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e Ruuuuuuuuuuuuú e aos que já não estão por aqui, mas que sem dúvida
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Preface

The application to Biology of the methodologies developed in Physics is attracting

an increasing interest from the scientific community. It has led to the emergence

of a new interdisciplinary field, called Physical Biology, with the aim of reaching

a better understanding of the biological mechanisms at molecular and cellular

levels. Statistical Mechanics in particular plays an important role in the

development of this new field.

Elements of Physical Biology. Alfred J. Lotka

Last century saw an increasing application of the mathematical metho-
dologies developed in the context of the Physical sciences (differential equa-
tion modeling, stability and control concepts, stochastic processes, etc.) to
the understanding of biological processes. An early synthesis was provided
by the book “Elements of Physical Bilology” authored by Alfred J. Lotka, in
particular with results for population dynamics and energetics. The subject
grew to a mature stage (see for example the textbook written by Murray,
“Mathematical Biology”) and the recent explosive increase in the availability
of precise data from living systems has stressed again the need for quantita-
tive approaches to the modeling of cells, organisms and ecosystems.

In this work we analyze with the tools of dynamical systems theory
(qualitative and numerical analysis of differential equations, and bifurcation
theory) a model for a marine food chain (nutrient, phytoplankton, zooplank-

vii



ton and fish), aiming at considering the join effects of nutrient supply and
pollution by a contaminant on the system dynamics.

Marine ecology is the study of marine organisms and their relation-
ship with other organisms and with the surrounding environment, such as
non-living, abiotic factors and living, biotic ones. Thus, water, light, temper-
ature, salinity, tides, currents, etc are some of the abiotic factors or physical,
chemical and geological elements related to marine areas. The biotic factors
compound the interactions among living organisms. One aspect of such in-
teractions can be described through food chains, food network or trophic
networks that describe the feeding interactions among species within an
ecosystem. Food webs evolve complex network of interactions in contrast
with the simple linear pathway of the food chains. Biologists often model
food web relationships in terms of the flow of solar energy, captured in
photosynthesis by the phytoplankton (primary producers) and passed from
organism to organism by means of feeding transfers.

Unfortunately the growing exploitation of biomarine resources, the
growing input of nutrients and contaminants due agricultural and indus-
trial activities unbalance the correct functioning and equilibrium of such
ecosystems and besides affects the economy of many coastal areas which
works with aquaculture, fishing and/or tourism. Because of this and many
other reasons, interest and research activity in marine ecology are intensify-
ing which leads to the increasing understanding of the complex interactions
evolved in the marine ecosystems.

In the scope of the Thresholds project(http://www.thresholds-eu.org)
which has the interest focused on regime shifts of ecosystems, the earliest
stage of this work consisted of seeking to define a model of food web ef-
fects that fit data of the mesocosm experiment carried out in the Isefjord,
Denmark for twelve days in 2005. The mesocosm experiment consisted in
twelve clear polyethylene cylindrical enclosures that were filled with ambient
fjord water to study the combined influences of nutrient enrichment and the
pyrene contaminant. With this purpose simplified models were used in order
to capture the essential dynamics of mesocosm experiments.

In the attempt to obtain more knowledge of established predator-prey
models many analytical and numerical studies were carried out leading to

viii



interesting new results and new manner to see these models. Finally the
Canale’s chemostat model appeared to present the most interesting results
and hence the work was split up into two: (i) The present work, that states
the behavior of tri-trophic food-chain under an unspecified contaminant and
(ii) the work realized by Sibylle Dueri and collaborators, “Modelling the
effects of pyrene contamination and enrichment on mesocosm experiments
carried out in the Isefjord (Denmark)” that suits the mesocosm data.

In the first chapter the analytical mathematic tools used in this work
will be presented. The concepts of the dynamical systems, analysis of stabil-
ity and bifurcations will be shown in a non-rigorous formalism. Afterwards,
some classical and established models of biological growth and interactions
of populations will be depicted, in the second chapter.

Finally in the third chapter the joint effect of contaminants and nu-
trient loading on population dynamics of marine food chains by means of
bifurcation analysis will be analyzed. Contaminant toxicity is assumed to
alter mortality of some species with a sigmoidal dose-response relationship.
A generic effect of pollutants is to delay transitions to complex dynamical
states towards higher nutrient load values, but more counterintuitive con-
sequences arising from indirect effects are described. In particular, the top
predator seems to be the species more affected by pollutants, even when
contaminant is toxic only to lower trophic levels.

ix
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Part I

Introduction





1

Dynamical systems: Stability
and Bifurcation analysis

Science is built up with facts, as a house is with stones. But a collection of facts

is no more a science than a heap of stones is a house.

La Science et l’hypothèse. Poincaré

A system can be defined by a set of interacting elements, in such way
there are cause and effect relations in the phenomena that occur to the
elements of this set. In a dynamical system some characteristics of the
interacting elements change over time. From the Calculus invented by New-
ton and independently reinvented by Leibniz it is known that the variation
of an object (characteristic) x(t) in a continuous time is measured by the

derivative dx(t)
dt

. In this sense the system evolution in time can be described
mathematically by 1:

~̇x = ~f(~x, β) (1.1)

Where ~f is the variation rate of the state variables, ~x, and β is a
parameter of the system. When ~f does not depend on time explicitly the
system is called autonomous. Certain values, lim

t→∞

~x(t) = ~x∗ with ~f(~x∗) = 0,

1~̇x = d~x(t)
dt

3
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do not change over time, depicting a stationary solution of equation 1.1,
in other words they correspond stagnation (fixed) points of the flow. These
equilibrium points or fixed points of a system can be classified according
with their stability and the topology of their phase portrait2

1.1 Stability of fixed points

According to Lyapunov, stability is a property of system behavior in neigh-
borhoods of equilibria. When the initial conditions, ~x(0), fit in with a equi-
librium point the system remains indefinitely in this point. However, when
the initial conditions are inside a sphere of radius δ whose center is a specific
equilibrium, ~x∗, it can be defined as asymptotically stable when all the

trajectories, ~x(t), converge to ~x∗. If this sphere has a finite radius this point
is locally sable, otherwise when δ → ∞ the point is globally stable. In
both cases the equilibrium point is classified as a stationary attractor and
all the set of initial conditions that converge to this point form the basin
of attraction of this attractor.

An equilibrium point is neutrally stable when for a sphere of radius
δ centered in such point there is another sphere with radius ǫ also centered
in ~x∗, with δ < ǫ, such that every trajectory with initial condition inside
the sphere of radius δ remains in the second sphere of radius ǫ for al t ≥ 0.
Hence ~x(t) does not tend to ~x∗ when t → ∞. When there is at least one
trajectory with initial condition belonged to a sphere of radius δ that leaves
the sphere of radius ǫ in a finite time the equilibrium is called unstable.

All this classification is based on the temporal evolution of the distance
between a trajectory ~x(t) and ~x∗, for the complicated systems modeled by
equation 1.1 that scientists study, explicit solutions for ~x(t) are rarely avail-
able. In consequence of this difficulty Lyapunov, [1], developed a method
for assessing the conditions of stability indirectly. This method involves

2Phase portrait, phase space or phase diagram: a plot of the system’s trajectories
in the state space in which the axes are the state variables. In mechanical systems the
phase space usually consists of all possible values of position and momentum(or speed)
variables.
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(a) (b) (c)

Figure 1.1. Fixed points in two dimensions. (a) Stable Node, (b) Stable Spiral,
(c) Saddle Point. The equations that have been used are: (a) ẋ = −0.5x, ẏ = −y,
(b) ẋ = −x + y, ẏ = −x − y, (c) ẋ = x, ẏ = −y.

linearizing ~f at ~x∗, let J be the jacobian matrix of ~f evaluated at ~x∗.

J =
∂ ~f (~x, β)

∂~x

∣

∣

∣

~x=~x∗

(1.2)

The eigenvalues of J determine whether ~x∗ is stable. These are scalar
values λi such that 3det(J − λiI) = 0, i.e. the roots of the characteristic
polynomial of J. In this way, if the eigenvalues are all distinct, it is possible
to write a exponential approximation for general solution of the linearized
system by:

~x(t) = k1~v01e
λ1t + k2~v02e

λ2t + ... + kn~v0neλnt (1.3)

where n is the dimension of the system, ki are the arbitrary constants
that are given by the initial conditions and the vectors ~v0j are the eigen-
vectors associated with each eigenvalue and are determined by:

J ~v0i = λi ~v0i, (i = 1, 2, ..., n) (1.4)

Sometimes the Jacobian matrix presents equal real eigenvalues, in this
case multiplicity4 of the eigenvalues has to be taken into account in order

3I is the identity Matrix.
4The number of equal eigenvalues. If the multiplicity of an eigenvalue is 2, there are

two eigenvalues of this same value. If is 3 there are three eigenvalues with this same value
and so on.
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to generate linearly independent solutions. For example if a two-dimensional
system has two equal eigenvalues (λ1 = λ2 = λ) a general solution for this
degenerate case is:

~x(t) = k1~v01e
λt + k2~v02te

λt (1.5)

In a n-dimensional case for eigenvalues with multiplicity m the associated
functions are eλit, teλit, t2eλit, ..., tm−1eλit, thus, in the same way as for
distinct eigenvalues, the general solution is the linear combination of these
functions and the arbitrary constants are determined by the initial condi-
tions.

In two dimensions, according to Poincaré, the fixed points can be clas-
sified from the trace T and the determinant ∆ of the J matrix:

• if ∆ < 0, λ1,2 are real and of opposite signs. The fixed point is called
saddle point which is unstable in the sense of Lyapunov;

• if ∆ > 0 and T2 − 4∆ > 0, λ1,2 are real and with the same sign. If
T > 0 the point is called a unstable node, if T < 0 it will be a
stable node.

• if ∆ > 0 and T2 − 4∆ < 0, λ1,2 are complex conjugated. If T > 0 the
fixed point is an unstable spiral, if T < 0 it is an asymptotic stable
spiral and if T = 0 the point is a neutrally stable center, where the
eigenvalues are purely imaginary.

On the line T2 − 4∆ = 0 are lying the star points and degenerate
nodes which are cases where the system presents two equal eigenvalues.
In the case of star points, only the main diagonal of J is different of zero
with equal elements, hence the solutions are straight lines passing through
x∗ in the phase space. If the elements of the diagonal are positive the
star is unstable, if the elements of the diagonal are negative the star is
asymptotically stable. When T2 = 4∆ there is a degenerate node that is
stable when T < 0 and unstable when T > 0. If ∆ = 0, at least one of
the eigenvalues is zero and in this case there is a whole line or a plane
of fixed points. Figure 1.1 shows some of the different mentioned types
of fixed points and figure 1.2 depicts the degenerate cases . Hirsch and
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(a) (b) (c) (d)

Figure 1.2. Two dimensional degenerate cases of fixed points . (a) Star Node,
(b) Degenerate Node, (c) Line of fixed points, (d) Center. The equations that have
been used are: (a) ẋ = −x, ẏ = −y, (b) ẋ = −x + y, ẏ = −x− 3y, (c) ẋ = −x + 3y,
ẏ = x − 3y , (d) ẋ = y, ẏ = −x.

Smale, [2, Chapter 9], give a detailed discussion of stability of fixed points
as well as Strogatz, [3, Chapter 5].

Observing the form of the solution 1.3 it can be seen that it converges to
stable solution when Reλi < 0 and diverges when at least one eigenvalue λi

is positive. But in the degenerate cases such as center, star, degenerate node
and non-isolated fixed points, the linear system does not guaranty a correct
picture of the phase portrait near the fixed point, degenerate points can be
altered by small nonlinear terms. In such cases stability must be determined
considering non-linear terms of the Taylor series of ~f(~x, β), [3, 4].

As mentioned before the stability of a equilibrium point is established
by the sign of the real part of its eigenvalues. Therefore to determine the
stability of this solution, taking into account that a fixed point is stable when
Re(λi) < 0 for all i, is only necessary to know if the signs of the real parts of
λi are negative or not. Edward John Routh and Adolf Hurwitz found inde-
pendently the solution to find out whether all the roots of a polynomial have
a negative real part. This criterion of stability known as Routh-Hurwitz
theorem is very helpful specially when the characteristic polynomial for the
eigenvalues of the Jacobian J is of order higher than five and it is in general
impossible to calculate analytically its roots. The theorem says that the real
part of all roots of the polynomial:

λn + a1λ
n−1 + a2λ

n−2 + ... + an−1λ + an = 0 (1.6)
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are negative if all the coefficients ai are positive and if all upper-left determi-
nants ∆i(i = 1, ..., n) of the Hurwitz matrix H are positive. If the jacobian
matrix J is n × n so is H. The H matrix are made in the following way:

• The coefficients ai with odd indices and increasing j are written in the
first line . In the second line are written the coefficients with even
indices and increasing j. Notice that the coefficient of λn, a0, is 1. the
other positions are filled up with zeros.

• The two following lines are obtained moving the first two lines one
column to the right, filling-in the empty positions with zeros.

• The other lines are built repeating the procedure above until an occu-
pies the lower right edge of the matrix.

In this way, for example, for n = 6 the Hurwitz matrix is:

H =

















a1 a3 a5 0 0 0
1 a2 a4 a6 0 0
0 a1 a3 a5 0 0
0 1 a2 a4 a6 0
0 0 a1 a3 a5 0
0 0 1 a2 a4 a6

















and the upper-left determinants ∆i(i = 1, ..., n) are:

∆1 = |a1| , ∆2 =

∣

∣

∣

∣

a1 a3

1 a2

∣

∣

∣

∣

, ∆3 =

∣

∣

∣

∣

∣

∣

a1 a3 a5

1 a2 a4

0 a1 a3

∣

∣

∣

∣

∣

∣

, ... , ∆6 = |H|

In this section it was shown how different sorts of fixed points and their
stability characterize the topology of the phase space, see Figures 1.1 and
1.2. When the phase portrait of a dynamical system changes qualitatively
its topology as parameters pass through critical values the system suffers a
bifurcation that will be explained in the next section.
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1.2 Bifurcation analysis

The term bifurcation was introduced by Poincaré, [5], and it is strongly
linked to the concept of structural stability. In a bifurcation fixed points
can be created or destroyed, or their stability can change when varying
parameters. When the dynamical system does not change quality of the flow
in the phase space under small perturbations of the control parameter the
system is structurally stable. In two-dimensional systems there is a theorem
that states the necessary conditions for which the system is structurally
stable, it is the known Peixoto’s theorem, see [6].

In this section it will be presented four local bifurcations that occur
in continuous dynamical systems, such as saddle-node bifurcation, trans-
critical bifurcation, pitchfork bifurcation and Hopf bifurcation and then the
global bifurcations homoclinic and heteroclinic. Local bifurcations are
those which can be previewed studying the vectorial field in the neighbor-
hood of a fixed point or a closed trajectory. Normally this study is made
by through the eigenvalues. Global bifurcations are those which can not be
established by a local analysis.

First the normal forms5 of the simplest equilibria bifurcations of codi-
mension one will be depicted. An example of a codimension-two bifurcation
will be presented in the ending of this chapter and although this work is not
focused on chaos behavior, there are some regions in the bifurcation diagram
of the studied system that present chaotic behavior and because of this a
period doubling cascade routing to chaos will be briefly explained.

1.2.1 Co-dimension one local bifurcations

Codimension counts the number of control parameters for which fine tun-
ing is necessary to get such a bifurcation, i.e. the smallest dimension of a
parameter space which contains the bifurcation in a persistent way. Four
local bifurcations can occur varying the values of a unique parameter. The

5A normal form of a mathematical object is a simplified form of the object obtained by
applying a transformation (often a change of coordinates) that is considered to preserve
the essential features of the object.
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normal form of saddle-node, transcritical and pitchfork bifurcations are given
in one-dimensional systems whereas a two-dimensional system is needed for
a Hopf bifurcation.

Definition 1.2.1. A dynamical system 1.1 is said to undergo a bifurcation
at parameter value β = β0 if in any (small) neighborhood of β0 ∈ Rm there
is a β value containing dynamics that are not topologically equivalent to
those at β0.

Saddle-node bifurcation

A saddle-node bifurcation is a local bifurcation in which two fixed points
coalesce into a single point that represents a bifurcation point and then this
point disappears. The normal form of this bifurcation can be represented in
a one-dimensional equation:

ẋ = β − x2 (1.7)

This equation6 presents two equilibria, for ẋ = 0, x∗ = ±
√

β. When β < 0

x

β

Figure 1.3. Bifurcation diagram: Saddle-node Bifurcation. The thick line is the
stable solution and the dashed line is the unstable one.

there is no equilibria, when β > 0 there are two equilibria. Then β = 0
depicts the transition in the change of flow topology in the phase space,
β = 0 is the bifurcation point, β0. A way to analyze graphically bifurcations
is through the bifurcation diagram, see Figure1.3. But in order to visualize
better this bifurcation a two-dimensional equation was plotted , in this case

6ẋ = β + x2 is also possible as a normal form of a saddle-node bifurcation.
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(a) (b) (c)

Figure 1.4. Phase space in two dimensions showing a saddle-node bifurcation. (a)
β < 0, (b) β = 0, (c) β > 0. The equation that has been used is: (a) ẋ = β + x2,
ẏ = −y.

it expresses the collision of a stable equilibria (node) with a unstable one
(saddle), see Figure1.4.

Transcritical bifurcation

In the transcritical bifurcation, fixed points are not destroyed nor created,
but for a critical value of the parameter they switch stability. The normal
form of this bifurcation can be:

ẋ = βx − x2 (1.8)

Observe that this equation7 presents two equilibria, x∗ = 0 and x∗ = β and

β

x

Figure 1.5: Bifurcation diagram: Transcritical Bifurcation

the eigenvalue is given by λ = β − 2x∗. Therefore the fixed point x∗ = 0 has

7ẋ = βx + x2 is also possible as a normal form of a Trancritical bifurcation.
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the eigenvalue λ = β and the fixed point x∗ = β has the eigenvalue λ = −β
hence in the bifurcation point β0 = 0 these point change stability, see Figure
1.5.

Pitchfork bifurcation

A pitchfork bifurcation occurs generically in systems with inversion or re-
flection symmetry. That is, an equation of motion that remains unchanged
if one changes the sign of all phase space variables (or at least for one). This
bifurcation has two types: supercritical or subcritical. The normal form of
the supercritical pitchfork bifurcation is:

ẋ = βx − x3 (1.9)

x

β β

x

(a) (b)

Figure 1.6. Bifurcation diagram: Pitchfork bifurcation . (a) Supercritical, (b)
Subcritical.

When β < 0 there is a stable equilibrium x∗ = 0 at point β = 0 this
point changes stability and two other equilibria x∗ = ±

√
β appear with the

same stability, in this case both are stable. And the normal form for the
subcritical case is:

ẋ = βx + x3 (1.10)

In this case, for β < 0 the equilibrium at x∗ = 0 is stable, and there are two
unstable equilibria at x∗ = ±

√
−β. For β > 0 the equilibrium at x∗ = 0 is

unstable.
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Hopf bifurcation

In 1942, E. F. F. Hopf established the conditions in which such bifurcation
could occur in a n-dimensional system, [7]. This bifurcation was originally
studied by Poincaré, in 1892 [8], and studied by Aleksandr Aleksandrovich
Andronov in 1929 for two-dimensional systems, [9]. Because of this some-
times this bifurcation is called Poincaré-Andronov-Hopf bifurcation. A Hopf
or Poincaré-Andronov-Hopf bifurcation is a local bifurcation in which a limit
cycle8 arises from an equilibrium in dynamical system, when the equilib-
rium changes stability via a pair of purely imaginary eigenvalues. Like in
the Pitchfork bifurcation the Hopf bifurcation has two types: supercritical or
subcritical. To obtain this sort of bifurcation minimally a two-dimensional
system is demanded. A normal form of Hopf bifurcation could be:

ẋ = βx − y + σx(x2 + y2),

ẏ = x + βy + σy(x2 + y2) (1.11)

This system presents a unique fixed point, the origin (x∗ = 0, y∗ = 0).
The eigenvalues are ±i+β hence the origin is asymptotically stable for β < 0
and unstable for β > 0. For β = 0 the origin changes stability, if σ = −1 a
stable limit cycle arises in the β > 0 region and in this case the bifurcation
is supercritical. If σ = 1 while the origin is stable there is a presence of
a unstable limit cycle that collapses in the transition of stability of the
origin, in this case the bifurcation is subcritical. All these facts can be
better viewed in the polar coordinates, changing x = r cos θ and y = r sin θ

8A limit cycle is an isolated closed trajectory that can appear in the phase portrait
of nonlinear systems. An isolated trajectory means absence of other closed trajectories
infinitely close. Therefore the neighboring trajectories must approach or move away from
the limit cycle which is a periodic attractor or repeller. A limit cycle is asymptotically
stable when the neighboring trajectories approach the limit cycle otherwise it is unstable.
It is important to differentiate limit cycles from closed trajectories surrounding center
points. In the last case the closed trajectories are not isolated and there could be several
of them infinitely close for close initial conditions. In addition the amplitude, the period
and the shape of a limit cycle are determined by the parameters of a nonlinear system
while the shape, period and amplitude of closed trajectories surrounding centers depend
on the initial conditions.
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β

x y

x

y

x x

y

(a) (b) (c) (d)

Figure 1.7. Supercritical Hopf bifurcation (σ = −1). (a)Bifurcation diagram.
Phase space (b) β < 0, (c) β = 0, (d) β > 0.

x

β

y

x x

y

x

y

(a) (b) (c) (d)

Figure 1.8. Subcritical Hopf bifurcation (σ = 1). (a)Bifurcation diagram. Phase
space (b) β < 0, (c) β = 0, (d) β > 0.

the system becomes:

ṙ = h(r) = βr + σr3,

θ̇ = 1 (1.12)

For ṙ = 0 there are two possibilities, the origin r∗ = 0 and a cycle with radius

r∗ =
√

−β

σ
, as stated before when σ = −1 the eigenvalue in polar coordinates

is λ = dh
dr

∣

∣

∣

r∗
= β−3(r∗)2, analyzing the cycle, for β > 0, λ = −2β and hence

the limit cycle is stable. If σ = 1 the eigenvalue is λ = β + 3r2, for β < 0,
λ = 4β and hence the limit cycle is unstable. See figures 1.7 and 1.8.
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1.2.2 Codimension-one global bifurcations

Global bifurcations can not be previewed by eigenvalues of fixed points,
however in 1963 V. D. Melnikov developed a method by which is possible
to prove the existence of homoclinic and heteroclinic bifurcations in Hamil-
tonian perturbed systems, see [10]. In this subsection the homoclinc and
heteroclinic bifurcations will be presented briefly .

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

x

y

Figure 1.9. Phase space: Homoclinic bifurcation. The limit cycle get close to the
saddle point (0,0) when increasing β. The dashed lines are the nullclines for β = −0.1
and the thick lines are the trajectories (x3−x2 +y2 = β) for the increasing values of
β, β = −0.1, β = −0.05, β = −0.01 and finally β = 0 that represents the homoclinic
orbit.

Homoclinic Bifurcation

A point is called a homoclinic point when it lays down in a trajectory that
is, at the same time, a stable and unstable manifold of a saddle point, this
trajectory is a homoclinic orbit9. A bifurcation that leads to a destruction
of a of a homoclinic orbit is a homoclinic bifurcation . As an example, the
following system proposed by Hale and Koçak, [11], presents a homoclinic
bifurcation:

ẋ = 2y

ẏ = 2x − 3x2 − y(x3 − x2 + y2 − β) (1.13)

9Homoclinic trajectory or homoclinic loop
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This system presets two fixed points, observe the intersection of the null-
clines10 in the Figure 1.9. The origin (x∗ = 0, y∗ = 0) and the point
(x∗ = 2

3
, y∗ = 0) are the fixed points of this system. The origin is always a

saddle point with eigenvalues λi = 1
2

(

β ±
√

β2 + 16
)

independently of the

values of β. But the point (2
3
, 0) changes stability accordingly β varies, its

eigenvalue is λi = 1
54

(

27β + 4 ±
√

729β2 + 216β − 11648
)

, observe that at

β∗ = − 4
27

the system suffers a supercritical Hopf bifurcation before which
this point is a stable spiral, and than it converts into a unstable spiral. For
− 4

27
< β < 0 one can see the presence of an orbitally asymptotically peri-

odic orbit, alias limit cycle and at β∗ = 0 the periodic orbit is absorbed by a
homoclinic loop, i.e, a homoclinic bifurcation happens, see Figures 1.9 and
1.10, in this case for β > 0 the homoclinic orbit is destroyed.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

0
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H 
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β
−0.2 0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5
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−0.2
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0

0.05 y
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β

x

(a) (b)

Figure 1.10. Bifurcation diagram: Homoclinic Bifurcation . (a) 2D Bifurcation
diagram, (b) 3D Bifurcation diagram. The dashed lines are unstable solutions and
thick lines the stable ones.

10Nullclines or Zero-Growth isoclines of a two-dimensional dynamical system are the
boundary between regions where ẋ or ẏ switch signs. In this way setting either ẋ = 0
or ẏ = 0 the nullclines of the system will be found. The intersections between x and y
nullclines are the equilibrium points.
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Heteroclinic Bifurcation

When the unstable manifold of a steady point becomes the stable manifold
of another steady point, thus connecting two steady points, then the system
presents a heteroclinic connection, alias heteroclinic cycle. A Hetero-
clinic bifurcation happens when the steady points connection is broken.
Observe the following system proposed by Hale and Koçak, [11]:

ẋ = β + 2xy

ẏ = 1 + x2 − y2 (1.14)

In figure 1.11 depicts the phase portrait for three different values of the
parameter. At β = 0 the system presents two fixed points, (0, 1) and (0,−1),
both of which are saddle points. The orbit in the y-axis between the two
points has the stable manifold of (0, 1) and the unstable manifold of (0,−1)
thus the system has a heteroclinic orbit for β = 0. For β 6= 0 the saddle
connection is broken hence a heteroclinic bifurcation happens.

1.2.3 Codimension two bifurcations

As mentioned before the number of control parameters necessary to get a
bifurcation determined the codimension of this bifurcation. Therefore when
two control parameters are necessary to get a bifurcation, such a bifurcation
is told to be codimension two. There are several sorts of codimension two
bifurcations, such as Bautin, Bogdanov-Takens, Cusp, Fold-Holpf and Hopf-
Hopf bifurcations. As an example observe the system that was studied by
Takens, [12], and Bogdanov, [13]:

ẋ = y

ẏ = β1 + β2x − x2 + xy (1.15)

When β1 > 0 there is no equilibrium. For β1 = 0 and β2 = 0 the origin is the
unique equilibrium and its two eigenvalues are zero. For β1 < 0 there are two
equilibria: (

√
−β1, 0) and (−

√
−β1, 0). In this way β1 = 0 is a saddle-node

bifurcation point. The first fixed point is a saddle with eigenvalues:

λ1,2 =
1

2

(

β2 −
√

−β1 ±
√

β2
2 − 2

√

−β1β2 − β1 + 8
√

−β1

)

(1.16)
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Figure 1.11. Phase space: Heteroclinic Bifurcation. Dashed lines are the nullclines
and tick lines are some trajectories.
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the second one has the eigenvalues:

λ1,2 =
1

2

(

β2 +
√

−β1 ±
√

β2
2 + 2

√

−β1β2 − β1 − 8
√

−β1

)

(1.17)
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Figure 1.12. Bogdanov-Takens Bifurcation. The first graph is the bifurcation
diagram for β2 = 0.5. The second one is the two-parameter bifurcation diagram.

For β2 < −
√
−β1 this point is asymptotically stable and unstable for

β2 > −
√
−β1. And observing the eigenvalues of the second point one can see

that a subcritcal Hopf bifurcation happens at β2 = −
√
−β1, then decresing

β1 from this value on limit cycles arises. Decreasing further more the value
of β1 the cycle is destroyed into a homoclinic bifurcation when it merges
with the saddle point, see figure 1.12(a). In the two-parameter graph in
figure 1.12(b), it can be seen that a Bogdanov-Takens bifurcation happens.
The origin of the parameter plane, coincides with the origin in the cartesian
plane and, as mentioned before, this point has two zero eigenvalues and
corresponds to the critical value of the Bogdanov-Takens bifurcation.
Three codimension-one bifurcations occur nearby: a saddle-node bifurcation,
a Poincaré-Andronov-Hopf bifurcation and a homoclinic bifurcation.
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1.2.4 Period Doubling Cascade and Chaos

Differently to the previous bifurcations a period doubling bifurcation or
flip bifurcation is a local bifurcation related to cycles and has no correspon-
dence for equilibria in continuous systems. In this bifurcation a cycle loses its
stability, while another cycle with twice the period of the original cycle rises.
If the secondary path is stable the bifurcation is supercritical (subtle), con-
versely, when the secondary path is unstable the bifurcation is Subcritical
(catastrophic). This bifurcation requires at least a three-dimensional phase
space and a supercritical period doubling cascade converges to chaotic be-
havior. In order to elucidate see the following example.

0 0.5 1 1.5

4

6

8

10

12

14

16

b

x

Figure 1.13. Period Doubling Cascade and Chaos for Rössler system, varying b
parameter and fixing a = 0.2 and c = 5.7. The first picture depicts the complete
bifurcation diagram, where line between b = 5.99 and b = 7 is the fixed point
that bifurcates in a Hopf bifurcation at b value, 5.99. The other lines represent
the maximum and minimum of the cycles. The second picture shows the higher
sequence of bifurcations amplified.

Rössler equations

Rössler, [14], proposed the following system in 1976. It is minimal for con-
tinuous chaos for at least three reasons: Its phase space has the minimal di-
mension three, its nonlinearity is minimal because there is a single quadratic
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Figure 1.14. Rössler Phase Space: (a) b = 2.0, (b) b = 1.0, (c) b = 0.8, (d) b = 0.4.
fixed a = 0.2 and c = 5.7.

term, and it generates a chaotic attractor11 with a single lobe, in contrast
to the Lorenz attractor which has two lobes, [17].

ẋ = −y − z (1.18)

ẏ = x + ay (1.19)

ż = b + z(x − c) (1.20)

This system presents stationary, periodic and chaotic attractors depending
on the value of the parameters (a, b, c). The figure 1.13 shows the sequence
of bifurcations for certain range of parameters, in the first plot a complete
bifurcation scenario is plotted, observe that there is a stable fixed point
that converts into unstable via a Hopf bifurcation at b value of 5.99 then
the stable cycle loses stability through a period doubling bifurcation at a
b value of 1.43, another period doubling happen at 0.85 and then at 0.73.
Afterwards a cascade of supercritical bifurcations occurs leading to a chaotic
attractor, see the last picture of figure 1.14. More information can be also
found in the book of Thompson and Stewart, [18, Chapter 12].

The theory of dynamical systems is not an innovation and excellent
books have already been published in this issue, specially it’s worth citing
Strogatz, [3], Hale and Koçak, [11], Thompson and Stewart, [18], Gucken-

11Also called Strange Attractors, [15]. Actually, in many texts in the literature, the word
strange is related to the geometrical structure of attractor, strange attractors are fractals
and demonstrate infinite self similarity, while the word chaotic refers to the dynamics
of orbits on the attractor. The attractor that will be shown here is a strange chaotic
attractor, but it is important to bear in mind, although it will not be shown in this
thesis, the existence of strange nonchaotic attractors, [16].
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heimer and Holmes, [19] and Monteiro, [20, in Portuguese]. The purpose of
this chapter is a quick review and a summary of dynamical systems theory.
The graphs were drawn using a MATLAB package for numerical bifurcation
analysis of ODEs (Matcont), [21], XPPAUT, [22, 23] and my own program
codes.
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Models

Things should be made as simple as possible, but not anymore simpler.

A. Einstein

The previous chapter presented some characteristics and some mathematical
analysis of dynamical systems. Here some examples of the simplest biological
models will be briefly presented. They still are used to model dynamics of
diverse phenomena, such as the various manifestations of populations, social
and economic systems and biological organisms.

2.1 Models of growth

Growth is a fundamental property of biological systems, occurring at the
level of populations, individual animals and plants, as well as within organ-
isms. Even in technology, growth curves are used to forecast technological
performance fitting a set of data and extrapolating the growth curve beyond
the range of the data. Much research has been devoted to modeling growth
processes, and there are many ways of doing this, including: mechanistic
models, time series, stochastic differential equations, etc.

23
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2.1.1 Exponential growth: Malthus Model

The Malthusian growth model, sometimes called the exponential law of
population growth, [24], describes “if a population will grow (or decline)
exponentially as long as the environment experienced by all individuals in
the population remains constant”, [25]. The derivation of a exponential
law could be given considering all individuals in the population absolutely
identical (in particular, there is no age, sex, size, or genetic structure) and
they reproduce continuously. In this way the number of individuals can only
change as a result of birth, death, emigration, and immigration. Malthus
considered a closed population, without immigration nor emigration, in this
approach, the population growth equation can be written as following:

dN

dt
= (b − d)N ⇒ N(t) = N0e

(b−d)t (2.1)

where b and d are the birth and death positive rates. If b > d the population
grows exponentially, if b < d the population becomes extinct. Exponential
growth is only realistic as long as there appears to be no limits to growth.
Many systems appear to grow in this fashion for the initial periods until
some capacity constraint begins to take place.

2.1.2 Gompertz curve

A model that takes into account capacity constraints is Gompertz’s law.
In 1825 Gompertz published “On the Nature of the Function Expressive
of the Law of Human Mortality”, [26], in which he showed that “if the
average exhaustions of a man’s power to avoid death were such that at the
end of equal infinitely small intervals of time, he lost equal portions of his
remaining power to oppose destruction”, [27], then the number of survivors
at any age t would be given by the equation:

N(t) = ke−be−ct

(2.2)

where k is the upper asymptote, i.e, the number of individuals in equilibrium,
c is the intrinsic growth rate and b, c are positive numbers. Differentiat-
ing and taking the logarithm of the Gompertz equation 2.2 results the
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following equations:

dN

dt
= kcbe−cte−be−ct

= kcN(t)be−ct

ln(N) = ln(k) + ln(e−be−ct

) = ln(k) − be−ct ⇒ be−ct = ln(k) − ln(N)

combining these two results the Gompertz differential equation becomes:

dN

dt
= kcN (ln(k) − ln(N)) (2.3)

In other words this model states that, under a given number of individu-
als, the rate of population increase is positively proportional to the natural
logarithm of the number of individuals in equilibrium divided by the given
number of individuals. This model was initially used only by actuaries, but
recently it has been used as a growth curve in biological and economic phe-
nomena, mobile phone uptake and Internet, [28], population in a confined
space and modeling of growth of tumors, [29].

2.1.3 The Pearl-Verhulst logistic equation

Taking the Malthus model and adding a function that describes the concen-
tration of nutrients, C, to limit the production of organisms into the dynamic
equations, the following system results:

dN

dt
= bCN (2.4)

dC

dt
= −αbCN (2.5)

Performing α dN
dt

+ dC
dt

it is obtained: d
dt

(C − αN) = 0, thus (C + αN)(t) =
constant = C0. In this way C = C0−αN , substituting this expression in 2.4
and performing some algebraic calculation it results into a single equation
called the logistic equation:

dN

dt
= r

(

1 − N

K

)

N (2.6)
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where the expression r(1−N
K

) is called an intrinsic growth-speed and K is the
carrying capacity, the maximum number of individuals that the environment
can support. The logistic equation can be integrated exactly, hence the
development of a population, which at initial time t = 0 has the size N0, is:

N(t) =
K

1 + K−N0

N0

e−rt
(2.7)

This equation initially developed for studies of demography by Verhust in
1838, [30], was rediscovered in 1920 by Raymond Pearl and Lowell Reed, [31],
who promoted its wide and indiscriminate use.

2.1.4 The chemostat equation

The chemostat is an apparatus in which the growth of microorganisms can
be controlled. Basically the system is formed by a nutrient reservoir and a
growth chamber, in which the microorganisms reproduce. The name chemo-
stat stands for chemical environment is static what means that “the purpose
of the chemostat is to have a quasi-constat microorganism concentration, N,
and nutrient concentration, C, allowing a constant rate of harvest”, [32].

Adjusting the equations 2.4 and 2.5, substituting bC in equation 2.4
for K(C) = Kmax

C
Kn+C

and introducing the inflow and outflow of nutrients
from the reservoir and outflow of harvested microorganisms the following
system is obtained:

dN

dt
= K(C)N − F

V
N (2.8)

dC

dt
= −αK(C)N − F

V
C +

F

V
C0 (2.9)

Where F
V

N represents flow of the harvested microorganisms, −F
V

C corre-
sponds to the outflow and F

V
C to the inflow of nutrition. The microor-

ganisms can not reproduce indefinitely because they are not in a chamber
of infinite concentration, the function K(C) is the reproduction-rate with
upper limit Kmax and Kn is the concentration at which K = 1

2
Kmax.

There are still more growth equations discussed in the literature, for
instance, by Savageau, [33], and in the articles therein. Each data described



2.2. Interacting populations models 27

by growth equations requires different processes to be considered, in this way
many specialized growth equations can be proposed in order to describe
different aspects on the dynamics related to the growth. However there
are enormous number of examples that are described by these basic growth
equations mentioned before and some of these will be used in the last chapter
of this thesis.

2.2 Interacting populations models

2.2.1 Lotka-volterra model

Figure 2.1. Lotka-

Volterra: The purely

periodic solutions.

In 1925 Alfred Lotka explained deeply the pur-
pose of the new area called physical biology,
which consists on the application of physical
principles in the study of life-bearing systems
as a whole in contrast with biophysics that
treats the physics of individual life processes.
Among some examples employed in this area
he proposed a model to describe chemical re-
actions in which the concentrations oscillates,
[34]. One year hence, using the same equa-
tions, different studies were carried out by
Vito Volterra, [35]. The main purpose of his
work was to describe the observed variations
in some species of fish in the Upper Adriatic sea. The system of equations
proposed by Lotka and Volterra describes the change of prey or host den-
sity with time, and assumed, for this purpose, that the number attacked
per predator was directly proportional to prey density. This model became
known as Lotka-volterra predator-prey equations:

dN1

dt
= r1N1 − αN1N2 (2.10)

dN2

dt
= δαN1N2 − d2N2 (2.11)
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Where N1 is the density of prey, N2 is the density of predator, r1 is growth
rate of prey, d2 is the mortality rate of predator, α is the predation rate
coefficient and δ is the reproduction rate of predators per 1 prey eaten (pre-
dation efficiency). This model generates neutral stability, see figure 2.1,
but the “assumptions are very unrealistic since very few components are in-
cluded, there are no explicit lags or spatial elements, and thresholds, limits,
and nonlinearity are missing”, [36].

The rate at which prey are taken by predators is known as the func-
tional response, depending on the behavior of both the predator and the
prey. A remarkable variety of functions has been proposed to characterize
the functional response. In the classical Lotka-Volterra model this rate is
the product αN1 in equation 2.10, other functional responses are going to
be shown in the next subsection. Numerical response is defined in dif-
ferent ways, however, the numerical response is usually modeled as a simple
multiple of the functional response, so the numerical response assumes the
same shape as the functional response like δαN1 in equation 2.11.

2.2.2 Holling types of predation

One improvement of Lotka-Volterra model is to add the logistic growth of
prey and besides change the type of predation, functional response, into
a more realistic forms. Holling in his article “The functional Response of
Predators to Prey Density and its Role in Mimicry and Population Reg-
ulation”, [37], reviewed previous papers, [38, 39], and analyzed a series of
data of invertebrates and vertebrates species. Basically he presented three
different types of predation functional responses, P , Holling types:

• Type I: Linear, the number of prey consumed per predator is assumed
to be directly proportional to prey density until a saturation value after
which it remains constant, so initially the fuctional response is the same
used in the Lotka-Volterra model until saturation. This functional
response is found in passive predators like spiders.

P = αN1N2, if N1 < NT (2.12)

P = αNT N2, if N1 > NT



2.2. Interacting populations models 29

Linear with saturation Hiperbolic Sigmoidal

Figure 2.2: Holling Types. (a) Type I, (b) Type II, (c) Type III.

• Type II: hyperbolic functional response in which the attack rate in-
creases at a decreasing rate with prey density until it becomes constant
at satiation. This response is typical of predators that specialize on
one or a few prey.

P = α
N1

h + N1
N2 (2.13)

• Type III: S-Shape or Sigmoidal, this functional response occurs in
predators which increase their search activity with increasing prey
density showing a initial S-shaped rise up to a constant maximum
consumption.

P = α
N2

1

h2 + N2
1

N2 (2.14)

α represents the rate of successful search (predation rate coefficient) and
h is the half saturation of the function, see figure 2.2. Basically in these
three types only two variables affecting predation were considered, prey and
predator density. They were considered by Crawford Stanley Holling in his
article of 1959, [38], to be the only essential ones, against other charac-
teristics that were considered not to be essential, such as characteristics of
the prey (e.g., reactions to predators, stimulus detected by predator, etc),
density and quality of alternate foods available for the predator and char-
acteristics of the predator (e.g., food preferences, efficiency of attack, etc).
When such complex interactions are involved, it is difficult to understand
clearly the principles involved in predation in this instance a simplified sit-
uation was taken into account where some of the variables are constant or
not operating.
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Without more explanations it is worth citing other sort of predations
functional responses in the literature:

• Gause in his book “ The struggle for existence”, [40], proposed a
model that explained the behavior of predator-prey system embod-
ied by Didiniurn-Paramecium. For large density of predator, N2, its
mortality is negligible for positive values of prey density, N1 > 0. In
addition, the increase of predator only slightly depends on N1. To re-
duce the dependence upon N1 the term N1, used in the Lotka-volterra
model, was substituted by

√
N1 in the predation functional response.

P = αN
1

2

1 N2 (2.15)

• Rosenzweig generalized the expression proposed by Gause taking N1

to the gth power 0 < g 6 1, [41].

P = αNg
1 N2, 0 < g 6 1 (2.16)

• Watt proposed another non-linear connection between the relative in-
crease of the predator and the number of prey, [42].

P = α(1 − e−aN1)N2 (2.17)

2.2.3 Rosenzweig: Paradox of Enrichment

“Instability should often be the result of nutritional enrichment in two-species
interactions”, [41]. Rosenzweig showed for six different predator-prey models
that increasing the food supply in the system can lead to destruction of the
food species that are wanted in greater abundance, the enrichment was taken
increasing the prey carrying capacity and he showed that for a threshold
value the steady state is destroyed while a limit cycle rises. This process
was called the paradox of enrichment.
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2.2.4 Kolmogorov general model

Kolmogorov in 1936 studied predator-prey models of the general form:

dN1

dt
= N1 g(N1, N2)

dN2

dt
= N2 h(N1, N2) (2.18)

where g en h are continuous functions of N1 and N2, with continuous first
derivatives. This model was reviewed by May in 1972, [43], who proved
that limit cycle behavior is implicit in essentially all conventional predator-
prey models. This model requires density dependence or resource-limitation
effects at least for the prey population in contrast with the original Lotka-
Volterra model which invokes exponential population growth. These sort
of nonlinear two-dimensional equations possess either a stable equilibrium
point or a stable limit cycle, a fact that can be guaranteed by the Poincar-
Bendixson theorem, [43]. In three dimensional systems, [20], there are
two more possible attractors such as torus, [44] and strange attractors.
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Part II

Original Research





3

Joint effects of nutrients and
contaminants on the dynamics
of a food chain in marine
ecosystems

3.1 Introduction

Marine waters and in particular coastal waters are increasingly exposed to
anthropogenic pressures represented not only by the growing input of nu-
trient and contaminants related to urban, agricultural and industrial activ-
ities, but also by the exploitation of coastal areas for aquaculture, fishing
and tourism. Since the resources of the coastal zone are exploited by differ-
ent stakeholders it is essential to improve the knowledge on the ecosystem’s
vulnerability to stressors and protect those areas through a sensible man-
agement.

The interaction of pollutants and nutrients on aquatic ecosystems is
difficult to evaluate, since many direct and indirect effects have to be consid-
ered. Contaminants can have instantaneous effects, such as massive killings
after an accidental contaminant release. Other toxic effects, such as geno-
toxicity and reproductive failure are less evident and they act on a longer

35
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time-scale; however, they represent an important risk for the ecosystem.
Furthermore, if the contaminant is lipophilic1, bioaccumulation2 should be
considered. On the other hand, an increase of the nutrient load can have
the direct effect of raising the primary production at the bottom of the food
chain and consequently increase the concentration of the organic matter in
the system. But the higher concentration of organic matter can affect the
bioavailability of the contaminants and therefore the fate of pollutants in
the aquatic environment and their effects on the impacted ecosystem [45].

Thus, contaminants affect aquatic ecosystems through direct and indi-
rect effects [46], from acute and/or chronic toxicity on sensitive species to dis-
ruption in the food web structure. Some species might be more sensitive than
others to a certain chemical, but since the different populations are linked
to each other by competition and predation, species which are not directly
stressed may respond indirectly [46]. Within a food web, community-level
relations arise from unobservable indirect pathways. These relations may
give rise to indirectly mediated relations, mutualism and competition [47].
In some cases environmental perturbations alter substantially the dynamics
or the structure of coastal ecosystems and the effect may produce the occur-
rence of a trophic cascade and eventually the extinction of some species [48].
A better understanding of the relative importance of top-down (e.g. overfish-
ing) versus bottom-up (e.g. increased nutrient input causing eutrophication)
controls is essential and can only be achieved through modelling [49].

Sudden regime shifts and ecosystem collapses are likely to occur in
stressed ecosystems. Catastrophic regime shifts have been related to alter-
native stable states which can be linked to a critical threshold in such a way
that a gradual increase of one driver has little influence until a certain value
is reached at which a large shift occurs that is difficult to reverse [50, 51].
The shape of ecotoxicological3 dose-response curves [52], showing a sharp
increase in the effect of toxic substances above a critical value, facilitates
the occurrence of regime shifts under pollutant pressure.

1The ability of a chemical compound to dissolve in fats, oils, lipids.
2An increase in the concentration of a chemical in a biological organism over time.
3“The branch of toxicology concerned with the study of toxic effects, caused by natural

or synthetic pollutants, to the constituents of ecosystems, animal (including human),
vegetable and microbial, in an integral context.”
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This study considered the combined effects of contaminant substances
and nutrient load in the framework of a simple tritrophic food chain model.
The study was restricted to contaminants, such as s-triazines4, which affect
the mortality in particular trophic levels, but which do not bioaccumulate
neither in time nor along the food chain. When studying the dynamics of
simple food chain and food web models it is also important to bear in mind
that the response might depend on the complexity of the represented sys-
tem. Chaotic dynamics, for example, seems to be more frequent in simple
ecosystem models or in models with a high number of trophic levels [53].
Thus, only the first qualitative changes of behavior occurring when increas-
ing nutrients from low values, and how this is changed by pollutants, will be
focused. And not the complex sequences of chaotic states which may occur
at high nutrient availability, whose details are more affected by the trophic
structure of the model.

Since no microbial recycling loop was included, sediment or oxygen
dynamics, or shading effects, complex eutrophication behavior typical of
coastal ecosystems [54], e.g. anoxic crises, alteration of nutrient cycling,
macroalgal blooms, etc. will not occur in the model. The study was rather
concentrated in the simplest scenarios occurring during enrichment and its
modification by contaminants, discussing particularly the indirect effects
which lead to counterintuitive behavior.

3.2 Model formulation

The Canale’s chemostat model (CC) was considered, [55,56,57], which is an
extension of the tri-trophic food-chain Rosenzweig-MacArthur model (RMA)
that has been extensively studied in theoretical ecology [58, 59, 60, 61, 62,
63, 64, 65]. This model was previously used to analyze the dynamics of a
food chain consisting of bacteria living on glucose, ciliates and carnivorous
ciliates [56,57], but can be adapted to represent an aquatic food chain with

4s-triazine is one of three organic chemicals, isomeric with each other, whose empirical
formula is C3H3N3. The three isomers of triazine are distinguished from each other by
the positions of their nitrogen atoms, and are referred to as 1,2,3-triazine, 1,2,4-triazine,
and 1,3,5-triazine or s-triazine. Among other usages triazine is used in the manufacture
of resins and as the basis for various herbicides.
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a constant nutrient input. The CC model is similar to the RMA model,
but there is an additional equation representing the input of nutrient and it
considers the losses due to the flushing rate:

Ṅ = D(I − N) − P
a1N

b1 + N
, (3.1)

Ṗ = P

[

e1
a1N

b1 + N
− a2P

b2 + P
− d1 − f1D

]

, (3.2)

Ż = Z

[

e2
a2P

b2 + P
− a3F

b3 + Z
− d2 − f2D

]

, (3.3)

Ḟ = F

[

e3
a3Z

b3 + Z
− d3 − f3D

]

. (3.4)

In this study the variables N , P , Z, F represent the nitrogen concen-
tration in the different compartments of the system (nutrient, phytoplank-
ton, zooplankton and fish, which will be also denoted with the alternative
names of nutrient, prey, predator, and top-predator, respectively) expressed
in units of mgN/l. The default parameters, see Table 3.1, were derived from
the parameters of the aquatic food chain model presented in [66] and from
the pelagic ecosystem model in [67]. I is the nutrient load or nutrient input
into the system. D is a flow rate quantifying water renewal in the system,
which affects the species through the flushing rates fi (i = 1, 2, 3). di are the
specific mortalities, bi half saturation constants for the Holling type-II pre-
dation functions, ai are maximum predation rates, and ei efficiencies. The
following condition should be satisfied by the equation parameters:

eiai > di + Dfi (i = 1, 2, 3), (3.5)

since this “avoids the case where predator and top-predator cannot
survive, even when their food is infinitely abundant” [68]. Contaminant
toxicity is incorporated in the model by an increase in mortality. Three
different scenarios were considered in each of which the contaminant affects
the mortality of only one of the compartments:

dj = d
(0)
j + ∆dj

(

(Cj)
6

(Cj)6 + 0.56

)

(3.6)
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Table 3.1: Parameters of the CC model.

Parameters value Units
Nutrient input I 0.15 mg N/l
Inflow/outflow rate D 0.02 day−1

Max predation rate a1 1.00 day−1

a2 0.50 day−1

a3 0.047 day−1

Half saturation cont b1 0.008 mg N/l
b2 0.01 mg N/l
b3 0.015 mg N/l

Efficiency e1 1.00 -
e2 1.00 -
e3 1.00 -

Mortality(base values) d1 0.10 day−1

d2 0.10 day−1

d3 0.015 day−1

Flushing rate f1 0.01 day−1

f2 0.01 day−1

f3 0.01 day−1
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j = 1, 2, and 3 labels the three trophic levels: prey, predator and top-
predator, Cj is the dimensionless concentration of the contaminant affecting
the level j, normalized in such a way that for Cj = 0.5 the toxicity achieves
half its maximum impact on mortality, and a sigmoidal function (Fig. 3.1)

has been used to model the mortality increase from a baseline value, d
(0)
j ,

to the maximum mortality, d
(0)
j + ∆dj, attained at large contaminant con-

centrations. This represents typically the shape of the dose-response curves
found when assessing toxic effects of chemical on biological populations [52].
Other works that have studied bifurcations due to mortality changes in the
CC model [20] have normally considered a linear increase. The values of d

(0)
j

and ∆dj used are written in Table 3.2.

3.3 Steady states

This system presents the following set of fixed points: The nutrient-only
state (Nu):

N = I,

P = 0, (3.7)

Z = 0,

F = 0.

The nutrient-phytoplankton state (NP):

N =
b1(d1 + Df1)

a1e1 − d1 − Df1
,

P =
De1

(

b1(d1+Df1)
a1e1−d1−Df1

+ I
)

d1 + Df1
, (3.8)

Z = 0,

F = 0.

There are two solutions (NPZ) characterized by the absence of the top
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Figure 3.1. Sigmoidal response of mortality to the concentration of the toxic
contaminant, according to Eq. (6).

Table 3.2: Contaminant parameters for the three compartments, j = 1, 2, 3.

j d
(0)
j ∆dj

1 (prey) 0.1 0.5
2 (predator) 0.1 0.3
3 (top-predator) 0.015 0.015
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predator:

N =
b1D + a1P − DI ±

√

4b1D2I + (−b1D − a1P + DI)2

2D
,

P =
b2(d2 + Df2)

a2e2 − d2 − Df2

, (3.9)

Z = −(b1d1 + b1Df1 + d1N − a1e1N + Df1N)(b2 + P )

a2(b1 + N)
,

F = 0.

but only the one with the positive sign of the square root is positive definite.

And finally there are three internal fixed points (NPZF), in which all
species are alive. From the equation for Ṅ , (3.1), an equation for P as
a function of N is obtained. Introducing it into (3.2) together with the
expression for Z = Z̄ which is obtained from (3.4), the following equation
for N is obtained:

[A1N
3 + A2N

2 + A3N + A4] = 0 (3.10)

where

A1 = D(a1e1 − d1 − D0f1),

A2 = −a2
1b2e1 − D(d1 + Df1)(2b1 − I) + a1(b1De1 + b2(d1 + Df1) + a2Z̄ − De1I),

A3 = b1(−D(d1 + Df1)(b1 − 2I) + a1(b2(d1 + Df1) + a2Z̄ − De1I)), (3.11)

A4 = b2
1D(d1 + Df1I).

The values of the remaining variables at the three internal fixed point
solutions can be written in terms of Z̄ and of the three values of N = N̄
obtained from the cubic 3.10:

N = N̄ ,

P = D0(I − N̄)
b1 + N̄

a1N̄
,

Z = Z̄ =
b3(d3 + Df3)

a3e3 − d3 − Df3
, (3.12)

F =
(a2e2P − b2d2 − b2Df2 − d2P − Df2P )(b3 + Z̄)

a3(b2 + P )
.
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It turns out that only one of the three fixed point solutions is positive for
the parameter values in Table 3.1.

Mathematically there are four additional solutions but they are not fea-
sible biologically since they lead to negative populations: the state character-
ized by the absence of phytoplankton (N = I, P = 0, Z 6= 0, F 6= 0 ), by the
absence of nutrient and of the top-predator (N = 0, P 6= 0, Z 6= 0, F = 0),
by the absence of the nutrient and of phytoplankton (N = 0, P = 0, Z 6=
0, F 6= 0), and by the absence of nutrient (N = 0, P 6= 0, Z 6= 0, F 6= 0).

3.4 Stability and bifurcation analysis

The dynamics of the CC food-chain models has been analyzed for several
parameter values by direct numerical integration of the model equations,
and by bifurcation analysis carried on with the software XPPAUT, [22, 23].
Background on the different types of bifurcations can be found in [3, 19].
Only bifurcations of positive solutions were considered and, as stated in
the introduction, the routes to chaotic behavior occurring at high nutrient
loadwere not described in detail. For low and intermediate nutrient load
the relevant attractors are the fixed points described above, and also two
limit cycles, one involving the variables N , P and Z, lying on the F = 0
hyperplane, and another one in which all the species are present. These
attractors are represented in Fig.3.2.

3.4.1 The non-contaminant case

First, system behavior for the case of mortalities at their base values was
considered, i.e. in the absence of contaminants. This will serve as a ref-
erence for later inclusion of contaminants. Fig.3.3 shows the sequence of
bifurcations when increasing the nutrient input I. For very low input, only
nutrients are present in the system (solution (3.7)). When I > ITB1, with

ITB1 =
b1(d1 + Df1)

a1e1 − d1 − Df1
, (3.13)
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Figure 3.2. a) Projection on the PZF subspace of a trajectory which starts close
to the NP fixed point, approaches the NPZ one, and finally is attracted by the
NPZF fixed point. I = 0.4 mgN/l, C1 = C3 = 0, and C2 = 0.8. This shows
the approximate location of these points and that only the NPZF one is stable for
these parameter values. (b) Cyclic behavior: Thick line is a trajectory leading to an
attracting limit cycle on the NPZ hyperplane for I = 0.1 mgN/l, C1 = C2 = 0, and
C3 = 0.8 ; dotted line is a trajectory attracted by the limit cycle involving all the
variables for I = 0.24 mgN/l, C1 = C2 = 0, and C3 = 0.2.

phytoplankton becomes positive in a transcritical bifurcation (which
was called TB1) at which the NP state (3.8) becomes stable. Since ITB1 =
0.0008909 is very small, this bifurcation can not be clearly seen in Fig.
3.3. From this value on, further enrichment leads to a linear increase of
phytoplankton (3.8), until a second transcritical bifurcation, TB2, at which
zooplankton becomes positive and the NPZ solution (3.9) becomes stable.
It happens at

ITB2 =
(d1 + Df1)(P

NPZd1 − P NPZa1e1 − b1De1 + P NPZDf1)

De1(d1 − a1e1 + Df1)
(3.14)

where P NPZ is the expression for P in the NPZ solution, (3.9). From this
point the zooplankton starts increasing (keeping phytoplankton concentra-
tion at a constant value) until a new bifurcation TB3 occurs, at which the
fish concentration starts to grow from zero while zooplankton remains con-
stant, phytoplankton increases, and nutrients decrease (this is the positive
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interior solution NPZF, Eq. (3.12)). The value of ITB3 is given implicitly
by:

dTB3
3 =

ZNPZa3e3 − ZNPZDf3 − b3Df3

ZNPZ + b3

(3.15)

where ZNPZ is the expression for Z in the NPZ solution, (3.9).

One of the first counterintuitive indirect effects present in the food-
chain dynamics has been noticed here: In the NPZF solution, increase of
nutrient leads to decrease in nutrient concentration (see Fig. 3.3). The rea-
son is the top-down control that the higher predator begins to impose on
zooplankton, leading to positive and negative regulation on the compart-
ments situated one or two trophic levels below Z, respectively.

Shortly after becoming unstable at TB3, the fixed point NPZ expe-
riences a Hopf bifurcation (HB1) which leads to a limit cycle on the NPZ
hyperplane. Since the whole hyperplane has become unstable before this
bifurcation occurs, this cycle has no direct impact on long time dynamics,
although it can affect transients, and it will become relevant when adding
contaminants. The steady coexistence of the three species at the NPZF
fixed point remains stable until a new Hopf bifurcation HB2 occurs at which
the fixed point becomes unstable and oscillations involving the three species
and the nutrients (Fig. 3.2) occur. The instabilization of steady coexis-
tence by the appearance of oscillations, which could facilitate extinctions if
the amplitude of oscillation is sufficiently large, is the well known “para-
dox of enrichment”, first mathematically described by Rosenzweig [41]. A
good overview of the studies connected with this issue can be found in the
paper [69]. See also [70, 71, 72, 73].

Gragnani et al. [64] demonstrated that the dynamics of Canale’s model
for increasing nutrient supply is qualitatively similar to the one of the RMA
model. After the stationary and cyclic states described above, chaotic be-
havior followed a different cyclic behavior with higher frequency are found.
Also, the maximal average density of top-predator is attained at the edge
between chaotic and high frequency cyclic behavior. It was not further de-
scribed these states but the concentration was in the modifications arising
from toxic effects of contaminants on the dynamics, for small and moderate
nutrient loading.
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3.4.2 Contaminant toxic to phytoplankton

Now the contaminant C1 is introduced. It increases the mortality of phyto-
plankton according to expression (3.6) for i = 1. Expressions for the bifur-
cation lines TB1, TB2 and TB3 as a function of I and C1 can be obtained
simply by replacing the mortality (3.6) into the corresponding expressions
(3.13), (3.14), and (3.15), respectively. The same can be done numerically
for the Hopf bifurcation lines HB1 and HB2. The result is shown in the
2-parameter bifurcation diagram of Fig. 3.4.

Because of the sigmoidal effect of the contaminant (3.6), its impact is
mild for C1 ≪ 0.5, and it will saturate for C1 ≫ 1. Thus, in both limits
the bifurcation lines become parallel to the horizontal axis. The interesting
behavior is for intermediate values of C1, where the bifurcation lines are dis-
placed towards higher values of I. That is, the first effect of the contaminant
is to stabilize the simplest solutions, the ones stable at lower nutrient load,
delaying until higher nutrient loads the transitions to the most complex ones.

But this stabilizing effect is different for the different solutions, and
the most important qualitative change occurs at point M in Fig.3.4. It is
a codimension-2 point at which the transcritical bifurcation TB3, involving
the NPZ and the NPZF fixed points, and the Hopf bifurcation HB1 of the
NPZ point, meet. A new Hopf bifurcation line of the NPZF equilibrium,
HB3, emerges also from that point. The cycle created at HB3 consists in
oscillations of all the four variables, similarly to the cycle created at HB2.
Other characteristics of the organizing center M is that the Hopf bifurcations
change subcritical to supercritical character across it, and also that a line
(not shown) of saddle-node bifurcations of the cycles created at HB1 and
HB3 emerges also from M. There are a number of additional structures in
parameter space emerging from double-Hopf points, and transcritical bifur-
cations of cycles which were not described further here.

Despite the complexity of the above scenario, its effect on the bifur-
cation sequence when increasing nutrient level (up to moderate levels) in
the presence of contaminant values beyond M is rather simple (see Fig.3.5):
since the lines TB3 and HB1 have interchanged order, the Hopf bifurcation
HB1 in which a stable limit cycle is created in the hyperplane F = 0 occurs
before the appearance of a positive NPZF equilibrium. As a consequence,
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fish remains absent from the system even at relatively high nutrient levels.
This is one of the counterintuitive outcomes of indirect effects: adding a
substance which is toxic for phytoplankton makes fish to disappear, whereas
the oscillating phytoplankton levels are indeed comparable with the ones at
zero contaminant (see Fig. 3.5). As in the absence of contaminant, period
doubling and transition to chaos, which have not been analyzed in detail,
occur when increasing further the value of I.

A different view of the transitions can be given by describing the bi-
furcations occurring by increasing the contaminant concentration at con-
stant I. Fig. 3.6 shows that for an intermediate value of the nutrient load,
I = 0.15 mgN/l. The NPZF fixed point is stable at low contaminant, but
oscillations appear when crossing the HB3 lines. Very shortly after that,
this limit cycle involving all species approaches the F = 0 hyperplane until
colliding with the cycle lying on that plane, which involves only the N , P ,
and Z species. At this transcritical bifurcation, this limit cycle from which
fish is absent becomes stable and is the observed solution for larger C1. As
before, adding a substance which is toxic for the bottom of the trophic chain
has the main effect of suppressing the top-predator.

3.4.3 Contaminant toxic to zooplankton

As before, the mortality expression (3.6) for j = 2 can be inserted in the
expressions (analytical or numerical) for the bifurcations TB1, TB2, TB3,
HB1, and HB2 to elucidate the impact of the contaminant C2, acting on
zooplankton, into the food chain dynamics. As in the C1 case, the bifurcation
lines become displaced to higher nutrient load values, so that the sequence
of bifurcations of Fig. 3.3 becomes delayed to higher values of I. This
is seen in the 2-parameter bifurcation diagram of Fig. 3.7. At difference
with the C1 case, the TB3 and HB1 lines do not cross, so that there are no
further qualitative changes with respect to the case without contaminants
(Fig. 3.3), at least up to moderate values of I.

Another view of the consequences of Fig. 3.7 can be seen in Fig. 3.8,
which shows the different regimes attained at a fixed intermediate value of
I (I = 0.15 mgN/l) and increasing C2. The most remarkable indirect effect
is that, for C2 < CTB3

2 = 0.5103, zooplankton remains constant despite
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the increase of C2 which is toxic to it. The net effect of C2 in this range
is to decrease the amount of fish until extinction. Only for C2 > CTB3

2

contaminant kills zooplankton until extinction at C2 = CTB2
2 = 0.7406.

3.4.4 Contaminant toxic to fish

The simplest bifurcation lines are shown in Fig. 3.9 as a function of I and C3,
the contaminant affecting fish mortality. As in the cases before, bifurcations
are delayed to higher values of I when contaminant is present. As in the C1

case, this delay is different for the different lines, resulting in a crossing of
TB3 and HB1 in a codimension-2 point M, joining there also a new Hopf
bifurcation HB3 of the NPZF fixed point and other bifurcation lines (not
shown). Additional structures emerging from other codimension-2 points,
such as double-Hopf points are also presented but they were not studied in
detail. The qualitative behavior when increasing I at large C3 (Fig. 3.10) is
similar to the C1 case: there is a succession of N, NP and NPZ fixed points
followed by a Hopf bifurcation which leads to oscillations of the N , P and Z
variables, remaining the fish absent from the system. Only at relatively high
nutrient values does the NPZF steady state become stable at the subcritical
branch of the Hopf bifurcation HB3 before becoming unstable again at HB2.
Two of the NPZF internal solutions (3.12) which, in contrast with the C3 = 0
case, are positive here, collide at a limit point. In Fig. 3.9 the line of these
points as a function of the I and C3 parameters is labelled as LP. The two
solutions exist above that line, and cease to exist below. The sequence of
bifurcations encountered when increasing C3 at constant intermediate values
of I is also similar to the C1 case of Fig. 3.6 in that the NPZF stable fixed
point becomes a cycle involving all the variables when HB3 is crossed, and
in that this falls onto the F = 0 plane shortly afterwards. The details of the
last transition, however, are somehow more complex.
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Figure 3.3. Bifurcation diagrams of the four variables as a function of nutrient in-
put parameter I. Thick lines and full symbols denote stable fixed points and maxima
and minima of stable cycles, respectively, and thin lines and open symbols, unstable
ones. The name of the fixed points is indicated. The relevant bifurcations (described
in the main text) occur at ITB1 = 0.0008909 mgN/l, ITB2 = 0.01345 mgN/l,
ITB3 = 0.05352 mgN/l, IHB1 = 0.06101 mgN/l, and IHB2 = 0.2298 mgN/l, loca-
tions which are indicated by arrows.
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Figure 3.4. Some of the bifurcations occurring as a function of nutrient input I
and contaminant C1 affecting phytoplankton. The name of the bifurcation lines is
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species is the relevant attractor for low values of C1. The limit cycle on the F = 0
hyperplane is the relevant attractor above the HB1 line for large C1. Additional
bifurcations (not shown) occur in other regions of the open areas above HB1 and
HB2.



3.4. Stability and bifurcation analysis 51

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

I

N

HB3

NPZF NPZ

NP

PD

TB2

TB1

TB3

HB1

HB2

0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

0.05

I

P

PD

NPZF

NP

NPZF

NPZTB3

HB3

HB2

HB1

TB1

TB2

0 0.2 0.4 0.6 0.8 1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

I

Z

NPZF

NP

NPZHB3
HB2

PD
HB1

TB1

TB2

TB3

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

0.1

0.12

F

I

HB3

HB2

TB2

HB1
TB1

TB3

PD

NPZF

NPZ

Figure 3.5. Bifurcation diagrams of the four variables as a function of nutrient
input parameter I, at a constant high value of the contaminant affecting phyto-
plankton, C1 = 0.9. Thick lines and full symbols denote stable fixed points and
maxima and minima of stable cycles, respectively, and thin lines and open symbols,
unstable ones. The name of the fixed points is shown. The bifurcation points are
identified by arrows. PD is a period doubling bifurcation.



52 Chapter 3.

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

0.1

C
1

N

BP

NPZ

NPZF

TB3

HB3

0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

C
1

P

NPZF

NPZ HB3
TB3

BP

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

C
1

Z

NPZF

NPZ BP

TB3

HB3

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

C
1

F

NPZ

NPZF

HB3

TB3BP

Figure 3.6. Bifurcation diagrams of the four variables as a function of C1, at
constant nutrient input I = 0.15 mgN/l. Thick lines and full symbols denote stable
fixed points and maxima and minima of stable cycles, respectively, and thin lines
and open symbols, unstable ones. BP is a transcritical bifurcation of cycles. The
name of the fixed points is shown. The bifurcation points are identified by arrows.



3.4. Stability and bifurcation analysis 53

0

0.2

0.4

0.6

0.8

1

I

0 0.2 0.4 0.6 0.8 1

HB1(NPZ)

HB2(NPZF)
TB3

TB2

C2

NPZF

NPZ

NP

NPZF

NPZ

NP
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Immediately above the HB2 line, the relevant attractor is a limit cycle involving all
the species. Additional bifurcations (not shown) occur at higher values of I.
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Discussion and conclusion

We have seen that, because of the assumed sigmoidal influence of contami-
nant on mortality, toxic effects on our food chain model have a distinct effect
at low and at large concentrations, with rather fast transition behaviour in
between.

At small and moderate contaminant concentrations the main effect is
a displacement of the different bifurcations towards higher nutrient load val-
ues, so that transitions to states containing less active compartments, and
states without oscillations, become relatively stabilized. Contaminants in-
crease the stability of the food chain with respect to oscillations caused by
increased nutrient input. A similar outcome has been observed in [74] for a
food-chain model composed of a toxin producing phytoplankton, zooplank-
ton and fish population. In that study chaotic dynamics can be stabilized
by increasing the strength of toxic substance in the system.

For higher contaminant values, in most of the cases there is a reordering
of the different transitions, giving rise to the appearance of new bifurcations
which change qualitatively the sequence of states encountered by increasing
nutrient input. The main effect, even in the cases in which such reorder-
ing does not occur (the case of C2 contaminant), is that the top predator
becomes the most depleted, being even brought to extinction. This strong
impact of the contaminant on the higher predator occurs even in the cases
in which the direct toxic effect is on lower trophic levels. It seems that the
increased mortality at lower trophic levels becomes nearly compensated by
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a debilitation of top-down control exerted by higher predators. Obviously,
the top predator can not benefit from this mechanism, thus becoming the
most affected.

Extrapolation of the above findings for real ecosystems may be prob-
lematic, because of the much higher food web complexity found in nature.
We believe however that the counterintuitive indirect effects described above
should be kept in mind when analyzing the complex responses that ecosys-
tems display to changes in external drivers such as nutrient load and pollu-
tants, and that the detailed identification of them performed here can help
to interpret some aspects of the behaviour of real ecosystems.



A

Numerical continuation
Programs

A.1 XPPAUT

Figure A.1: XPP window.

Although there is a good explanation
how you can use XPPAUT to con-
tinue your equations in the webpage
http://www.math.pitt.edu/ bard/xpp/
xpp.html, a breath explanation to start
using AUTO from XPP will be given
in this appendix. Besides some tips in
order to help you to get rid of some
trick problems. In the home page cited
before you can download the XPPAUT
program and follow the instructions how
to install it.

XPP is a freely available tool written in C-language for solving differ-
ential equations, difference equations, delay equations, functional equations,
boundary value problems, and stochastic equations. Besides, it contains the
code for the popular bifurcation program, AUTO, [22]. It can be used in
the following platforms: Linux, MacOs, Unix and Windows.
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Before start using XPPAUT you have to write your system into a ode
file. In this file you have to write the system to be studied, the initial condi-
tions, the parameter values and , if you want, some numerical specifications,
such as the time step size, the amount of time to integrate, the parame-
ter range and tolerance error in the algorithm used. Observe the following
example of an ode file.

# RMA model

dX1/dt=X1*(R*(1-X1/K)-A2*X2/(B2+X1))

dX2/dt=X2*(E2*A2*X1/(B2+X1)-A3*X3/(B3+X2)-D2)

dX3/dt=X3*(E3*A3*X2/(B3+X2)-D3)

# D3=0.015+0.015*cont^6+h^6

#The initial condition

#par D2=0.01,D3=0.005

X1(0)=0.181022

X2(0)=0.0333333

X3(0)=1.65108

#D2=0.01,D3=0.015

X1(0)=0.0939155

X2(0)=0.128571

X3(0)=1.57478

#The parameters

par D2=0.01,D3=0.015

par R=0.5,K=0.2

par A2=0.4,B2=0.1,E2=1

#par h=0.5,cont=0

par A3=0.05,B3=0.3,E3=1

#The XPP options

@ total=2000, bounds=1000

@ Nmax=2000, Ds=0.005,Dsmin=0.001

@ EPSL=1e-06,Dsmax=0.01,EPSU=1e-06,EPSS=1e-06

@ ParMin=0, ParMax=0.3
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Figure A.2. Auto window: Bifurcation Diagram showing fixed points and periodic
solutions.

@ Xmin=0,Ymin=0

@ Xmax=1,Ymax=1

done

Bifurcation analysis must be started from either a fixed point or a
periodic orbit. Sometimes, there are complicated parameter zones in which
AUTO calculation is too slow or does not converge. To solve this kind of nu-
merical complications i) you can reduce the tolerances (EPSL, EPSS, EPSU)
that present the default value 10−4, but usually the better value of the toler-
ances is 10−7 or ii) you can start from another fixed point value in order to
scape from the complicated zone of parameters. In the ode file example you
can observe two set of initial conditions, the set of initial conditions consid-
ered by XPP will be the last one you write, regarding parameters, AUTO
considers the first parameter written as the one to continue the solutions.
But you can change the parameters as well as the numerical specifications
in the XPP menu without changing your ode file.

XPP can be used to calculate fixed points and then the result can be
written in your ode file to avoid calculating it again. To continue a fixed
point, go to the AUTO window : click on “Run” and then on “Steady
state”. Using the system of equations cited in the example you will find the
bifurcation diagram like in the first picture of Figure A.2. To follow periodic
solutions, you grab a HP point that designates a Hopf bifurcation and click
on “Run” and select “Periodic” as shown in the second picture of Figure
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Figure A.3: Two-parameter bifurcation Diagram.

A.2 and a branch of periodic solutions will appear.

In order to analyze changes in the phase portrait of the system when
varying two parameters you have to select “Axes” then “Two parameters”
and a window will appear to select the main parameter and the second
parameter. You can never start continuations from two parameter calculus,
first you have to continue from one parameter and afterwards grab the special
points to study two-parameter curves. As the same situation with starting
points, problems with convergence and speed of calculus can occur, in this
way the main and second parameter can be switched to obtain complete
two-parameter curves, see Figure A.3.

The AUTO window is not convenient to edit the plot. Consequently
the postscript is generated without any possibilities of change except by
using a postscript editor afterwards. However, from the AUTO window
you can save the bifurcation diagram data which can be used later to make
nicer figures using XPP or another software. Recently it was posted on the
XPP’s webpage a link to a worthwhile Matlab function that orders the messy
diagram outputs of XPPAUT and generates graph which can be modified
using the graph tools of Matlab. But I’ve made my own Matlab program to
solve some plotting problems when there are “MX” points, that means failure
to converge. Figure A.4 shows some plots of AUTO data using Matlab, all
the plots are related to the second one in Figure A.3. The first plot shows a
“messy” plot where all the lines are connected and you can not eliminate the
lines with convergence failure. The second plot was generated by my own
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Figure A.4: “Make-up of plots”

code in matlab and as you can see all the lines are disconnected, allowing to
cut the undesirable lines as showed in the third plot.

%Copyright by Flora Souza Bacelar
%Plot bifurcation diagrams in Matlab that have been saved by XPPAUT
%Tested Under Matlab version 7.4.0.287 (R2007a)

[file_in,path] = uigetfile(’∗.dat’,’.dat file saved by AUTO (XPPAUT)’);
file_name = [path file_in];
b=load(file_name);

linhas=size(b(:,1),1);
a=zeros(linhas+2,5);
a(1:linhas,1:5)=b(1:linhas,1:5);
figure;
m=0;

for i=1:linhas+1

if a(i,4)==a(i+1,4);
m=m+1;
c(m,1)=a(i,1);
c(m,2)=a(i,2);
c(m,3)=a(i,3);
c(m,4)=a(i,5);
else
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m=m+1;
c(m,1)=a(i,1);
c(m,2)=a(i,2);
c(m,3)=a(i,3);
c(m,4)=a(i,5);
size(c(:,1),1);

if a(i,4)==1 %STABLE STEADY STATE
plot(c(:,1),c(:,[2 3]),’linestyle’,’-’,’linewidth’,3,’color’,’k’);
hold on;
elseif a(i,4)==2;%UNSTABLE STEADY STATE
d=zeros(m+2,4);
d(1:m,1:4)=c(1:m,1:4);
n=0;
for j=1:m+1
if d(j,4)==d(j+1,4);
n=n+1;
f(n,1)=d(j,1);
f(n,2)=d(j,2);
f(n,3)=d(j,3);
else
n=n+1;
f(n,1)=d(j,1);
f(n,2)=d(j,2);
f(n,3)=d(j,3);
plot(f(:,1),f(:,[2 3]),’linestyle’,’- -’,’linewidth’,1,’color’,’k’);
hold on;
f=zeros(1);
n=0;
end

end
elseif a(i,4)==3;%STABLE PERIODIC ORBIT
plot(c(1:5:length(c),1),c(1:5:length(c),[2 3]),’linestyle’,’o’,’linewidth’,2,
’Markersize’,8,’color’,’r’,’Markerfacecolor’,’r’);
hold on;
else %a(i,4)==4;%UNSTABLE PERIODIC ORBIT
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plot(c(:,1),c(:,[2 3]),’linestyle’,’o’,’linewidth’,2,’Markersize’,8,’color’,’b’);
hold on;
end
c=zeros(1);
m=0;
grid on;
axis tight
end

end

Of course before starting bifurcation analysis with AUTO you might
know your system making some analytical studies, when possible, and nu-
merical analyzes in order to obtain the interesting parameter region in which
the bifurcations are laid.

A.2 Matcont

Figure A.5: Matcont window.

Matcont is a freely available graph-
ical Matlab package for the study
of dynamical systems. This package
can be downloaded from the webpage:
http://www.matcont.ugent.be/.

Like XPPAUT, using this tool is
possible to integrate numerically the
equations and to do the continuation of
equilibrium and periodic solutions with
respect to a control parameter. Among
many possibilities of this tool usage it is
also possible continue a equilibrium in two and three control parameters.

Matcont contents a folder with some systems as an example. In order
to write your own system, the better way to do it is choosing one among
of the examples and then modify and rename it. In this way the steps
you should follow are: open the Matcont window, see Figure A.5, choose
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Figure A.6: Matcont system window.

“Select” and then “Systems” and click in the option “Edit/Load” instead of
the option “New”. As a result a window, Figure A.6, will appear in which
you can write your system.

Figure A.7. Matcont
resume window.

Since you are in the Matlab platform, you can
use all the graph tools therein. You can also see si-
multaneously the continuation evolution in all vari-
ables and in a three dimensional space, you just
have to select the “window” option and add how
many plots you want. With Matcont, you will not
have problems with mixed data or lines in the plots.
However, is better stop the process of continuation
each bifurcation point. This allows you to access
separately each branch of equilibria. So, after se-
lecting the control parameter and the fixed point to
continue, click “compute”, then “forward”. The calculation will stop when
a bifurcation point is detected and a small window with three options will
appear, see Figure A.7. Select “stop” option, and immediately, rename the
present curve. To extend the curve select it and restart from the last point
of the curve. This will permit you to access each branch of the curve in
order to edit them separately.
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In order to illustrate, see Figure A.8, that shows all the windows that
compounds the Matcont tool.

There are other softwares that can be used to study dynamical systems,
see the webpage http://www.dynamicalsystems.org/sw/sw/. All of them
have advantages and disadvantages, you just might choose the one that fits
your style of working. In the present thesis both XPPAUT and Matcont
were used. Auto runs faster the continuations while Matcont seems to be
more stable in the complicated range of parameters mentioned before.

Figure A.8: Matcont windows.
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60327, Ministério de Educación y Ciencia. Investigador principal: M.
San Miguel.

Teaching Experience



Curriculum 83

1. Classical Mechanics 1. Federal University of Bahia (UFBA), (Brazil).
05/01/2004-05/01/2006.

2. Classical Mechanics 1. Centro Baiano de Ensino Superior (AREA1),
(Brazil). 01/03/2005-02/01/2006.

3. Electromagnetism. Centro Baiano de Ensino Superior (AREA1), (Brazil).
01/07/2005-02/01/2006.

Stays at foreign research centers

• From 10/05/2006 to 12/05/2006 under the supervision of Professor
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ENFMC), São Lourenço (Brazil), (2006). [O]

12. “Integration of Langevin Equations with Multiplicative noise: Using
a split-step scheme”, PHYSBIO- Non-equilibrium in Physics and in
Biology, St. Etienne, France. October (2006). [O]

13. “A comparative Analysis of time-delayed models of cancer therapies at
the vascular stage. 2nd Conference of the BioSim Network of Excel-
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Bifurcation theory and dynamical systems 
techniques were used to analyze the joint effect of 
contaminants and nutrient loading on population 
dynamics of marine food chains. Contaminant 
toxicity is assumed to alter mortality of some species 
with a sigmoidal dose-response relationship. A 
generic effect of pollutants is to delay transitions to 
complex dynamical states towards higher nutrient 
load values, but more counterintuitive conse-
quences arising from indirect effects are described. 
In particular, the top predator seems to be the 
species more affected by pollutants, even when 
contaminant is toxic only to lower trophic levels
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