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1. Introduction

If the lower bound in an uncertainty relation is state dependent, states satisfying the

equality in the uncertainty relation need not give a minimum in the uncertainty product.

This contrasts to the Heisenberg uncertainty principle for position and momentum [1],

where the lower bound is a constant. Here, states which satisfy the equality in the

uncertainty relation, that is intelligent states [2], also minimize the uncertainty product.

The uncertainty relation for angular momentum and angle [3] however, has a state

dependent lower bound requiring a distinction between intelligent states and minimum

uncertainty product states [4]. These two kinds of states are defined as solutions of

two different eigenvalue equations. For linear momentum and position the solutions

to the two differential equations are the same Gaussians. In the angular case the two

eigenvalue equations have two distinct solutions. Additionally, the angle is defined on a

finite interval, allowing solutions to the differential equation which are disregarded in the

linear case on the grounds that they do not represent physical, normalisable states on

the infinite range on which position and linear momentum are defined. These solutions

are peaked at the edges of the 2π radian interval for the angle and consequently the angle

uncertainty of these states tends to be larger than for cases where the wavefunction is

peaked in the middle of the interval and decays towards the boundaries. The intelligent

and minimum uncertainty product states thus appear in two varieties with small and

large angle uncertainties. The distinction is most apparent for the uncertainty product,

which is bounded from above by ~/2 for the states with small angle uncertainty, but

has no upper bound in the large-uncertainty case.

We should stress that in this work we will consider only the uncertainties in the

angular momentum and in the associated angular coordinate [3]. This form of the

uncertainty relation has been demonstrated to hold in a recent experiment [5] and

underlies the security of a lately developed free-space communication system [6]. A

range of other uncertainty relations have been derived in which measures of angular

spread other than the angle uncertainty are used. These includes uncertainties based

on trigonometric functions of the angle [7], discrete versions of the uncertainty relation

[8] and entropic uncertainty relations [9].

The family of states related to the angular uncertainty relation has been investigated

in a series of previous articles. The form of the angular uncertainty relation has

been experimentally verified using intelligent states with small angle uncertainties [5].

The distinction between intelligent states and minimum uncertainty states with small

uncertainties has been presented in a second article [4], where the possibility has been

discussed to distinguish between these in an experiment. Intelligent states with large

uncertainties have been introduced in a third article [10], in which we have compared

the analytically exact expression for the wavefunction in terms of a special function with

approximate expressions for two limiting cases. The present article completes the study

of this family of states by expounding minimum uncertainty product states with large

uncertainties. As the angle is defined on a finite interval its uncertainty is bounded
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from above and the uncertainty product reaches the global minimum for eigenstates

of the angular momentum operator L̂z with uncertainty ∆Lz = 0. But one can also

consider states which minimize the uncertainty product under the constraint of a given

uncertainty in either the angle or the angular momentum. It has been shown that states

minimizing the uncertainty product are the same whether the additional constraint is a

given uncertainty in the angle ∆φ or a given uncertainty in the angular momentum ∆Lz

[4]. These states are called constrained minimum uncertainty product (CMUP) states.

In this article we will extend the analysis of CMUP states to the large-uncertainty

regime. An exact analytical solution for the wavefunction of these states will be

given in terms of complex confluent hypergeometric functions, but we also present an

approximate solution in terms of Airy functions for the limiting case where the given

angle uncertainty ∆φ tends to its upper bound π. In particular we will compare this

kind of CMUP states with the large-uncertainty intelligent states.

2. Angular uncertainty relation

It is physically impossible to distinguish between two rotation angles differing by 2π

radians. Within the quantum mechanical description of rotation angles, this restricts

angle eigenvalues to lie within a 2π radian interval [θ0, θ0 + 2π) [3]. Choosing θ0

determines a particular 2π radian interval and with it a particular angle operator φ̂θ

and hence a basis set of angle eigenstates. In the following we adhere to the choice of

θ0 used in previous work [4, 5, 10] by setting θ0 = −π and dropping the label on the

angle operator φ̂. The lower bound in the general form of the uncertainty relation for

two Hermitian operators is given by the expectation value of the commutator of these

operators [11]. The commutator for angle and angular momentum operator is rigorously

derived in a finite state space Ψ of 2L + 1 dimensions, spanned by the eigenstates |m〉
of the angular momentum operator L̂z with m ranging from −L,−L + 1, . . . , L [3].

Only after physical results have been calculated in the finite dimensional space Ψ, L

is allowed to tend to infinity. It is in this limit of L → ∞ that the expectation value

of the commutator [L̂z, φ̂] can be approximated to an excellent degree for all physical

preparable states, which results in the angular uncertainty relation

∆Lz∆φ ≥
1

2
|1− 2πP (π)|. (1)

Here, we are using units in which ~ = 1 and P (π) is the angle probability density at

the edge of the chosen 2π radian interval. This corresponds to our choice of θ0 = −π,

as the probability density is periodic in the angle and P (−π) = P (π). In general

different states used to calculate the uncertainties ∆Lz and ∆φ will have a different

angle probability density P (π) rendering the lower bound in the uncertainty relation (1)

state dependent. From the uncertainty relation (1) it is evident why angular momentum

eigenstates give a global minimum for the uncertainty product. For an eigenstate of the

angular momentum operator the angle probability density takes on the constant value

of P (φ) = 1/(2π) for φ in [−π, π). The lower bound in the uncertainty relation thus is
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equal to zero and so is the uncertainty product as the angular momentum uncertainty

vanishes and the angle uncertainty has the finite value of π/
√

3. This global minimum

in the uncertainty product is also the dividing point between small-uncertainty and

large-uncertainty states. Away from this point the constrained minimum uncertainty

product (CMUP) states give a minimum in the uncertainty product for a given ∆φ or

a given ∆Lz.

3. CMUP states

Seeking states which minimize the uncertainty product for a given uncertainty in the

angle or for a given uncertainty in the angular momentum is equivalent to minimizing

the uncertainty that is not given. The corresponding equation for CMUP states has

been derived in [4] using a variational method [12]. In this approach it is required that

a CMUP state |f〉 minimizes the uncertainty product, but with the constraint of keeping

the given variance constant and obeying the normalisation condition 〈f |f〉 = 1. The

additional constraints are taken into account by introducing undetermined Lagrange

multipliers [13]. In [4] it has been shown that for a CMUP state |f〉 the mean values

of angular momentum and angle can be set to zero, that is 〈L̂z〉 = 〈φ̂〉 = 0. Therefore,

the variances (∆Lz)
2 and (∆φ)2 simplify to 〈L̂2

z〉 and 〈φ̂2〉 respectively. The variation of

the uncertainty product with the given constraints thus results in a linear combination

of the variations δ〈L̂2
z〉, δ〈φ̂2〉 and δ〈f |f〉, in which the Lagrange multipliers are the

coefficients:

δ〈L̂2
z〉+ λδ〈φ̂2〉 = µδ〈f |f〉. (2)

The linear combination is the same whether 〈L̂2
z〉 is given and 〈φ̂2〉 is minimized or 〈φ̂2〉

is given and 〈L̂2
z〉 is minimized. Furthermore, it has also been demonstrated [4] that it is

admissible to consider only real coefficients bm in the angular momentum decomposition

of |f〉 in the state space Ψ

|f〉 =
L∑

m=−L

bm|m〉. (3)

This allows us to write the variation δ〈f |Â|f〉 for any Hermitian operator Â as

2(δ〈f |)Â|f〉 [13]. In particular this applies to the operators L̂2
z, φ̂

2 and to the

identity operator Î corresponding to the variations δ〈L̂2
z〉, δ〈φ̂2〉 and δ〈f |f〉. The linear

combination of variations in (2) thus turns into a linear combination of operators applied

to |f〉. This leads to an eigenvalue equation of the form(
L̂2

z + λφ̂2
)
|f〉 = µ|f〉, (4)

where λ and µ are the Lagrange multipliers. The identification of the angular

momentum operator L̂z as derivative with respect to φ sets additional requirements

on the wavefunction representing CMUP states [4, 10]. The wavefunction in the angle

representation ψ(φ) = 〈φ|f〉 has to be an element of C1, which is the set of continuously
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differentiable functions. The question of differentiability is of particular importance at

the boundaries of the 2π radian interval, on which the angle wavefunction is defined.

Whereas intelligent states are continuous, they do not have a continuous first derivative

at φ = ±π. CMUP states, however, do have a continuous first derivative at the

boundaries, and therefore representing L̂2
z by the differential operator −(∂2/∂φ2) is well

defined. The eigenvalue equation (4) may thus be turned into a differential equation for

the CMUP wavefunction ψ(φ):

∂2

∂φ2
ψ(φ) =

(
λφ2 − µ

)
ψ(φ). (5)

For the small-uncertainty case a solution of this equation has been given in terms of

a confluent hypergeometric function in reference [4]. The angle wavefunction in this

regime is peaked at φ = 0 and λ, µ > 0 such that the curvature of the wavefunction

around φ = 0 is negative. For the large-uncertainty case the curvature around the

central region is positive and the multipliers λ, µ < 0. Formally we can give the solution

to (5) in terms of confluent hypergeometric functions with complex arguments:

ψ(φ) ∝ exp

(
− i|λ| 12

2
φ2

)
M

(
− i

4

|µ|
|λ| 12

+
1

4
,
1

2
, i|λ|

1
2φ2

)
, (6)

whereM is Kumer’s function [14]. This solution is obtained from (5) by setting λ = −|λ|
and µ = −|µ| for λ, µ < 0 and using the same scaling as in [4], independent of the sign

of λ and µ: x =
√

2|λ| 14φ and a = |µ|/(2|λ| 12 ). With these substitutions (5) takes on

the form

∂2ψ

∂x2
+

(
x2

4
− a

)
ψ = 0, (7)

of which (6) is a solution with the appropriate change of variables. To evaluate the

wavefunction and to calculate the angle and angular momentum uncertainty we have

solved the scaled differential equation (7) numerically using a series expansion. In the

scaled form the wavefunction is characterized by the parameter a which takes on positive

values for large-uncertainty CMUP states. The appropriate scaling is determined by the

condition that the position x0 of the first maximum of ψ(x) corresponds to φ = π, such

that

φ =
x

x0

π and |λ| = x4
0

4π4
. (8)

The value of x0 is determined numerically, so that the scaled wavefunction can be

normalised between −x0 and x0 allowing a calculation of the expectation value 〈x̂2〉 by

numerical integration. The transition of the wavefunction for the CMUP states from

the small-uncertainty regime to the large-uncertainty regime is shown in figure 1. In

connection with figure 1 it is useful to discuss qualitatively the consequences of the

positive curvature in the central region of the large-uncertainty CMUP states on the

angle uncertainty. In [4] it has been shown that for CMUP states with small ∆φ the

single-peaked wavefunction has approximately the form of a Gaussian. On increasing

the scaling parameter a towards zero the wavefunction becomes flater and deviates from
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Figure 1. Plot of the wavefunction of CMUP states showing the transition from the
small-uncertainty regime to the large-uncertainty regime. This distinction refers to the
angle uncertainty ∆φ, and the dividing point is the flat wavefunction for ∆φ = π/

√
3.

the Gaussian form. For a → 0 the wavefunction is uniformly distributed between −π
and π and the angle uncertainty takes on the value of ∆φ = π/

√
3. This is the dividing

point between the small-uncertainty and large-uncertainty regime. If the parameter a is

further increased the positive curvate leads to a wavefunction peaked at ±π. Calculating

the uncertainty or for such a CMUP state from the variance ∆φ2 = 〈φ̂2〉 − 〈φ̂〉2 yields

values for ∆φ > π/
√

3. In the limit of a → ∞ the angle uncertainty approaches the

maximum value π [10]. Using (8) the angle variance 〈φ̂2〉 is given by 〈φ̂2〉 = (π2/x2
0)〈x̂2〉

for values of x in [−x0, x0). The variance of the angular momentum operator is given by

(5) in terms of µ, λ and 〈φ̂2〉, which results in the following expression for the product

of the variances 〈φ̂2〉 and 〈L̂2
z〉:

〈φ̂2〉〈L̂2
z〉 = 〈φ̂2〉

(
µ− λ〈φ̂2〉

)
, (9)

= 〈x̂2〉
(
−a+

1

4
〈x̂2〉

)
. (10)

The limiting behaviour of the uncertainty product is directly connected to the behaviour

of the ratio µ/λ. For a tending to zero, µ and λ tend to zero individually but their ratio

µ/λ→ π2/3 (see figure 2). The variance 〈φ̂2〉 takes on the value of π2/3 and the overall

product of variances vanishes. For a → ∞, both µ and λ → −∞, but the ratio µ/λ

approaches π2. The variance 〈φ̂2〉, however, tends to its maximum π2 faster than µ/λ

such that (9) tends to infinity. The resulting behaviour of the uncertainty product as

a function of ∆φ is given in figure 3. As in the small-uncertainty case for ∆φ < π/
√

3

the uncertainty product is smaller for the CMUP states than for the intelligent states
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Figure 2. The ratio of the two Lagrange multipliers µ and λ determines the limiting
behaviour of the uncertainty product (see equation (9)). For ∆φ → π the ratio
µ/λ tends to π2, but more slowly than 〈φ̂2〉. The uncertainty product thus tends
to infinity. The plot of µ/λ in the Airy approximation shows the region of validity for
this approximation.

while still obeying the uncertainty relation (1). This is possible because of the smaller

probability density P (π) at the edge of the chosen 2π radian interval. Also, the difference

in the uncertainty product between intelligent states and CMUP states in the large-

uncertainty regime is enhanced over the small-uncertainty regime. This goes along with

a significant difference in the wavefunction for intelligent states and CMUP states for the

same ∆φ in this region (see figure 4). In the small-uncertainty regime the wavefunction

of intelligent and CMUP states both have approximately the same Gaussian form in

the region where the uncertainty product is 1/2 and changes only slowly with ∆φ. In

the large-uncertainty regime intelligent and CMUP states are of different form and we

will discuss an approximate expression for CMUP states in the limit of ∆φ → π later

in this article.

In connection with figure 3 it is appropriate to clarify the meaning of minimizing

the uncertainty product under a constraint. For CMUP states with small and large

angle uncertainties the angular momentum uncertainty can take on all positive real

values. ∆Lz is zero for the angular momentum eigenstates at ∆φ = π/
√

3 and it

approaches infinity for ∆φ → 0 and ∆φ → π. Minimizing the uncertainty product

for a given ∆Lz yields two constrained minima. The smaller constrained minimum is

obtained for the small-uncertainty CMUP states and corresponds to an angle uncertainty

∆φ < π/
√

3. A secondary minimum, however, is obtained for the large-uncertainty

CMUP states corresponding to ∆φ > π/
√

3 (see figure 5). On the other hand minimizing
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Figure 3. Plot of the uncertainty product as a function of ∆φ. The graphs of
the intelligent states [5, 10] and small-uncertainty CMUP states [4] are shown for
comparison (cf. plot of intelligent states in [15]). The difference in the uncertainty
product between intelligent states and CMUP states is significantly enhanced in the
large-uncertainty regime for ∆φ > π/

√
3. For two values of ∆φ (marked by the dotted

lines with the symbols ♦ and �) the difference in the wavefunction is shown in figure
4. The inset shows an enlargement around the global minimum in the uncertainty
product for ∆φ = π/

√
3.

the uncertainty product for a given ∆φ results in a unique minimum. Whether this

minimum is obtained for small-uncertainty or large-uncertainty CMUP states depends

on the given ∆φ.

Owing to the complexity of the CMUP states we are not able to give an analytical

explanation of the limiting behaviour in simple terms. Also, our method to determine

the first maximum of the wavefunction numerically fails for very sharply peaked

wavefunctions. In the following we therefore present an approximate expression for

the wavefunction in terms of Airy functions, which allows us to calculate the variance

∆φ analytically.

4. Airy approximation

The defining differential equation for the CMUP states (5) can be approximated and the

resulting equation solved to give an analytical expression for the CMUP wavefunction

in the limiting case ∆φ→ π, as we now describe.

The behaviour of the solution for a general differential equation of the form

∂2ψ

∂x2
= P (x)ψ(x) (11)
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Figure 4. Comparison of the wavefunction for intelligent states and CMUP states
for the same ∆φ in the large-uncertainty regime. The difference in the uncertainty
product for the two values a) ∆φ = 2.5 ♦ and b) ∆φ = 3.0 � can be seen in figure 3.
The position of the two values for a) and b) is marked in figure 3 by dotted lines with
the respective symbols.
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Figure 5. If the uncertainty product is minimized for a given uncertainty in the
angular momentum, two minima can be obtained. The first and smaller minimum is
obtained for the small-uncertainty CMUP states while a secondary minimum is found
for the large-uncertainty CMUP states. For comparison the limiting cases for these two
kinds of states are shown. For ∆φ → 0 the small uncertainty states become Gaussians
[4], whereas the large-uncertainty states are approximatively given by Airy functions
for ∆φ → π.

is partly determined by the sign of the function P (x). Should P (x) be purely positive we

would expect an exponential behaviour, whereas for a purely negative P (x) the solution

would be oscillating. Of particular importance, therefore, are the values of x where

P (x) exhibits a change of sign, that is the turning points of the equation (11). We

can restrict the analysis of the differential equation (5) to the half interval [0, π) due

to the symmetry of the equation. In this range equation (5) has one turning point at

φ =
√
µ/λ. The equation is approximated by expanding P (x) = λφ2 − µ around this

turning point. Setting φ =
√
µ/λ+x and neglecting quadratic terms in x turns (5) into

Airy’s equation [16]

∂2ψ

∂y2
= yψ, y = −(2

√
µλ)

1
3x = −(2

√
µλ)

1
3 (φ−

√
µ/λ). (12)

This equation is solved exactly by the Airy function Ai(y) which results in

ψ(φ) = CAi
(
−(2

√
µλ)

1
3 (φ−

√
µ/λ)

)
(13)

on substituting the appropriate variables. Here, C is the normalisation constant. To

fulfill the boundary condition ψ′(π) = 0 the argument of the Airy function in (13) is

required to have the value of the first zero of Ai′ for φ = π. This leads to the equation

−(2
√
µλ)

1
3 (π −

√
µ/λ) = −1.0188. (14)
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Choosing a particular λ gives a quartic equation for
√
µ/λ and for values of

√
µ/λ close

to π an approximate solution is given by

µ

λ
≈ π −

(
−1.0188

2λπ

) 1
3

. (15)

In the Airy approximation a particular CMUP state can thus be characterized by the

Lagrange multiplier λ. The normalisation constant can be determined by analytical

evaluation of the normalisation integral

1 = 2

∫ π

0

ψ2(φ)dφ ≈ 2C2
(
2
√
µ/λ

)− 1
3

∫ ∞

−1.0188

Ai2(y)dy. (16)

In the last step we have extended the range of integration from y(φ = 0) =

(2
√
µλ)

1
3

√
µ/λ to infinity. In the region where the Airy approximation is applicable

(∆φ → π), the wavefunction decays to zero sufficiently quickly for small angles so

that extending the upper bound in the integral does not significantly change the

normalisation integral. Primitives of products of Airy functions can be calculated using

the method of Albright [17]. This results in

C = (µλ)
1
12

(
(1.0188)

1
2 (0.5357)2

1
3

)−1

, (17)

where Ai(y = −1.0188) = 0.5357. In figure 6 a comparison of the numerically

calculated wavefunction and the wavefunction in the Airy approximation is shown. The

approximation becomes better for values of ∆φ closer to π. An inset in figure 6 gives

the deviation of the argument of the Airy function in (13) from the exact value of

y = −1.0188 due to the approximation (15) of the quartic equation (14) determining

µ/λ.

Within the Airy approximation the integral for the angle variance can be calculated

analytically using the method of Albright [17]:

(∆φ)2 =
µ

λ
+

2

3
(1.0188)

(
2
√
µλ
)− 1

3
√
µ/λ

+
1

5
(1.0188−1 + 1.01882)

(
2
√
µλ
)− 2

3
. (18)

As in the calculation of the normalisation constant (16) the upper boundary in the

integration has been extended to infinity. On multiplying (18) by λ one can see in

(9) that λ〈φ̂2〉 will always be smaller than µ resulting in an unbounded uncertainty

product. Within the Airy approximation the uncertainty product can be calculated for

values of ∆φ much closer to π than in the numerical calculation. This is due to the

fact that our numerical determination of the first maximum fails for large values of a.

In the Airy approximation a numerical search for the first maximum is not necessary.

The uncertainty product calculated in the Airy approximation is compared with the

numerical results in figure 7.
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Figure 6. Plot showing a comparison of the Airy approximation (continuous lines)
with the numerical calculated wavefunction (individual points). For ∆φ = 3 (+) the
Airy approximation shows a good agreement with the numerical results. The inset
shows the deviation of the argument of the Airy function Ai at φ = π from −1.0188
(marked by the horizontal dotted line), the position of the first maximum of the Airy
function Ai.

5. Conclusion

In this paper we have completed the study of states related to the angular uncertainty

relation. This particular uncertainty relation differs from the Heisenberg uncertainty

principle for linear position and momentum in two ways. The lower bound in the

uncertainty relation is state dependent which causes intelligent states, that is states

satisfying the equality in the uncertainty relation, to be distinct from constrained

minimum uncertainty product (CMUP) states. These states minimize the uncertainty

product for a given variance in angle or for a given variance in angular momentum. Also,

in contrast to the linear position, the angle is defined on a bounded interval. Therefore,

wavefunctions peaked at the edge of the interval are normalisable and can represent

physical states. Intelligent and CMUP states are defined by two different eigenvalue

equations. For the angular uncertainty relation the solutions to the eigenvalue equations

are angle wavefunctions which are peaked in the middle or peaked at the edge. This

gives rise to two varieties of states with small and large angle uncertainties respectively.

Intelligent states with large angle uncertainties may have arbitrarily large uncertainty

products while still satisfying the equality in the uncertainty relation. Similarly, CMUP

states with large-angle uncertainties minimize the uncertainty product locally or globally

for a given constraint. The obtained minimum uncertainty product may be very large.
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It depends on the given uncertainty whether the minimum is local and the small

uncertainty CMUP states give a smaller uncertainty product, or if the large-uncertainty

CMUP state gives the smallest possible constrained uncertainty product.

Intelligent states with small and large angle uncertainties have been discussed

previously in two papers [5, 10], while the CMUP states with small angle uncertainties

have been studied in a third paper [4]. Here, we have examined CMUP states

with large angle uncertainties. We have found an analytically exact solution for

the CMUP eigenvalue equation in terms of confluent hypergeometric functions with

complex arguments. We also have solved the equation numerically and have calculated

the angle uncertainty from this solution by numerical integration. To explain the

limiting behaviour for sharply peaked wavefunctions we have developed an analytical

approximation using an expansion about a turning point. The approximate solution is

given as the decaying tail of the Airy function Ai. Within this approximation we were

able to calculate the uncertainty product analytically.

We have found that the difference in the uncertainty product between intelligent

states and CMUP state is enhanced in the large-uncertainty regime. In [4] the

possibility to distinguish between intelligent states and CMUP states in an experiment

was discussed. While it might be more difficult to prepare large-uncertainty states

in an experiment, the greater difference in the uncertainty product could simplify the

experimental evaluation significantly. The difference between CMUP and intelligent
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states in the large-uncertainty regime is also a clear indication for the necessary

distinction between the two regimes and shows that large-uncertainty states cannot

be transformed into small-uncertainty states by shifting the the 2π radian range, but

have to be treated seperately.
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