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ABSTRACT

Optical parametric oscillators emit light with non-classical correlations between opposite spatial modes (twin
beams). We consider these devices in presence of an intracavity photonic crystal, modeled by a spatial modu-
lation of the refractive index. The introduction of photonic crystals allows to control not only the macroscopic
transverse profile of the emitted light beam but also its quantum fluctuations. We employ the Q representation
to study pump and signal spatial correlations.
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1. INTRODUCTION

Interaction between light and matter allows to transform coherent laser states in nonclassical ones. In par-
ticular, non linear optical cavities are known to generate intense non-classical light beams, showing squeezing
and entanglement.1 In some cases quantum correlations appear not only in the whole beam but also when a
portion of it or a mode in a certain basis is detected.2 Examples include quantum correlations between Fourier
or orbital angular momentum modes with applications in parallel communications and imaging.3

Due to non linearity and cavity losses these devices have also been studied in the context of self-organization.
Indeed, for large Fresnel numbers the emitted beams can exhibit not only temporal instability but also sponta-
neous pattern formation. These phenomena are often associated to quantum effects, as predicted, for instance,
in light patterns emitted by parametric oscillators4–8 and Kerr cavities.9,10

In this work we consider a prototype non linear cavity modified by the presence of an intracavity photonic
crystal, inducing a periodic modulation of the refractive index in the transverse plane. Previous analysis of
similar models have shown the possibility to inhibit the phenomenon of pattern formation by use of photonic
crystals.11,12 In other words, the instability threshold moves to larger values of the pump. We will show the
role and the importance of photonic crystals in a type I degenerate optical parametric oscillator (DOPO) in
order to control not only the spatial instability and the macroscopic transverse profile of the emitted light but
also to engineer the distribution of the spatial quantum fluctuations.

This paper is organized as follows: in Sect. 2 we introduce the model based on the use of the Husimi Q
representation. The effect of the photonic crystal on the instability threshold is discussed in Sect. 3. Quantum
fluctuations and correlations of the DOPO are analyzed in Sect. 4.

2. THE MODEL: TYPE I DOPO

The intracavity dynamics in a DOPO is described by the boson spatial modes Â0(~x, t) and Â1(~x, t), respectively
at the pump frequency 2ω, and signal frequency ω, with standard equal-time commutation relations4

[

Âi(~x, t), Â
†
j(~x

′, t)
]

= δijδ(~x− ~x′), i, j = 0, 1 (1)
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where ~x denotes the transverse coordinate(s). The intracavity fields constitute an open device modeled within
a statistical approach in the Schrödinger picture by a Master equation for the reduced density operator ρ̂:13,14

∂ρ̂

∂t
=

1

ih̄
[Ĥ, ρ̂] + Λ̂ρ̂ . (2)

We consider a plane one-sided cavity, hence the Liouvillian accounting for dissipation through the partially
reflecting mirror is given by

Λ̂ρ̂ =
∑

i=0,1

γi

∫

d2~x
{

[Âi(~x), ρ̂Â
†
i (~x)] + [Âi(~x)ρ̂, Â

†
i (~x)]

}

.

The Hamiltonian operator is the sum of three terms:

Ĥ0 = h̄

∫

d2~x
∑

i=0,1

[

γiÂ
†
i (~x)(∆i(~x) − ai∇2)Âi(~x)

]

(3)

describing free propagation of fields in the cavity within the mean field approximation,

Ĥext = ih̄

∫

d2~xE
[

Â†
0(~x) − Â0(~x)

]

, (4)

accounting for interaction with the external pump E and

Ĥint = ih̄
g

2

∫

d2~x
[

Â0(~x)Â
†2
1 (~x) − Â†

0(~x)Â
2
1(~x)

]

(5)

due to the non linear interaction between first and second harmonic. The intracavity photonic crystal is modeled
by spatial dependent detunings for the pump ∆0(~x) and for the signal ∆1(~x). Here we will consider sinusoidal
modulations.

A standard procedure allows to map density operators in state space into quasi-probability distribution
densities on phase space that can be used to calculate ensemble averages of operators in defined orderings.15,16

In particular, Eq. (2) is converted into an equation of motion for a quasi-probability distribution in the phase-
space of radiation fields αi(~x), associated with the operators Âi(~x). In general, the presence of non linearities
leads to a functional differential equation for the quasi-probability that is not of the Fokker-Planck type. A
short overview is reported in a previous paper8 where an approximated method based in the Q representation
is introduced. The Q representation corresponds to anti-normal ordering of field operators and corresponds to
simultaneous measurements of orthogonal quadratures, as limited by the Heisenberg principle, in a eight-port
homodyne detector.17 The most important property of this representation is that it satisfies the requirements
for a true probability distribution. In fact the Q-representation may be defined as the diagonal matrix elements
of the density operator in the space of coherent states

Q(α0, α1) =
1

π
< α0, α1|ρ̂|α0, α1 > (6)

and so is both positive and bounded.16 In spite of the positivity and regularity of the Q representation, its
dynamical equation for optical parametric oscillators suffers of negative diffusion if

|α0(~x, t)| >
2γ1

g
. (7)

The possibility to obtain a positive solution in presence of a negative diffusion18 lies in the presence of a restricted
ensemble of initial conditions.8 A Q representation with a doubled phase-space has been proposed in order to
deal with negative diffusion and has been shown to give good results in some non linear quantum systems.19,20

Here we consider the approximated method discussed in8,21 consisting in neglecting pump trajectories ex-
ceeding twice the threshold value. The approximation has been successfully used in a DOPO without PC for



Ast
0 ≤ 1.5Athr

0 as an extremely large fluctuation in a trajectory would be necessary in order to lose the positive-
ness of the diffusion. Here we will concentrate in the region below and at threshold, where this approximation
is well-justified.

With the inclusion of the new spatial dependent detunings and introducing the scaling

γ0 = γ1 = γ , a0 = a1/2 = a, t′ = γt , ~x′ =
~x√
a
,

A′
i =

g

γ
Ai , E′ =

g

γ2
E , ǫ′i =

g

γ3/2aD/4
ǫi,

where D is the transversal dimensionality of the system, we obtain the equations

∂tα0(~x, t) = −
[

(1 + i∆0(~x)) − i∇2
]

α0(~x, t) + E − 1

2
α2

1(~x, t) +

√

2

a

g

γ
ξ0(~x, t) (8)

∂tα1(~x, t) = −
[

(1 + i∆1(~x)) − 2i∇2
]

α1(~x, t) + α0(~x, t)α
∗
1(~x, t) +

√

2

a

g

γ
ξ1(~x, t).

with non-vanishing moments of the white noise:

〈ξi(~x, t)ξ∗j (~x′, t′)〉 = δijδ(~x− ~x′)(t− t′), 〈ξ1(~x, t)ξ1(~x′, t′)〉 = f [α0(~x, t)]δ(~x− ~x′)(t− t′). (9)

We observe that the noise is phase sensitive and multiplicative, with moments of the signal noise depending on
the value of the pump field. However due to the form of Ĥ (quadratic in Â1 and linear in Â0), these equations
have the same formal expression in the Ito or Stratonovich interpretations.22 The condition (7) in the new
variables is

|α0(~x, t)| < 2. (10)

3. INSTABILITY THRESHOLD

The threshold for down-conversion in a DOPO is obtained from equations identical to (8) but neglecting the
noise terms. In the case of homogeneous detunings

∆0(~x) = ∆0, ∆1(~x) = ∆1 (11)

these classical equations have a trivial homogeneous solution

Ast
1 = 0, Ast

0 =
E

1 + i∆0
. (12)

For ∆1 the zero homogeneous solution becomes unstable at E = Ethr =
√

1 + ∆2
0. The perturbations with

maximum growth rate are those with wave number

|kc| =
√

−∆1/2, (13)

and a pattern with this wave number is formed at threshold.23

It has been recently shown that the presence of an intracavity photonic crystal influences the instabilities
in non linear cavities11,12 and is actually able to inhibit pattern formation. Here we consider one transverse
dimension (D = 1) and a photonic crystal described by a sinusoidal modulation leading to detunings

∆0(x) = ∆0 + I0 sin kpx (14)

∆1(x) = ∆1 + I1 sin kpx (15)

with Ii amplitude of the modulation and kp transverse wavenumber of the the photonic crystal structure. Due
to the modulation in the detunings, in general, there are not homogeneous stationary solutions of the classical



Figure 1. Instability threshold obtained with photonic crystals as in Eq. (14) for ∆0 = 0, I0 = 0, kp = 2kc and ∆1 = −1
(left) and I1 = 0.5 (right).

counterpart of Eqs. (8). In Fig. 1 we show the instability threshold obtained in the case of detuning modulation
only in the signal field (I0 = 0). The stability analysis in this case is the same of a singly resonant DOPO, and
the instability threshold has been analytically obtained by Gomila and Oppo.12 The DOPO threshold in this
case is always increased with respect to the case without photonic crystal, whose value would be Ethr = 1. The
photonic crystal has, therefore, the effect of inhibiting the instability. Inhibition was also observed in the case
of a cubic instead of a quadratic non linearity,11 suggesting that this is a general effect of photonic crystals.
We find, however, that this is not the case. The analysis of the DOPO’s in which the modulation appears in
the pump detuning instead of the signal, or in both fields, shows a more complex scenario. The threshold, for
some parameters values, is found to be lowered by the presence of the photonic crystal, instead of being raised.
With respect to what shown in Fig. 1 the threshold is found to be a non monotonic function of the modulation
intensities Ii. As an example, for modulation frequency of the detuning at twice the critical one, kp = 2kc,
numerically evaluated thresholds for I0 = I1 = 0.5 is found at Eth ≃ 0.96 and for I0 = I1 = 1.0 is raised to
Eth ≃ 1.03.

In Fig. 2 we present results obtained by numerical simulation of the Langevin Eqs. (8). The integration
method is described in previous papers.8,10,21 We show the average far field intensities for the pump and the
signal light fields, just below threshold. In particular, instabilities occur just above the values E = 0.95, 1.02, and

Figure 2. Logarithm of the pump (a,b,c) and signal (d,e,f) far field. Parameters: ∆0 = 0, ∆1 = −1 and kp = 2kc. Three
different cases, all of them below the respective thresholds: for I0 = I1 = 0.5 with E = 0.95, for I0 = 0.0 and I1 = 0.5
with E = 1.02, for I0 = 0.5 and I1 = 0.0 with E = 0.93.



0.93 when detuning modulations appear in both fields, or only in the signal, or only in the pump, respectively.
Even if these graphics do not correspond to what would be found by simulation of the classical (deterministic)
counterpart of Eqs. (8), they still show that the macroscopic pump state is homogeneous only in the second
case, for vanishing detuning modulation. In general several harmonics are excited in the pump field and this
has clearly a relation with the threshold lowering in the presented cases.

4. QUANTUM FLUCTUATIONS AND TWIN BEAMS CORRELATIONS

Numerical simulations of Eqs. (8) allow to characterize the spatio-temporal dynamics of the quantum light fields
and to calculate their possible quantum correlations. In particular, we focus here on the spatial distribution
of quantum fluctuations (Fig. 2) and on twin beams correlations between opposite spatial modes. A previous
work showed that these quantum correlations where present not only as quantum images, below threshold, but
also in presence of an intense signal field, above threshold.8

Here we discuss the effect of the photonic crystal on quantum fluctuations both in the pump and in the
signal light states. Non-classical features in the twin beams correlations are displayed for negative values of the
normal-ordered variance of the difference of the two intensities8

V (~k) =
〈: [N̂i(~k) − N̂i(−~k)]2 :〉

S.N.(N̂i)
. (16)

normalized to the corresponding shot noise value S.N.(N̂) for each ~k. This value is proportional to the average

of the sum of the intensities of the two beams with wavevectors ±~k. Negative values of V (~k) indicate sub-

Poissonian statistics for the intensity difference of the two beams at ±~k.24 Even if both the variance and the
shot noise are functions of ~k, in some cases the normalized quantity (16) is uniform. In a linear analytical
treatment below threshold, for homogeneous pump and detunings, V (k) = −0.5, independently of the pump
intensity and of the wave-vector.4,24 In the following we study how this variance is modified by the presence of
the photonic crystal. As our stochastic equations provide average of antinormal ordered quantities, we present
the relations between the antinormal and normal ordered expression of interest here.

4.1 From antinormal to normal ordering

The operators averages involved in this analysis are calculated in antinormal order with the Q representation
and can be related to normal order expected values by resting the proper quantities. We consider, as an example,
the normal ordered variance of the number operator N̂(~k) = â†(~k)â(~k)

: △2N̂ :=<: N̂2 :> − <: N̂ :>2=< â†(~k)â†(~k)â(~k)â(~k) > − < â†(~k)â(~k) >2 (17)

where we omit the index i, being the formulation equivalent for pump and signal fields operators. The commu-
tator equals:

Ckk′ = [âi(~k), â
†
i (
~k′)] = cδ(~k − ~k′). (18)

where c is equal to one, before of field scalings (8). Normal (: :) and antinormal (
...
...) ordered quantities are

related by:

: N̂i(~k) :≡ N̂i(~k) =
...N̂i(~k)

... − Ckk (19)

: △2N̂ :=
...△2N̂

... − 2 <
...N̂

... > Ckk + C2
kk. (20)

The shot noise is:

S.N(N̂) =<
...N̂

... > Ckk − C2
kk. (21)

These relations are used to get normal ordered averages, like (16), from the antinormal ones obtained by
numerical simulation of the stochastic spatio-temporal field dynamics in the Q representation. Notice that
discretization in space due to numerical simulation needs to be taken into account in order to properly evaluate
the commutator. Numerical results can indeed be compared with analytical expression when possible, as for
the twin beams correlations in a DOPO below threshold, without photonic crystal.4



Figure 3. Near field quantum fluctuations in the real part of the signal field for parameters: a) I0 = 0, I1 = 0.5, kp = 2kc

and E = 1.02 like in Fig. 2b and e; and b) I0 = 0.5, I1 = 0, kp = 2kc and E = 0.93 like in Fig. 2, c and f.

4.2 Numerical results

We consider Eqs. (8) with phase sensitive multiplicative noise ξ1(x, t) fulfilling (9) and numerically generated
considering8

ξ1(x, t) =

[

−α0I(x, t)

2
√

2 + α0R(x, t)
+
i

2

√

2 + α0R(x, t)

]

φ(x, t) +

√

1 − |α0(x,t)|2

4

2 + α0R(x, t)
ψ(x, t) (22)

with α0 = α0R + iα0I and φ, ψ uncorrelated real white noises in space and time, with variances one.

As mentioned in the previous Section, in Fig. 2 we show the average far field intensities for the pump and
the signal light fields, just below threshold, in three different cases. Pump modulation in this regime appears
only when the pump detuning is modulated and, in this case, the even spatial harmonics of kc are excited.
Notice that, in absence of photonic crystals, these spatial modes would be intense only above threshold. The
modulation of the photonic crystal has the wave-number of the spatial pattern that would arise above threshold,
for an homogeneous DOPO, kp = 2kc. Other cases, kp = nkc, are under investigation.

The average signal field vanishes because we consider pump values E just below threshold. As Fig. 2 d,e,f
show, however, modes with the critical wave-number (k = kc ≃ 0.7 for our choice of parameters) are weakly
damped and have a non vanishing average intensity. This is the regime of quantum images, extensively studied
in the last decade and characterized by the ”spatial structures manifested by the correlation functions” between
the field at different points, and also by ”noisy images” of the spatial fluctuations.25 Such noisy images in the
near field do generally display spatial diffusion, arising from the translational invariance of the system in the
transverse plane, as shown in Fig. 3a. This scenario can be modified in presence of a photonic crystal, when the
stationary state below threshold is not homogeneous anymore. This happens, for instance, in the case displayed
in Fig. 3b, where two modes with opposite phases appear weakly damped, and phase diffusion is completely
suppressed. Breaking of the translational symmetry is a fundamental property of the new modulated system
with respect to planar DOPO without photonic crystals. As numerical analysis above threshold also displays,
the spatial phase of the solution fields, i.e. the position of the pattern in the DOPO, are indeed fixed and locked
to the photonic crystal position.

In the following, we consider twin beams correlations below threshold, where it is well known the analytical
expression for the intensity correlations without photonic crystal, within linear approximation for the fluctua-
tions dynamics.4,8 In particular, the normalized variance (16) is homogeneous in ~k and is equal to −0.5 (black
line in Fig. 4), as mentioned before. On the other hand, non-quantum twin beams correlations appear in

the pump. In particular, the average intensity of opposite modes ±~k is the same (see symmetric plots in Fig.

2a,b,c), but the normal order variance vanishes (V (~k) = 0).

In Fig. 4 we represent the normalized variance V (k) corresponding to the signal field, for the three cases
discussed above, whose mean intensities are represented in Fig. 2d,e,f. The signal correlations are still quantum
and around −0.5 for most of the k values but they tend to deteriorate around critical points, namely kc and 3kc.
This can be interpreted in the following way. In the considered case, the photonic crystal favors the generation



Figure 4. Normalized variance given by Eq.(16) in three different cases, like in Fig. 2: for I0 = I1 = 0.5 with E = 0.95
(stars), for I0 = 0.0 and I1 = 0.5 with E = 1.02 (triangles) and for I0 = 0.5 and I1 = 0.0 with E = 0.93 (crosses). The
analytical value without photonic crystal yields the black line represented at −0.5. Quantum correlations correspond to
negative values.

of spatial harmonics in the fields, even below threshold. The presence of these modes is associated to secondary
processes like the ones discussed in a previous work, by some of us.6 These secondary processes give rise to the
incoherent generation of photons with opposite wave-numbers and reduce the degree of correlation of photons
generated in pairs. Interestingly, these correlations are quite robust crossing the instability threshold, and plots
similar to Fig. 4 are found increasing the pump strength.

5. CONCLUSIONS AND OUTLOOK

We have shown some preliminary results on the quantum correlations in DOPO’s with photonic crystals. Our
main findings are that: (i) thresholds are raised or reduced by the photonic crystal depending on modulation
strength; (ii) the average intensities of the fields are modified and spatial harmonics are excited; (iii) twin beams
correlations persist both below and above threshold but can deteriorate in correspondence of some wave-vectors,
due to the incoherent excitation of secondary processes. In general, we demonstrated that the detuning spatial
modulation allows to tune the spatial profile of the intensity fluctuations.

New configurations, varying the spatial periodicity and strength of the photonic crystal, are under study,
both from the classical (instability thresholds) and quantum (non-classical correlations) points of view. From one
side, our objective is a general description of the control of instability threshold offered by photonic crystals. On
the other side, we plan (i) to study the effect of the translational symmetry breaking in terms of the fluctuations
of the transverse Poynting vector, or transverse momentum; and (ii) to characterize the effect of the photonic
crystals on squeezing and EPR entanglement.
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