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Effects of a localized beam on the dynamics of excitable cavity solitons
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We study the dynamical behavior of dissipative solitons in an optical cavity filled with a Kerr
medium when a localized beam is applied on top of the homogeneous pumping. In particular, we
report on the excitability regime that cavity solitons exhibits which is emergent property since the
system is not locally excitable. The resulting scenario differs in an important way from the case
of a purely homogeneous pump and now two different excitable regimes, both Class I, are shown.
The whole scenario is presented and discussed, showing that it is organized by three codimension-2
points. Moreover, the localized beam can be used to control important features, such as the excitable
threshold, improving the possibilities for the experimental observation of this phenomenon.

PACS numbers: 42.65.Sf, 05.45.-a, 89.75.Fb

I. INTRODUCTION

Dissipative solitons (also known as localized struc-
tures) are states in extended media that consist of one
(or more) regions in one state surrounded by a region in
a qualitatively different state (in the following this sur-

rounding state is an area in a stable stationary state).
These structures were first suggested in Refs. [1, 2] and
then described in a variety of systems, such as chemi-
cal reactions [3], semiconductors [4], granular media [5],
binary-fluid convection [6, 7], vegetation patterns [8], and
also in nonlinear optical cavities where they are usually
referred as Cavity Solitons (CS) [9, 10, 11, 12, 13] (see
Ref. [14, 15, 16] for recent surveys). Their potential in
optical storage and processing of information has been
stressed [17]. In this work we shall consider solitons that
appear in a subcritical bifurcation [11, 18, 19].

In general, dissipative solitons may develop a number
of instabilities like start moving, breathing, or oscillat-
ing. In the latter case, they would oscillate in time while
remaining stationary in space, like the oscillons (oscil-
lating localized structures) found in a vibrated layer of
sand [5]. The occurrence of these oscillons in autonomous
systems has been reported both in optical [20, 21] and
chemical systems [22]. It has been shown that they can
become unstable leading to excitable solitons in systems
for which the local dynamics is not excitable [23, 24]. In
this case excitability appears as an emergent property
arising from the spatial dependence, which allows for the
formation of these structures. In particular, for solitons
arising in uniformly pumped Kerr cavities, excitability is
mediated by a saddle-loop (homoclinic) (SL) bifurcation,
and it is characterized by a large excitability threshold
and by occurring at any point of space that is properly
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excited [23, 24].
Since CS excitability emerges from the spatial depen-

dence it is interesting to study the effect of breaking the
translational symmetry on the excitable dynamics. In op-
tical systems this can be easily done by applying a (small
amplitude) localized beam on top of the homogeneous
pump. Addressing beams are typically used already to
create CS by applying a transient perturbation. Here we
analyze the dynamics of CS in a Kerr cavity where we
apply a permanent addressing beam. On one hand, this
pump allows to control the place where a CS appears.
On the other hand, the system remains excitable and a
new route, mediated by a Saddle-Node on an Invariant
Circle (SNIC) bifurcation, appears. It is characterized
by the fact that the excitable threshold is fully tunable,
as it scales with the proximity to the bifurcation.

This paper is organized as follows. The model and
overall dynamical behavior exhibited by the system in pa-
rameter space are described in Sect. II and III. Sect. IV
addresses the instability exhibited by CS through a SNIC
bifurcation. Sect. V discusses the excitable routes found
in this system. Sect. VI and VII discuss the codimension-
2 points that organize the overall scenario. Finally, con-
cluding remarks are given in Sect. VIII.

II. MODEL

A prototype model describing an optical cavity filled
with a nonlinear Kerr medium is the one introduced by
Lugiato and Lefever [25] with the goal of studying pattern
formation in this optical system. Later studies showed
that this equation also exhibits CS in some parameter
regimes [20, 26]. The model describes the dynamics of
the slowly varying amplitude of the electromagnetic field
E(~x, t) in the paraxial and mean field approximations
(~x = (x, y) is the plane transverse to the propagation
direction z on which the slow dynamics takes place). The
dynamics of the field is given by:

∂E

∂t
= −(1 + iθ)E + i∇2E + EI(~x) + i|E2|E (1)
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where ∇2 = ∂2/∂x2 + ∂2/∂y2.
The first term in the right hand side describes cavity

losses, EI(~x) is the input field (pump), θ is the cavity
detuning with respect to EI , and the sign of the cubic
term represents the self-focusing case. Notice that in the
absence of losses and of an input field, the field can be
rescaled to E → Eeiθt to remove the detuning term and
Eq. (1) becomes the Nonlinear Schrödinger Equation
(NLSE). It is well documented that in this case, and in
two spatial dimensions, the NLSE exhibits the so called
collapse regime [27], in which energy accumulates at a
point of space. Collapse is prevented in Eq. (1) by the
cavity losses leading to stable CS.

For spatially homogeneous pump EI(~x) = E0, Eq. (1)
has a homogeneous steady state solution given implic-
itly by E0 = Es[1 + i(θ − Is)], where Is = |Es|

2 [25].
This solution is stable for low pump strength, that is for
Is < 1. At Is = 1, the so-called modulation instability
(MI) point, the homogeneous solution becomes unstable
and extended patterns appear subcritically. The patterns
arising at MI are typically oscillatory and increasing the
pump they undergo further instabilities which eventu-
ally lead to optical turbulence [28, 29]. Static hexagonal
patterns can be found subcritically, that is, decreasing
the pump value below the MI point. CS appear in the
region of bistability between the homogeneous solution
and the pattern. In fact there are two CS that appear
through a saddle-node (fold) bifurcation, the one with
larger amplitude (upper-branch CS) is stable at least for
some parameter range, while the one with smaller am-
plitude (middle-branch CS) is always unstable. Early
studies already identified that the upper branch CS may
undergo a Hopf bifurcation leading to a oscillatory behav-
ior [20]. The oscillatory instabilities, as well as azimuthal
instabilities, were fully characterized later [21]. As one
moves in parameter space away from the Hopf bifurca-
tion, the CS oscillation amplitude grows, and finally the
limit cycle touches the middle-branch CS in a saddle-loop
bifurcation which leads to a regime of excitable dissipa-
tive structures [23, 24].

Here, we consider a pump beam of the form

EI(r) = E0 + H exp(−r2/r2

0) (2)

where E0 is a homogeneous field, assumed real, H the
height of the localized Gaussian perturbation, r2 = x2 +
y2, while r0 = 1. For convenience, we write the height of
the Gaussian beam as,

H =
√

(Is + Ish) [1 + (θ − Is − Ish)2] − E0, (3)

where Is is the background intracavity intensity (due to
E0) and Is + Ish corresponds to the intracavity field in-
tensity of a cavity driven by an homogeneous field with a
amplitude equal to one at the top of the Gaussian beam,
EI = E0 + H . This directly relates the height of the
Gaussian beam H with the equivalent intracavity inten-
sity for a homogeneous pump. Notice that for Ish = 0
the pump beam becomes homogeneous, H(Ish = 0) = 0,

FIG. 1: (Color online) Bifurcation diagram, max(I) vs Is,
for a CS for Ish = 0.3, θ = 1.25. Solid lines represent stable
solutions and dashed lines unstable ones. The insets show the
transverse profile of the solutions.

With the inclusion of the localized pump beam the sys-
tem has now three independent control parameters which
for convenience take as the background intensity, Is, the
detuning θ and Ish.

The numerical methods used to study this system are
detailed in the Appendix of Ref. [24]. Eq. (1), with the
applied pump (2), has been solved numerically using a
pseudospectral method, where the linear terms are inte-
grated exactly in Fourier space, while the nonlinear ones
are integrated using a second order in time approxima-
tion. Periodic boundary conditions in a square lattice of
size 512 × 512 points were used. The stability of steady
CS has been studied using the semi-analytical method
discussed in the above mentioned Appendix, using the
radial version of Eq. (1), that simplifies the study taking
into account the axisymmetric nature of the solutions.

III. OVERVIEW OF THE BEHAVIOR OF THE

SYSTEM

One of the main consequences of the application of a
localized pump is the breaking of the translational sym-
metry of Eq. (1). Solutions are now pinned in the region
in which the Gaussian pump is applied. This also affects
the transverse profile of the solutions, in particular the
fundamental solution is no longer spatially homogeneous
but it exhibits a bump as illustrated by the lower inset
in Fig. 1.

To understand better the effects of the application of
a localized pump, a diagram like the one shown in Fig. 2
of Ref. [24], that represents the maximum intensity of
the transverse field as a function of Is is shown in Fig. 1,
namely for Ish = 0.3 and θ = 1.25. The diagram, with
three branches, looks qualitatively equivalent to the case
of a homogeneous pump and operations such as switching
on and off the CS can be performed in a similar way. For
example, with the system at the fundamental solution,
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FIG. 2: Two-parameter Is vs. θ phase diagram for Ish =
0.3. Bifurcation lines are: SN (Saddle-Node); H (Hopf); SL
(Saddle-Loop); SNIC (Saddle-Node on the Invariant Circle);
SN2 (Saddle-Node off invariant cycle). Regions delimited by
bifurcation lines are as follows. I: only the fundamental so-
lution is stable; II: stationary stable CS coexisting with the
fundamental one; III: oscillating CS (or oscillons), coexist-
ing with the fundamental solution; IV: excitable region; V:
oscillating CS (with no other coexisting solution).

the upper branch CS can be switched on by applying
an additional transient localized beam or equivalently by
temporarily increasing Ish

A relevant difference is that for an homogeneous pump
the lowest branch (homogeneous solution) extends until
the MI at Is = 1, while in the case considered here the
fundamental solution merges with the middle branch CS
before the MI, in a saddle-node bifurcation (that hap-
pens at Is = 0.8479, SN point in Fig. 1). To understand
qualitatively this phenomenon one has to take into ac-
count that the homogeneous pump case has many sym-
metries, some of which are broken when a localized pump
is applied. In technical parlance one says that the bi-
furcation has become imperfect (see, e.g., [30], with the
consequence that a gap in Is appears making the lower
branch disconnected in two branches (the right part of
the branch is not plotted in Fig. 1 and correspond to
solutions unstable to extended patterns).

Exploring now the upper branches, in Fig. 1 past the
saddle-node bifurcation at Is = 0.6857 (SN point), a pair
of stationary (stable, upper branch, and unstable, middle
branch) localized solutions in the form of CS are found.
In this parameter region, these structures are not essen-
tially different to the solutions found in the homogeneous
case [24]. Increasing Is the stable high-amplitude CS un-
dergoes a Hopf bifurcation.

Overall, the scenario found for a localized pump is
much more involved than in the case of the homogeneous
case, and more types of behavior are found in this case.
Fig. 2 shows a phase diagram for a fixed value of the
localized pump Ish = 0.3. One can compare this figure
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FIG. 3: Two-parameter Is vs. θ phase diagram for Ish = 0.7.
Line and region labeling as in Fig. 2.

with Fig. 1 in Ref. [24], corresponding to Ish = 0. The
effect of breaking the translational symmetry would be
to unfold some of the lines at Is = 1 (not visible in Fig. 1
of Ref. [24]), that are degenerate with the MI line, and
also make the SN line end at Is < 1 (point C in Fig. 2).
Thus, the effect of a localized pump is to push down the
SN2-SNIC line (to be explained later), as is clear from
Fig. 3, that provides a similar plot for Ish = 0.7.

Some of the most prominent features of these figures,
comparing with the homogeneous pump case, associated
to the appearance of the SNIC line (to be discussed in
more detail in Sec. IV) are that the excitable region, IV
in Figs. 2-3, can have two types of excitable behavior
(see Sec. V), both of Class I, as two different transitions
to oscillatory behavior are possible, saddle-loop (SL) and
SNIC. In addition, one has a new region, V, in which one
has a single attractor in the system, that is oscillatory,
to be distinguished from region III, in which the system
exhibits bistability [41], between the (stationary) fun-
damental solution and an oscillatory upper branch CS.
These behaviors, and how they are organized by three
codimension-2 points will the subject of Sections VI-VII.

IV. SADDLE-NODE ON THE INVARIANT

CIRCLE BIFURCATION

A saddle-node on the invariant circle bifurcation
(SNIC), also known as saddle-node infinite-period
(SNIPER) and as saddle-node central homoclinic bifur-
cation, is a special case of a saddle-node bifurcation that
occurs inside a limit cycle. Although this bifurcation
is local in (one-dimensional) flows on the circle, it has
global features in higher-dimensional dynamical systems
[30], so it is also termed local-global or semilocal. In
particular, the (stable) manifolds of the saddle and node
fixed points transverse to the center manifold are orga-
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FIG. 4: Period of the limit cycle T as a function of Is for
Ish = 0.3 and θ = 1.45. Inset: 1/T 2 vs. Is close to the
bifurcation point.

nized by an unstable focus inside the limit cycle. At one
side of the bifurcation the system exhibits oscillatory be-
havior, while at the other side the dynamics of the system
is excitable. This mechanism leading to excitability has
been found in several (zero dimensional) optical systems
[31, 32, 33].

When approaching the bifurcation from the oscillatory
side the period lengthens and becomes infinite. Quanti-
tatively the period as a function of a parameter exhibits
a inverse square root singular law [30],

T ∝ [I2

s − (Ic
s)2]−1/2 . (4)

This can be used to distinguish the SNIC from other
bifurcations leading to oscillatory behavior (e.g. from the
saddle-loop bifurcation with a logarithmic singular law
[23, 24, 30]). Fig. 4 shows the period of the oscillations
as a function of Is obtained by numerical simulations of
Eq. (1). In the inset of Fig. 4 we plot 1/T 2 vs. I2

s close
to the bifurcation point. The linear dependence obtained
corroborates the scaling law and that the transition takes
place through a SNIC bifurcation.

The overall route exhibited by the system along a ver-
tical cut in Fig. 2 at θ = 1.45 is illustrated in Fig. 5, as
the parameter Is is decreased from the top to the bot-
tom of the Figure. Thus, the figure shows the transi-
tion from oscillatory behavior (top panel) to stationary
(fourth panel) through the occurrence of a SNIC bifurca-
tion (third panel). Lengthening of the period can be seen
in the second panel. The sketches shown in the right col-
umn of Fig. 5 illustrate the structure of the phase space.
The validity of this scenario is further reinforced with the
quantitative analysis presented in Section VII.

V. EXCITABILITY

An interesting aspect of this scenario is that in region
IV one can have excitable behavior through two different

FIG. 5: (Color Online) Time evolution of the CS amplitude
for Ish = 0.3, θ = 1.45 and decreasing values of Is . From top
to bottom, Is = 0.927, 0.907, 0.8871, 0.8. In the bottom panel
the dashed line corresponds to the amplitude of the unstable
CS (saddle) while dot-dashed line corresponds to the stable
fundamental solution. These two solutions coincide when the
SNIC bifurcation takes place (third panel). The sketches on
the right illustrate the phase space dynamics.

mechanisms. On the one hand, and similarly to the be-
havior analyzed in Refs. [23, 24], close enough to the SL
line one has excitability if the fundamental solution is ap-
propriately excited such that the oscillatory behavior ex-
isting beyond the SL is transiently recreated. The second
mechanism takes place close to the SNIC line, where the
oscillatory behavior that is transiently recreated is that
of the oscillations in region V. Both excitable behaviors
exhibit a response starting at zero frequency (or infinite
period), as both bifurcations are mediated by a saddle,
whose stable manifold is the threshold beyond which per-
turbations must be applied to excite the system. In neu-
roscience terminology, both excitable behaviors are class
(or type) I [34, 35], although there are important differ-
ences between them. The SNIC mediated excitability is
easier to observe than the one associated to a saddle-loop
bifurcation for two reasons. First, it occurs in a broader
parameter range due to its square-root scaling law (4),
with respect to the SL excitability [42]. Second the ex-
citable threshold can be controlled by the intensity of the
localized Gaussian beam, that effectively approaches the
fixed point and the saddle in phase space, allowing to
reduce the threshold as much as desired (by approaching
the SNIC line). Within region IV one can find a typical
crossover behavior for the threshold, as it increases from
zero (at the SNIC line) to the (finite) value characteristic
of the SL bifurcation as one approaches this line.

Fig. 6 shows the dynamics of the excitable fundamental
solution in region IV, namely for the parameters corre-
sponding to the fourth panel in Fig. 5, upon the appli-
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FIG. 6: (Color online) Evolution of the maximum of the field
amplitude after applying a localized perturbation to the fun-
damental solution. The perturbation has the shape of the
unstable stationary CS (saddle), that is scaled by 0.95 (blue
dashed line); 1.01 green solid line) and 1.1 (red dotted line).
Here Ish = 0.3, Is = 0.8, and θ = 1.45.

FIG. 7: (Color online) Transverse profile of |E| at different
times of the dotted line in Fig. 6.

cation of different localized perturbations, one below the
excitable threshold and two above. As expected, the per-
turbation below threshold relaxes directly to the funda-
mental solution while the above threshold perturbations
elicit first a large response of the system in the form of an
excitable soliton which finally relaxes to the fundamental
solution. The excitable excursion takes place at a later
time as the smaller is the distance to the threshold (a
signature of Class I excitability). Finally, the shape of
an excitable excursion in two-dimensional space is shown
in Fig. 7.

VI. CUSP CODIMENSION-2 POINT

In the two-parameter phase diagrams in Figs. 2-3 one
can see a point marked with a ’C’ that was not found in

I

II

SN

H

SN2C

FIG. 8: (Color online) The fundamental solution for three
points in the (Is, θ) parameter space, for Ish = 0.3, around
the Cusp codimension-2 point. The coordinates are (bottom
to top): Ish = 0.7, θ = 0.9; Ish = 0.85, θ = 0.85, Ish =
0.95, θ = 0.95.

the homogeneous case [43]. This point represents a Cusp
codimension-2 bifurcation point [36], namely a point in
which two saddle-node curves merge. This cusp point,
that involves only stationary (saddle-node) bifurcations,
is also known as the Cusp Catastrophe [37]. For param-
eter values just at the left of the Cusp the bump of the
fundamental solution exhibits a rapid increase. Fig. 8
shows the sharp, but smooth, change in the shape of the
fundamental solution for three parameter values around
the cusp point within region I. Instead, if one is to the
right of the ’C’ point this increase cannot be accommo-
dated smoothly and a double fold occurs, such that three
branches appear: two stable, upper and lower branches,
and one unstable, middle branch, and thus bistability
makes its appearance. The two folds, codim-1, merge
critically at the cusp point, codim-2. Decreasing Ish the
Cusp moves up towards Is = 1, so in the limit of homo-
geneous pump it can not be seen due to the presence of
the MI instability. The smooth connection between the
fundamental branch and the upper branch exhibiting CS
is an outcome of the symmetry breaking induced by the
localized pump which has made the MI bifurcation to
become imperfect.

VII. SADDLE-NODE SEPARATRIX-LOOP

CODIMENSION-2 POINT

The subject of the present section is to discuss the
point designated with ’SNSL’ (that stands for Saddle-
Node Separatrix Loop [34, 38] (also called Saddle-Node
noncentral Homoclinic bifurcation and saddle-node ho-
moclinic orbit bifurcation [35]) in Figs. 2-3. A SNSL is a
local-global codimension-2 point in which a saddle-node
bifurcation takes place simultaneously to a saddle-loop,
such that the orbit enters through the noncentral (stable)
manifold. The unfolding of a SNSL point leads to the sce-
nario depicted in Fig. 9. There is a line of saddle-node bi-
furcations (in which a pair of stable/unstable fixed points
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FIG. 9: Sketch of the parameter space near the SNSL point,
showing the unfolding of bifurcation lines, and adapted to the
geometry in Figs. 2-3.

are created) that at one side of the SNSL is a saddle-node
bifurcation off limit cycle (SN2) while at the other side
is a SNIC bifurcation (the saddle-node occurs inside the
limit cycle). A saddle-loop (SL) bifurcation also unfolds
from the SNSL point, tangent to the SN2 line. From the
other side, a special curve depicted with a dotted line
in Fig. 9 should appear (cf. Fig. 22 in Ref. [34]). It is
not a bifurcation line, but instead it is a special line in
which the approach to the node point is through the most
stable direction, namely the direction transverse to the
central manifold at the SNIC/SN2 (and SNSL) bifurca-
tions (for these reasons we also call this dotted line the
’pseudo-bifurcation’ line). This, in principle nongeneric,
curve, that emerges in the unfolding of the SNSL point,
is necessary for consistency on the excursions around the
SNSL codimension-2 point. At the pseudo-bifurcation
the topological cycle is reconstructed, namely the stable
fundamental solution and the middle branch CS (saddle),
become points belonging to the circle that latter will be-
come the limit cycle. Before the pseudo-bifurcation the
unstable manifold of the saddle enters towards the stable
solution from the same side than the saddle, while after
the pseudo-bifurcation it enters from the opposite side.

The SNSL point separates two possible ways in which
the system can go from oscillatory region III (where the
limit cycle coexists with the stable fundamental solution)
to oscillatory region V (where the fundamental solution
does not exist).

For θ > θSNSL the scenario is as described in Section
IV, namely the middle and lower branches coalesce in a
SNIC bifurcation. The main feature of this bifurcation is
that it occurs on the limit cycle, leading to the excitable
behavior of region IV. This scenario can be confirmed us-
ing the mode projection technique described in the Ap-
pendix of Ref. [24], that allows to obtain in quantitative
form the phase space of an extended system (described,
e.g., by a PDE), that strictly has an infinite dimension,
but whose relevant dynamics is low-dimensional. In this
case, like in the case of a saddle-loop bifurcation stud-

FIG. 10: Spectrum of the fundamental solution at the SNIC
bifurcation for Ish = 0.7, Is = 0.707, and θ = 1.34 (close to
the SNSL).

FIG. 11: Transverse cut of the most stable (left) and unstable
(right) eigenmodes of the linear spectrum shown in Fig.10.
The solid (dashed) line indicates the real (imaginary) part of
the eigenmode.

ied in Ref. [24], we will argue that there are just two
modes that are relevant, at least in the region close to the
SNSL codimension-2 point. Fig. 10 shows the spectrum
of eigenvalues (linear stability analysis for the fundamen-
tal solution) at the SNIC bifurcation and close to the
SNSL. The spectrum has a continuous part with eigenval-
ues lying along the line Re(λ) = −1, and also a discrete
part which is symmetric with the respect to this line.
It turns out that there are only two eigenmodes which
are localized in space, while all the other eigenmodes are
spatially extended. The two localized eigenmodes cor-
respond to the most stable mode and to the one that
becomes unstable. These two modes, shown in Fig. 11,
are the only relevant for the dynamics of the CS close to
the stable fixed point, since the projection of a localized
solution onto any of the extended modes is negligible.

Fig. 12 shows a quantitative reconstruction of the
phase space. β1 (β2) corresponds to the amplitude of
the projection of the trajectory along the unstable (most
stable) eigenmode. Panel a) represents a trajectory in
the excitable region IV, close to the SNSL and below
the pseudo-bifurcation line. Panel b) shows a zoom of
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FIG. 12: a) Full trajectory in the phase space close to the
SNIC (Is = 0.863). The smaller panels show a zoom of the
region in the phase space close to the fixed point. b) Is =
0.863, c) Is = 0.8634575, d) Is = 0.8635, and e) Is = 0.864.
Here Ish = 0.3 and θ = 1.34.

the trajectory close to the saddle (open circle) and the
stable fundamental solution (filled circle). The excitable
trajectory departs form the saddle and after long excur-
sion in phase space arrives to the fundamental solution
from below (that is, from the side of the saddle). Notice
that while close to the fixed points the dynamics fits very
well in a 2-dimensional picture, away from them the lines
crosses, indicating that the full CS dynamics in phase
space is not confined to a plane. Panel c) corresponds
to the pseudo-bifurcation, so that the trajectory arrives
at the fundamental solution along the most stable direc-
tion. Panel d) is just after the pseudo-bifurcation with
the trajectory arriving from the other side. Finally panel
e) corresponds to parameters in the oscillatory region V
just after the SNIC bifurcation. Notice that the pseudo-
bifurcation line is very close to the SNIC bifurcation since
we have taken parameters close to the SNSL and at the
SNSL both lines originate tangentially. As expected, the
quantitative picture agrees with the qualitatively picture
as one crosses the SNIC bifurcation in the right panels of
Fig. 5.

For θ < θSNSL the scenario is quite different, as the
middle and lower branches now coalesce off the limit cy-
cle, SN2, what implies that the behavior of the system
is oscillatory on both sides of the SN2 line, not excitable
[44] and instead one crosses the SN2 line. This means
that one is in a bistable oscillatory regime, and in cross-
ing the SN2 line a saddle-node off the invariant cycle
bifurcation occurs. SN2 involves the middle and funda-
mental branches (while SN involves the upper and middle
branches). So, in the end this nothing else that another
way of entering region V, of monostable oscillatory be-
havior, but instead of reconstructing the limit cycle, here

the fundamental stationary solution is destroyed.
Therefore, and having in mind the behavior for θ →

∞ discussed in previous work for homogeneous pump
[23, 24], the overall scenario depicted in Figs. 2-3 is or-
ganized by three codimension-2 points: a Cusp point,
from which two saddle-node bifurcations emerge (SN and
SN2); a SNSL point from which a SNIC line emerges,
and that organizes the SN2 and SL lines around; and
a Takens-Bodgdanov point, occurring apparently at infi-
nite detuning, where the SN, Hopf and SL are tangent,
and that can be seen as the birth of both the Hopf and
SL lines. The Takens-Bogdanov point was numerically
shown to be present in the homogeneous case [23, 24].
It is reassuring that the saddle-loop bifurcation line con-
nects two of the codimension-2 points, as it is not in
some sense generic, [45] and one does not expect that
it emerges out of the blue sky. The scenario composed
by these three codimension-2 bifurcations has been re-
ported in other systems [39], and from a theoretical point
of view, it can be shown that it appears in the unfold-
ing in 2-dimensional parameter space of a codimension-3
degenerate Takens-Bogdanov point [40].

In the limit of homogeneous pump the SN2 and SNIC
lines approach the MI line at Is = 1, which, there-
fore, also contains the Cusp and the SNSL codimension-2
points. At the Cusp the SN (responsible for the existence
of CS) originates while at the SNSL the SL (originated
at the Takens-Bogdanov and responsible of the CS ex-
citability observed for homogeneous pump) ends. Notice
that for homogeneous pump close to Is = 1 azimuthal
instabilities renders the CS unstable to a pattern so it is
difficult to study the SN and specially the SL lines in that
region. Using a localized pump and then taking the limit
to homogeneous pump circumvents these limitations.

VIII. CONCLUSIONS

We have presented a detailed study of the instabilities
of solitons in nonlinear Kerr cavities under the applica-
tion of a localized Gaussian beam. Since experimentally
CS are typically switched on by applying a transient ad-
dressing beam the situation discussed here can be realized
just applying it on a permanent basis. The CS are sus-
tained by a balance between nonlinearity and dissipation,
as in the case of a homogeneous pump, although now
these effects interact with the localized pump. The local-
ized pump helps to spatially fixed the CS and to control
some of its dynamical properties. After the saddle-node
bifurcation that creates the CS, it starts oscillating and
overall exhibit a plethora of bifurcations that are shown
to be organized by three codimension-2 points: a Takens-
Bogdanov point, (which is also present for homogeneous
pump as discussed already in [23, 24]), a Cusp, and a
Saddle-Node Separatrix Loop (SNSL) points. In this
scenario a saddle-loop bifurcation connects the Takens-
Bogdanov and the SNSL and the Cusp is connected to
the other codimension-2 bifurcations by two saddle-node
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lines. A line of SNIC bifurcations originates at the SNSL
while at the Takens-Bogdanov a Hopf bifurcation line
meets tangentially a saddle-node and the saddle-loop
lines.

The simultaneously presence in the system of two
bifurcations that are associated to excitable behavior
(saddle-loop and SNIC) enriches and completes the pic-
ture discussed for the case of a homogeneous pump. In
fact the region for which excitable behavior is reported,
in which the only attractor in the system is the funda-
mental solution, leads to two different Class I behaviors
(starting at infinite period). In the excitable region one
goes smoothly from no threshold at the onset of the SNIC
line to a finite threshold at the onset of the saddle-loop
line. In fact, the excitable behavior mediated by a SNIC,
and reported in this work, should be easier to observe
both numerically and experimentally, and present some
practical features that make it more suitable for practi-

cal applications. In particular, the excitable threshold
can be controlled by the intensity of the localized beam.
With an array of properly engineered beams, created for
instance with a spatial light modulator, one could create
reconfigurable arrays of coupled excitable units to all-
optically process information. Work in this direction will
be reported elsewhere.
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