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We study the effect that the injection of a common source of noise has on chaotic systems. The
paper aims to clarify some recent results on the subject of whether identical systems can become
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synchronized if subjected to the same source of random noise. We present particular examples of
1-d maps and the Lorenz system, both in the chaotic region, and give numerical evidence that the
addition of a common random noise, of large enough intensity, to different trajectories which start
from different initial conditions, leads eventually to the perfect synchronization of the trajectories.
When synchronization occurs due to the presence of the noise terms, the largest Lyapunov exponent
becomes negative. For a simple map we are able to present an analytical calculation that gives
useful bounds on the Lyapunov exponent for a system under the effect of noise. Finally, we study
the structural stability of the phenomenon and conclude that small differences in the parameters of

the chaotic systems lead to small errors in the trajectory synchronization.

The synchronization of chse y's
ceived a lot of attention in the last years. The use
of a chaotic signal as a carrier has been suggested
as a way of masking the information contained
in a message. Amongst the many possible meth-
ods, synchronization using noise can offer an addi-
tional degree of difficulty for an intruder who tries
to recover the message. There have been some
contradictory results in the literature on whether
chaotic systems can indeed be synchronized using
a common source of noise and the issue has be-
gan to be clarified only very recently. In this pa-
per we give explicit examples of chaotic systems
that can become synchronized by the addition of,
Gaussian, white noise. We also analyze the struc-
tural stability of the phenomenon, namely, the
robustness of the synchronization against a small
mismatch in the parameters of the chaotic sender
and receiver.

I. INTRODUCTION

One of the most surprising results of the last decades
in the field of stochastic processes has been the discover-
ing that fluctuation terms (loosely called noise) can ac-
tually induce some degree of order in a large variety of
non-linear systems. The first example of such an effect
is that of stochastic resonance [1,2] by which a bistable
system responds better to an external signal (not nec-
essarily periodic) under the presence of fluctuations, ei-
ther in the intrinsic dynamics or in the external input.
This phenomenon has been shown to be relevant for some
physical and biological systems described by a nonlinear
dynamics [3-5]. In purely temporal dynamical systems,
other examples include phenomena such as noise-induced
transitions [6], noise-induced transport [7], coherence res-

onance [8-11], etc. In extended systems, noise is known
to induce a large variety or ordering effects [12], such
as pattern formation [13,14], phase transitions [15-18],
phase separation [19,20], spatiotemporal stochastic res-
onance [21,22], noise-sustained structures [23,24], dou-
bly stochastic resonance [25], amongst many others. All
these examples have in common that some sort of order
appears only in the presence of the right amount of noise.

There has been also some recent interest on the in-
terplay between chaotic and random dynamics. Some
counterintuitive effects such as coherence resonance, or
the appearance of a quasi—periodic behavior, in a chaotic
system in the presence of noise, have been found recently
[26]. The role of noise in standard synchronization of
chaotic systems has been considered in [27,28], as well
as the role of noise in synchronizing non—chaotic sys-
tems [29]. In this paper we address the different issue of
synchronization of chaotic systems by common random
noise sources, a topic that has attracted much attention
recently. The accepted result is that, for some chaotic
systems, the introduction of the same noise in indepen-
dent copies of the systems could lead (for large enough
noise intensity) to a common collapse onto the same tra-
jectory, independently of the initial condition assigned to
each of the copies. This synchronization of chaotic sys-
tems by the addition of random terms is a remarkable and
counterintuitive effect of noise and although some clarify-
ing papers have appeared recently, still some contradic-
tory results exist for the existence of this phenomenon
of noise-induced synchronization. It is the purpose of
this paper to give further analytical and numerical evi-
dence that chaotic systems can synchronize under such
circumstances and to analyze the structural stability of
the phenomenon. Moreover, the examples presented here
open the possibility to obtain such a synchronization in
electronic circuits, hence suggesting that noise-induced
synchronization of chaotic circuits can indeed be used



for encryption purposes.
The issue of which is the effect of noise in chaotic sys-
‘remq was considered already at the beginning of the 80’s
by Matsumoto and Tsuda [30] who concluded that the
introduction of noise could actually make a system less
chaotic. Later, Yu, Ott and Chen [31] studied the tran-
sition from chaos to non-chaos induced by noise. Syn-
chronization induced by noise was considered by Fahy
and Hamman [32] who showed that particles in an exter-
nal potential, when driven by the same random forces,
tend to collapse onto the same trajectory, a behavior
interpreted as a transition from chaotic to non—chaotic
behaviors. The same system has been studied numeri-
cally and analytically [33-35]. A paper that generated a
lot of controversy was that of Maritan and Banavar [36].
These authors analyzed the logistic map in the presence

of noise:

Tpar1 =4x,(1 — ) + &, (1)

where &, is the noise term, considered to be uniformly
distributed in a symmetric interval [-W,+W]. They
showed that, if W was large enough (i.e. for a large noise
intensity) two different trajectories which started with
different initial conditions but used otherwise the same
sequence of random numbers, would eventually coincide
into the same trajectory. The authors showed a similar
result for the Lorenz system (see section IIT). This re-
sult was heavily criticized by Pikovsky [37] who argued
that two systems can synchronize only if the largest Lya-
punov exponent is negative. He then shows that the
largest Lyapunov exponent of the logistic map in the
presence of noise is always positive and concludes that
the synchronization is, in fact, a numerical effect of lack
of precision of the calculation. The analysis of Pikovsky
is confirmed by Longa et al. [38] who study the logistic
map with arbitrary numerical precision. The criterion
of negative Lyapunov exponent has also been shown to
hold for other types of synchronization of chaotic sys-
tems and Zhou and Lai [39] showed that previous results
by Shuai, Wong and Cheng [40] showing synchronization
with a positive Lyapunov exponent were again an artifact
of the limited precision of the calculation.

Besides the above criticisms, Herzel and Freund [41]
and Malescio [42] pointed out that the noise used to
simulate Eq.(1) and the Lorenz system in [36] is not
really symmetric. While the noise in the Lorenz sys-
tem is non—symmetric by construction, in the case of the
map, the non—zero mean arises because the requirement

€ (0,1), Vn, actually leads to discard those values for
the random number &,, which do not fulfill such condi-
tion. The average value of the random numbers which
have been accepted is different from zero, hence produc-
ing an effective biased noise, i.e. one which does not have
zero mean. The introduction of a non-zero mean noise
means that we are altering essentially the properties of
the deterministic map. Furthermore, Gade and Bassu

[43] argue that the synchronization observed by Maritan
and Banavar is due to the fact that the bias of the noise
leads the system to a non—chaotic fixed point and con-
clude that a zero—mean noise can never lead to synchro-
nization in the Lorenz system. The same conclusion is
reached by Sanchez et al. [44] who study experimentally a
Chua circuit and conclude that synchronization by noise
Uuly occurs if the noise does not have a zero mean. The
same conclusion is obtained studying numerically [45] a
single and an array of Lorenz models and experimentally
an array of Chua circuits [46] with multiplicative colored
noise. Therefore a widespread belief existed that it is not
possible to synchronize two chaotic systems by injecting
the same noisy unbiased, zero—mean, signal to both of
them.

Contrary to these negative results that imply that syn-
chronization of chaotic systems by injection of common
noise is only possible when the noise does not have a zero
mean, Lai and Zhou [47] have shown that some chaotic
maps can indeed become synchronized by additive zero—
mean noise. A similar result has been obtained by Loreto
et al. [48], and by Minai and Anand [49,50], in the case
where the noise appears multiplicatively in one of the
parameters of the map, and the implications to secure
digital communications have been considered in [51,52].
An equivalent result about the synchronization of Lorenz
systems using a common additive noise has been shown
by the authors of the present paper in [53]. The actual
mechanism that leads to synchronization has been ex-
plained by Zhai and Lou [47], see also [54]. As Pikovsky
[37] required, synchronization can only be achieved if the
Lyapunov exponent is negative. The presence of noise
allows the system to spend more time in the “conver-
gence region” where the local Lyapunov exponent is neg-
ative, hence yielding a global negative Lyapunov expo-
nent. This argument will be developed in more detail
in section II, where an explicit calculation in a simple
map will confirm the analysis. The results of Lai and
Zhou have been extended to the case of coupled map lat-
tices [565] where Pikovsky’s criterion has been extended
for spatially extended systems.

In this paper we give further evidence that it is possi-
ble to synchronize two chaotic systems by the addition of
a common noise which is Gaussian distributed and not
biased. We analyze specifically a 1-d map and the Lorenz
system, both in the chaotic region. The necessary crite-
rion introduced in ref. [37] and the general arguments of
[47] are fully confirmed and some heuristic arguments are
given about the general validity of our results.

The organization of the paper is as follows. In sec-
tion II we present numerical and analytical results for
some 1-d maps, while section III studies numerically the
Lorenz system. In section IV we analyze the structural
stability of the phenomenon, i.e. the dependance of the
synchronization time on the parameter mismatch. Fi-
nally, in section V we present the conclusions as well as
some open questions relating the general validity of our
results.



The first example is that of the map:

_ Ty N N 7o\
Lnt1 = L' (Tn) = JTn) T €n (4)
where £, is a set of uncorrelated Gaussian variables of

zero mean and variance 1. We use explicitly

[z —0.5\2]

f(z) = exp {— \ 3)

w

We plot in Fig.(1) the bifurcation diagram of this map.
In the noiseless case, we can see the typical windows in
which the system behaves chaotically. The associated
Lyapunov exponent, A, in these regions is positive. For
instance, for w = 0.3 (the case we will be considering
throughout the paper) it is A &~ 0.53. In Fig.(2) we ob-
serve that the Lyapunov exponent becomes negative for
most values of w for large enough noise level €. Again for
w = 0.3 and now for ¢ = 0.2 it is A = —0.17. For the
noiseless case, it is A > 0 and trajectories starting with
differential initial conditions, obviously, remain different
for all the iteration steps. The corresponding synchro-
nization diagram shows a uniform distribution of points
(see Fig.(3a)). However, when moderated levels of noise
(e 2 0.2) are used, A becomes negative and trajectories
starting with different initial conditions, but using the
same sequence of random numbers, synchronize perfectly,
see the synchronization diagram in Fig.(3b).
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FIG. 1. Bifurcation diawgram of the map given by Egs.(2)
and (3) in the absence of noise terms.
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FIG. 2. Lyapunov exponent for the noiseless map (e = 0,
continuous line) and the map with a noise intensity e = 0.1
(dotted line) and € = 0.2 (dot-dashed line).
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FIG. 3. Plot of two realizations z(*), £(® of of the map
given by Egs. (2) and (3). Each reahzatxon consists of 10,000
points which hauve been obtamed by iteration of the map start-
ing in each case from a different initial condition (100,000 ini-
tial iterations have been discarded and are not shown).
figure (a) there is no noise, ¢ = 0 and the trajectories are
independent of each other. In figure (b) we have use a level
of noise ¢ = 0.2 producing a perfect synchronization (after
discarding some initial iterations).

According to [37], convergence of trajectories to the
same one, or loss of memory of the initial condition, can
be stated as negativity of the Lyapunov exponent. The
Lyapunov exponent of the map (2) is defined as

Z In |F'(z;)] (4)

= lim
N—ooco N

It is the average of (the logarithm of the absolute value
of) the successive slopes F' found by the trajectory.
Slopes in [—1, 1] contribute to A with negative values, in-
dicating trajectory convergence. Larger or smaller slopes
contribute with positive values, indicating trajectory di-
vergence. Since the deterministic and noisy maps satisfy
F' = f' oneis tempted to conclude that the Lyapunov ex-
ponent is not modified by the presence of noise. However,
there is noise-dependence through the trajectory values
z;, © = 1,...,N. In the absence of noise, A is positive,
indicating trajectory separation. When synchronization
is observed, the Lyapunov exponent becomes negative,
as required by the argument in [37].

By using the definition of the invariant measure on the
attractor, or stationary probability distribution Pg(z),
the Lyapunov exponent can be calculated also as

/Pst Vlog | f'(2)|da
(5)

A = (log |[F'(z)]) = (log|f'(x



Here we see clearly the two contributions to the Lya-
punov exponent: although the derivative f'(x) does not
change when including noise in the trajectory, the sta-
tionary probability does change (see Fig.4), thus pro-
ducing the observed change in the Lyapunov exponents.
Synchronization, then, can be a general feature in maps
which have a large region in which the derivative |f'(z)|
is smaller than one.
plore that region and yield, on the average, a negative
Lyapunov exponent.

veloped in [47].
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FIG. 4. Plot of the stationary distribution for the map
given by Egs.(2) and (3) in the (a) deterministic case ¢ = 0,
and (b) the case with noise along the trajectory, e = 0.2.

In order to make some analytical calculation that can
obtain in a rigorous way the transition from a positive to
negative Lyapunov exponent, let us consider the map:

f(xn) +&n (6)

Tpt+1 = F(xn) =

&, is a sequence of independent identically distributed
random numbers with zero mean, and

a(l—exp(l+z)) ifz<-1
-2 -2z ifxe(-1,-.5)

flz) =< 2z if x € (—.5,.5) (7)
22 if 2 € (5,1)

a(—1+exp(l—2z)) ifz>1

with 0 < a < 1. This particular map, based in the tent
map [56], has been chosen just for convenience. The fol-
lowing arguments would apply to any other map that
in the absence of noise takes values in the region with
the highest slopes. In the case of (7), the values given
by the deterministic part of the map, after one iteration

from arbitrary initial conditions, fall always in the in-
te‘fval (_1, 1].) J_flls 15 LIIC I.Ug)lUIl Wlbll l;Ilﬁ Illgllﬁbb blUpC
|F'| = 2. In the presence of noise the map can take val-
ues outside this interval and, since the slopes encountered
are smaller, the Lyapunov exponent can only be reduced
from the deterministic value. To formally substantiate
this point, it is enough to recall the definition of Lya-
punov exponent \&) An upper bound for iF(J,)'i 15 2, 50
that a bound for A is immediately obtained: A < In2.
Equality is obtained for zero noise.

The interesting point about the map (7) and similar
ones is that one can demonstrate analytically that A can
be made negative. The intuitive idea is that it is enough
to decrease a in order to give arbitrarily small values to
the slopes encountered outside \—1 J.), a legloﬁ accessible
only thanks to noise. To begin with, let us note that
|F(z)| =2if z € (—1,1), and |F(z)'| < a if || > 1, so
that an upper bound to (5) can be written as

A < limyeo (NI In2+ NO lna) (])
prin2 +polna—ln2 po1n(2/a). &

Ni/N and No/N are the proportion of values of the map
inside I = (0,1) and outside this interval, respectively,
and we have used that as N — oo they converge to pr and
Po, the invariant measure associated to I and to the rest
of the real line, respectively (pr + po = 1). A sufficient
condition for z,+1 = f(x,) + &, to fall outside I is that
|€x] > 2. Thus Prob(|z,41] > 1) > Prob(|¢,| > 2) = T,
where Prob means “probability”. We can take now the
limit n — oo to allow the left hand side of the inequality
to approach the invariant measure po. T is independent
on z, and on n (for example, if noise is Gaussian with
variance o2, T' = erfc(v/2/0)), so that one obtains po >
T. In consequence, from (8) one finds

A<In2-TIn(2/a). 9)

The important point is that T is also independent on the
map parameters, in particular on a. Thus, by decreas-
ing a, (9) implies than the value of A\ can be made as
low as desired. If 7' > In2/1n(2/a), A will be certainly
negative. In the case of Gaussian noise, increasing o in-
creases T'. Thus strong enough noise will always induce
“noise-induced synchronization”.

III. THE LORENZ SYSTEM

In this section we give yet another example of noise—
induced synchronization. We consider the well known
Lorenz [57] model with additional random terms of the
form [36]:

& =ply— )
y=—xz+rr—y+e (10)
z=uxy—bz

& now is white noise: a Gaussian random process of mean



zero and delta correlated, (£(¢)E(t')) = 6(t—t'). We have
used p =10, b =8/3 and r = 28 which, in the determin-

igtic cace. € = 0 are known to lead to a chaotic hehavior
1STIC €ase, € = U are xnown 10 iead to a ¢naotic dDenavior

(the largest Lyapunov exponent is A ~ 0.9 > 0). As
stated in the introduction, previous results seem to im-
ply that synchronization is only observed for a noise with
a non—zero mean. However, our results show otherwise.

We have integrated numerically the above equations
using the stochastic Euler method [58] with a time step

/\+ — N NNT Tortha datoarminictie caco trainctoriog atart
— U.UU1l. 1'Ul ullT UCuClL1iiiiiiiduiv LQDC’ ULGJC\,UUJ. 1TO duval v~

ing with different initial conditions are completely uncor-
related, see Fig. (5a). This is also the situations for small
values of . However, when using a noise intensity € = 40

the noise is strong enough to induce synchronization of

Arrmn the presence of the noise terms

the tra ajectories.

makes the largest Lyapunov exponent become negative
(for e = 40 it is A & —0.2). As in the example of the
map, after some transient time, two different evolutions
which have started in completely different initial condi-
tions synchronize towards the same value of the three
variables (see Fig. (5b) for the z coordinate). There-
fore, these results prove that synchronization by common
noise in the chaotic Lorenz system does occur for suffi-
ciently large noise intensity. Notice that although the
noise intensity is large, the basic structure of the “but-

terfly” Lorenz attractor remains present as shown in Fig.

(6)-
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FIG. 5. Same than figure (1) for the z variable of the
Lorenz system, Egs.(10) in the (a) deterministic case ¢ = 0

and (b) e = 40. Notice the perfect synchronization in case

(b).

FIG. 6. “Butterfly” attractor of the Lorenz system in the
cases (a) of no noise € = 0 and (b) e = 40.

IV. STRUCTURAL STABILITY

An important issue concerns the structural stability of
this phenomenon, in particular how robust is noise syn-
chronization to small differences between the two systems
one is trying to synchronize. If the synchronization by
common noises observed in the Lorenz system (or in any
other chaotic system) can be observed in the laboratory,
depends on whether the phenomenon is robust when al-
lowing the two Lorenz systems to be not exactly equal
(as they can not be in a real experiment). It is obvi-
ous that any practical realization of this system can not
produce two identical samples. If one wants to use this
kind of stochastic synchronization in electronic emitters
and receivers (for instance, as a means of encryption) one
should be able to determine the allowed discrepancy be-
tween circuits before the lack of synchronization becomes
unacceptable. In order to study this important issue,
we have first analytically considered the simple case of a
noise-forced map, and then performed computer simula-
tions with Lorenz systems.

We consider the following two maps forced by the same
noise:

Tpt1 = f(Tn) +&n (11)

Ynt1 = 9(yn) +&n (12)

Linearizing in the trajectory difference u, = y, — zn,
assumed to be small, we obtain

Unt1 = g (Tn)Un + g(20) — f(20) = g'(2n)un + Azy)
(13)



We have defined A(z) = g(z) — f(z), and we are inter-
ested in the situation in which the two systems are just
slightly different, for example, because of a small param-
eter mismatch, so that A will be small in some sense
specified below.

Iteration of (13) leads to the formal solution:

o
o
-+
&
=
=)
@
=

(15)

The first term in the r.h.s. is what would be obtained
for identical dynamical systems. We know that M (n —
1,0) — e as n — oo, where ) is the largest Lyapunov
exponent associated to (12). We are interested in the
situation in which A < 0, for which this term vanishes
at long times. By using the definition of M (i, j) we can

bound the last term in (15) by

n—1

M(n=1,0)* > [M(m,0)|* |A(zm)|” -

m=0

(16)

Further analysis is done first for the case in which A(z)
is a bounded function (or z is a bounded trajectory with
A continuous). In this situation, there is a real number
such that |A(z,,)| < p. For A < 0, the sum is dominated
by the largest values of m, and we can approximate (16)
at large n by

n—1

e Z e—2A(m+1) _ 2 1 — e2Mn an
m=0 l 1- 62)\ ‘
Thus, at large n:
lun|* S p*(1 =) (18)

The difference between trajectories is bounded by a quan-
tity which is independent of n, so that for small u both
trajectories remain close (although not perfectly syn-
chronized) at all times. Small p is also required to
allow the linearization leading to (13) to be justified
at all times. The quality of synchronization worsens
when A approaches zero. The analogous relationship for
slightly different differential equations systems forced by
the noise would be (if the modulus of its difference re-
mains bounded by 1): |un|® < p2/(2|A))

The situation is different when there is not upper
bound to |A(z)|. For commonly used noise statistics
(such as Gaussian noise), bounds can be still obtained, for
example, for the variance of u,,. But there is a small finite

probability that |A(z,)| takes arbitrarily large values at
some times. At these times the linearization leading to
/19N .11 L o101 YKT. oo 4o4bo ol ot 1
(19) would D€ l11lvalld. Vve €XpeCy ullat ulle trajecuiory dii-
ference will be still most of the time below a value similar
to (18), with p® replaced by the variance (A(z,)?) over
the invariant measure of (12), but eventual large depar-
tures may be present.

We have performed simulations in which two Lorenz
systems as in (10), with parameters differing by a smail
amount, are forced by the same noise. In order to discern
the effect of each parameter separately, we have varied
 \independently each one of the three parameters, (p,b,r),
“mvhile keeping constant the other two. The results are

plotted in Fig. 7. In this figure we plot the percentage

of time in which the two Lorenz systems are still syn-
chronized with a tolerance of 5%. This means that tra-
jectories are considered synchronized if they differ in less
than 5%. Since the parameters multiply the variables

z, y, and z, the difference between the two dynamical

systems is not a vector of bounded norm, and we expect

denartiiree from annroximate svnchronization from time
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to time. They are in fact observed, but from Fig. 7 we
conclude that small variations (of the order of 1%) still
yield a synchronization time of more than 85%.
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FIG. 7. Percentage of time that two Lorenz systems syn-
chronize (up to a 5% level) when the parameters of both are
not exactly equal. While one of the two systems has the typ-
ical values p = 10, b = 8/3, r = 26 the other varies the value
of one of the three parameters. Notice that the percentage of
synchronization time is still higher that 85% if the difference
in each parameter is less than 1%.
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V. CONCLUSIONS AND OPEN QUESTIONS

In this paper we have addressed the issue of synchro-
nization of chaotic systems by the addition of common
random noises. We have considered two explicit exam-
ples: a i-d map and the Lorenz system under the addition
of zero-mean, Gaussian, white noise. While the exam-
ple of the map confirms previous results in similar maps,
the synchronization observed in the Lorenz system con-
tradicts some previous results in the literature. We have
also proven analytically in a simple example that noise
can change the sign of the Lyapunov exponent. Finally,
we have analyzed the structural stability of the observed
synchronization in the Lorenz system, with the conclu-
sion that synchronization times larger than 85% can still
be achieved if the parameters of the system are allowed
to change in less that 1%.

It is important to point out that noise induced syn-
chronization in between identical systems subjected to a
common noise is equivalent to noise induced order, in the
sense that the Lyapunov exponent defined in (4) becomes
negative, in a single system subjected to noise. One can
ask whether the state with negative Lyapunov exponent
induced by noise may be still be called ‘chaotic’ or not.
This is just a matter of definition: if one defines chaos
as exponential sensibility to initial conditions, and one
considers this for for a fixed noise realization, then the
definition of Lyapunov exponent implies that trajecto-
ries are not longer chaotic in this sense. But one can
also consider an extended dynamical system containing
the forced one and the noise generator (for example, in
numerical computations, it would be the computer ran-
dom number generator algorithm). For this extended
system there is strong sensibility to initial conditions in
the sense that small differences in noise generator seed
leads to exponential divergence of trajectories. In fact,
this divergence is at a rate given by the Lyapunov ex-
ponent of the noise generator [59], which approaches in-
finity for a true Gaussian white process. Trajectories in
the noise-synchronized state are in fact more irregular
than in the absence of noise, and attempts to calculate
the Lyapunov exponent just from the observation of the
time series will lead to a positive and very large value,
since it is the extended dynamical system the one which
is observed when analyzing the time series [59] (typically
such attempts will fail because the high dimensionality
of good noise generators, ideally infinity, would put them
out of the reach of standard algorithms for Lyapunov ex-
ponent calculations). Again, whether or not to call such
irregular trajectories with just partial sensibility to initial
conditions ‘chaotic’ is just a matter of definition.

There remain still many open questions in this field.
They involve the development of a general theory, prob-
ably based in the invariant measure, that could give us a
criterion to determine the range of parameters (including
noise levels) for which the Lyapunov exponent becomes
negative, thus allowing synchronization. In this work

and similar, the word synchronization is used in a very
restricted sense, namely: the coincidence of asymptotic
trajectories.
ing periodic oscillations where a more general theory of
synchronization exists to explain the phenomenon of non
trivial phase locking between oscillators that individually
display very different dynamics. Indications of the exis-

tonce of analoocuie non trivial nhase lockine have been ro-
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MLt mmdracia witlh 1o mrocs AL St are b
11115 COIILrasts WILIl tile Case Ol 11ueracu-

ported for chaotic attractors [60]. There a “phase” with a
chaotic trajectory defined in terms of a Hilbert transform
is shown to be synchronizable by external perturbations
in a similar way as it happens with periodic oscillators.
Whether or not this kind of generalized synchronization
can be induced by noise is, however, a completely open
question. Last, but not least, it would be also interest-
ing to explore whether analogous of the recently reported
synchronization of spatio-temporal chaos [61] may be in-
duced by noise.
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