for mathematical152

convenience and aim at modeling species far from endpoints in a large niche
space. Adopting periodic boundary conditions means that when the interac-154

tion kernels extends beyond the left edge at x = 0, it enters back into right
side at x = 1 and vice versa. Periodic boundaries therefore mimic an infinite156

system by considering the niche segment [0, 1] as embedded in an array of
repeated copies of itself. Mathematically, this is properly implemented by158

making a ’kernel wrap’, i.e. substitute G(y) in (3) with Gp(y) ≡
∑

n G(y−n),
where the sum runs from n = 0,±1,±2, ... ±∞.160

Results

Simulations using the competition kernel (3) with p = 1 (exponential), 2162

(Gaussian) and 4 (box-like) illustrate the uniform species distributions for
p = 1 and p = 2, and the lumped species clusters for p = 4 (Fig. 1).164

The configurations in Fig. 1 are still transient states and at longer times
configurations with p ≤ 2 become more uniform, whereas the periodically166

spaced clusters of species for p > 2 become thinner until they contain only
a single species. Transient states are more representative of states actually168

observed and facilitate comparison with previous works (Scheffer and van
Nes, 2006). In any case, from the initial stages until the final equilibrium,170

the main difference between the dynamics for the two classes of competition
kernel is unchanged: for p ≤ 2 all initial species are preserved, leading172

to dense and evenly distributed configurations, whereas ‘exclusion zones’
develop for p > 2 leading to lumped species distributions.174

Effects of numerical inaccuracies. The most obvious numerical simplifi-
cation is to only partially implement the periodic boundary conditions, by176

omitting the kernel wrap around the niche interval, that is, using G(y), with
y being the minimum of the two possible distances among species i and j178

(|xi − xj | and 1 − |xi − xj|), instead of the periodic kernel Gp(y). The re-
sulting effective kernel is Gaussian but truncated at |y| = 1/2 making it no180

longer positive definite. Although the shapes of G(y) and Gp(y) are still
very similar for the parameters used here (σ = 0.3), the change immediately182

leads to lumped species distributions (Fig. 2). In contrast, for p = 1 (or
any other values of p < 2 which we have checked), changing Gp(y) by G(y)184

has no noticeable effect. Qualitatively, the dynamics for truncated Gaussian
kernels resembles the outcome when the exponent of the competition kernel186
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Figure 2: Populations of 200 species after 1000 generations with (left panel)
Gaussian competition kernel with properly implemented boundary condi-
tions, and (right panel) with truncated Gaussian competition kernel (see
text). K = 10 and σ = 0.3.

is perturbed just slightly. E.g. using p = 2.1 instead of p = 2 also leads to
lumped species distributions, even when periodic boundary conditions are188

correctly implemented (not shown).
Effects of secondary ecological processes. A natural question is whether190

the marginal nature of Gaussian competition has consequences exclusively
for numerical aspects or if lumpy species distributions can also be brought192

on by secondary ecological effects. we have checked that adding a small
immigration rate does not produce lumpy distributions. Adding noise or194

an extinction threshold (i.e. species are removed when their populations fall
below a threshold) result in a limit to similarity between species (Pigolotti196

et al., 2007). This also happens in non marginal cases with p < 2, where the
minimum distance between species is unrelated to the competition range σ.198

Effect of species extinction and speciation was simulated by eliminating
species below a given population threshold, and introducing invading species200

at a fixed rate. If they are introduced at random locations in niche space no
patterns are observed. If invading species are introduced close to existing202

ones, the system ends with a lumped species distribution, even for p = 2
(Fig. 3). However, the same mechanism has no effect if an exponential204

competition kernel (p = 1) is chosen. It therefore seems as if evolutionary
effects may favor lumpy species distributions, but only when the competition206
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kernel is close to the Gaussian limiting case.

0 0.2 0.4
x

0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

N

0 0.2 0.4
x

0.6 0.8 1
0

0.5

1

1.5

2

Figure 3: Final populations after 500 000 generations with speciation and
extinction. Species whose population goes below 0.1 are removed from the
system. Every 100 generations new species are introduced close to an ex-
isting one. The parent species is chosen with a probability proportional
to its population; the distance of the new species to its parent is drawn
from a Gaussian distribution of zero mean and spread σp = 0.02. The new
species j is introduced with a population uniformly drawn from the interval
N ∈ [2, 3]. (left panel) Gaussian kernel (p = 2) and (right panel) exponential
kernel (p = 1). Simulations are performed under perfect periodic boundary
conditions. K = 10 and σ = 0.3.

Finally, a possible generalization is to consider multi-dimensional niche208

spaces. This possibility would complicate the mathematical notation but
would not introduce qualitative changes. This means that stability in a210

multi-dimensional niche space would still depend on the positive definite-
ness of the competition kernel. In particular, a multi-dimensional Gaussian212

competition kernel would still be marginal and the results of generalized
models will also be sensitive to small numerical details and evolutionary214

effects considered above.
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Discussion216

The model (1)-(3) provides a very abstract representation of competition.
Both empirical observations and theoretical approaches, based on explicit218

consideration of the coupled consumer-resource dynamics, lead to compe-
tition coefficients which are quite different from Gaussian, except in a few220

particular cases (Schoener, 1974; Wilson, 1975; Ackermann and Doebeli,
2004). Even so, the qualitative outcome of the model does not depend on222

the exact shape of the competition kernel, but only on it being positive defi-
nite. We have restricted our considerations primarily to the basic model (1)224

with ‘bell shaped’ interaction kernels since it is widely used for theoretical
work and because it allowed us to illustrate the importance of G and the226

disadvantages of the choice of a Gaussian competition kernel.
The basic model with competition coefficients obtained from the overlap228

of utilization functions, which give always positive definite kernels, allows
for dense species distributions with no limits to similarity. This fundamental230

solution may be changed by three different effects: 1) effects stemming from
the competition kernel being no longer positive definite lead to lumpy species232

distributions. Clusters of species will appear, separated by exclusion zones
in niche space with a spacing proportional to the width of the competition234

kernel σ; 2) second order ecological effects like noise, species heterogeneity
or the introduction of an extinction threshold lead to a limit to the similarity236

with the spacing between species being independent of σ; 3) under a non
constant carrying capacity, patterns of unevenly spaced species, lumpy or238

not, may appear. This lead Szabò and Meszéna (2006) to conclude that
“the not-very-smooth nature of the carrying capacity seems to be essential240

for limiting similarity”.
The first case arises when the competition kernel is not positive definite.242

This can be the result of a numerical approximation, such as truncating the
tails of a Gaussian competition kernel. This effect is probably the underly-244

ing mechanism behind species clustering observed in recent numerical work
(Scheffer and van Nes, 2006), which was used to explain observed lumpy246

distributions (May et al., 2007). These spurious effects can be avoided by
paying attention to numerical details or by using a competition kernel which248

is not marginal, e.g. one with p = 1.5, which in practice is almost indistin-
guishable from the Gaussian one. It is worth mentioning that analytical250

(i.e. not numerical) results are not affected by the marginal nature of the
Gaussian kernel, both in relation to limiting similarity (May and MacArthur,252

1972), coevolution (Case, 1981) or criteria for sympatric speciation (Doebeli
and Dieckmann, 2000). The marginal nature of Gaussian competition ker-254
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nel may however affect numerical work on food web evolution and assembly
(Doebeli and Dieckmann, 2000; Loeuille and Loreau, 2005; Lewis and Law,256

2007). Beside numerical subtleties, we also demonstrated that a simple rep-
resentation of evolutionary diffusion (Lawson and Jensen, 2007) may lead to258

lumpy species distributions, at least if the competition kernel is the marginal
Gaussian. This effect is similar to that of evolutionary dynamics, where as-260

sortative mating is shown to lead to lumpy species distributions (Doebeli et
al, 2007).262

Since a non-positive definite competition kernel leads to lumpy species
distributions a natural question is if simple ecological arguments could result264

in a non-positive definite kernel. This case is often neglected in the literature,
since assuming Eq. (2) automatically leads to a positive definite competition266

kernel (Roughgarden, 1979). However, as emphasized in Meszéna et al.
(2006) and references therein, under quite general assumptions one should268

introduce two different utilization-like functions: a sensitivity function Si(x),
describing the effect of the resource at x on the growth of species i, and270

an impact function Di(x), describing the depletion of resources produced
by i. Then, the competition coefficients depend on the overlap of these272

two quantities
∫

Si(x)Dj(x)dx, and reduce to (2) only if the sensitivity and
impact functions are proportional, with the constant of proportionality being274

the ecological efficiency. When the ecological efficiency is a function of x,
and the sensitivity and impact functions are no longer proportional, the276

competition kernel ceases to be positive definite.
The third mechanism is that of a non-constant carrying capacity K(x),278

which has been explored by Szabò and Meszéna (2006). They found that
some choices of carrying capacity leads to an irregular species lumping. The280

effect of non-constant carrying capacity in conjunction with both positive
and non-positive definite competition kernels was explored by Hernández-282

Garćıa et al (2008). The emerging picture is that the two mechanisms are
independent. The cases in which a non-constant carrying capacity leads284

to uniform species distributions can also be destabilized by a non-positive
defined kernel. This means that the mechanism explored here is not a par-286

ticularity of constant carrying capacity but is present also in more general
settings.288

Having outlined the reasons that may cause the three different outcomes,
the question arises if it is possible to infer whether one effect or the other290

is at play from the result of a numerical integration of the competition
model. It can be difficult to distinguish between a uniform discrete species292

distribution and a lumpy one with very narrow and close lumps. Here, the
fact that in the lumpy distribution the spacing of the lumps is proportional294
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to the width of the competition kernel σ can be used. If changing σ results
in a change in the distance between species proportional to σ, the effect296

is due to a non-positive definite competition kernel and vice versa. In the
case where the effect is due to the carrying capacity being non-constant the298

spacing of species is usually more irregular (Szabò and Meszéna, 2006).
To summarize: in line with previous works we have found that the case of300

continuous coexistence (no limits to similarity) may be limited by a variety
of effects, specially for the Gaussian kernel which has a marginal character.302

We have underlined that there are different ways to limit similarity, some
leading to lumpy species distributions and others not. We hope that this304

article will increase the awareness in the theoretical ecological community of
the potential pitfalls and subtleties associated with the use of the Gaussian306

competition kernel. Even though this functional form appears to be natural,
in particular for analytical work, it may not be the most prudent choice for308

numerical exploration of the niche model.

Acknowledgments310

C.L. and E.H-G. acknowledge support from project FISICOS (FIS2007-
60327) of MEC and FEDER and NEST-Complexity project PATRES (043268).312

K.H.A was supported by the Danish research council, grant no. 272-07-0485

References314

Abrams, P. 1983. The theory of limiting similarity. Ann. Rev. Ecol. Syst.
14: 359–376.316

Ackermann, M. and Doebeli, M. 2004. Evolution of niche width and adaptive
diversification. Evolution 58(12):2599-2612.318

Case, T. J. 1981. Niche packing and coevolution in competition communities.
Proc. Nat. Acad. Sci. U.S.A. 78(8): 5021–5025.320

Chesson, P. and Kuang, J. J. 2008. The interaction between predation and
competition, Nature (456) 235–238.322

Doebeli, M. and Dieckmann, U. 2000. Evolutionary Branching and Sym-
patric Speciation Caused by Different Types of Ecological Interactions.324

Am. Nat. 156(4):77–101.

11



Doebeli, M., Blok, H. J., Leimar, O., and Dieckmann, U. 2007. Multimodal326

pattern formation in phenotype distributions of sexual populations - Proc.
Royal. Soc. London B 274(1608): 347–357.328
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