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Excitability Mediated by Dissipative Solitons
in Nonlinear Optical Cavities

P. Colet, D. Gomila, A. Jacobo, and M.A. Matı́as

Abstract Cavity solitons, which are dissipative solitons with a finite extension that
appear in the transverse plane of nonlinear optical cavities, have been advocated for
use in fast and compact optical information storage. We discuss the instabilities that
can affect cavity solitons appearing in Kerr cavities. In particular, cavity solitons
may exhibit a Hopf bifurcation leading to self-pulsating behavior, which is then
followed by the destruction of the oscillation in a saddle-loop bifurcation. Beyond
this point, there is a regime of excitable cavity solitons which appear when suitable
perturbations are applied. Excitability is characterized by the nonlinear response of
the system upon the application of an external stimulus. Only stimuli exceeding
a threshold value are able to elicit a full and well-defined response in the system.
In the case of cavity solitons, excitability emerges from the spatial dependence,
since the system does not exhibit any excitable behavior locally. We demonstrate
the existence of two different mechanisms which lead to excitability, depending on
the profile of the pump field.
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Instituto Mediterráneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus Universitat de les
Illes Balears, E-07122 Palma de Mallorca, Spain, jacobo@imedea.uib.es

M.A. Matı́as
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1 Introduction

The concept of excitability was initially introduced in the context of biological
systems, e.g., to describe neuron firing, and it has been found to be present in a
wide variety of systems [1, 2], including optical systems [3, 4, 5, 6, 7]. Typically, a
system is considered to be excitable if the response of the system to perturbations of
the stationary state varies greatly, depending on whether the amplitude of the pertur-
bation exceeds a threshold value. Thus, while small perturbations induce a smooth
return to the fixed point, above-threshold perturbations induce a large phase space
excursion (firing) before coming back to the rest state. Furthermore, after one fir-
ing, the system cannot be excited again within a refractory period of time. In phase
space [8, 9], excitability occurs for parameter regions where a stable fixed point is
close to a bifurcation in which an oscillation is created. A well-known example of
an excitable system is the FitzHugh–Nagumo model, close to the Hopf bifurcation.
One may also find excitable behavior mediated by a saddle point, in the form of
either an Andronov (or saddle node on the invariant circle) bifurcation or a saddle-
loop (or homoclinic) bifurcation. These three scenarios are the simplest possible,
and they occur in systems that, minimally, can be characterized by two phase space
variables. The first scenario is characterized by the fact that the response time to
come back to the fixed point after a firing is basically constant. This is described as
a Class II excitability. In the last two scenarios, where excitability is mediated by
a saddle, the distribution of response times is unbounded and they are described as
Class I excitability.

The concept of excitability has been extended to systems with spatial dependence
by coupling several or many zero-dimensional excitable systems [1, 2]. Here, we
consider a different situation – a system that does not show excitable behavior when
there is no spatial dependence, but does show this behavior when the dissipative
localized structures appear in an extended system with spatial dependence.

Dissipative solitons (DSs) are spatially localized structures that appear in certain
dissipative media [10, 11], and, in particular, they have been found in a variety
of systems, including chemical reactions [12, 13], gas discharges [14], and fluids
[11]. They are also found in optical cavities due to the interplay of different effects,
such as diffraction, nonlinearity, driving, and dissipation [15, 16, 17, 18, 19]. These
structures, also known in this field as cavity solitons, have to be distinguished from
conservative solitons which are found, for example, in propagation in fibers, and
for which there is a continuous family of solutions, which can depend on the initial
conditions. Instead, a cavity soliton is unique once the parameters of the system
have been fixed. This fact makes these structures potentially useful in optical (i.e.,
fast and spatially dense) storage and processing of information [17, 19, 20, 21, 22].

DSs may develop various kinds of instabilities, as they may start moving, breath-
ing, or oscillating. In the latter case, the amplitude of the DS oscillates in time,
while its position remains stationary in space, like the “oscillons” found in a vi-
brating layer of sand [23]. Oscillating DSs are autonomous oscillons and have been
reported in both optical [24, 25, 26] and chemical systems [27]. They appear when
the DS exhibits a Hopf bifurcation. Here, we describe a route by which autonomous
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oscillating DSs are destroyed, leading to an excitability regime [28, 29]. The ex-
citable behavior may confer new computational capabilities, beyond information
storage, to DSs in optical systems.

In particular, we consider the dynamics of DSs arising in optical cavities filled
with a Kerr nonlinear medium. These are known as Kerr cavity solitons (KCS) as
a consequence of a modulational (namely a pattern-forming) instability of a ho-
mogeneous solution. They exist in the parameter range where the homogeneous
solution coexists with sub-critical (hexagonal) patterns. They share some proper-
ties with propagating spatial (conservative) solitons in a Kerr medium, but there are
also interesting differences. While Kerr spatial solitons are stable in one transverse
dimension (1D), it is well known that their 2D counterparts are unstable against
self-focusing collapse [30]. The stability and dynamics of 2D Kerr cavity solitons
are thus of particular interest, and their existence and stability have been studied in
several papers [24, 25, 31].

Here, we show the existence of different mechanisms leading to excitability, de-
pending on the profile of the pump field. For a homogeneous pump, the mechanism
leading to excitable behavior is a saddle-loop bifurcation through which a stable
oscillating DS collides with an unstable DS [28, 29]. For a system pumped by a lo-
calized Gaussian beam on top of a homogeneous background, the scenario is richer
and one finds two different mechanisms leading to excitability. One is based on
a saddle-loop bifurcation, as above, while the other takes place through a saddle
node in an invariant circle (SNIC) bifurcation. Under the second mechanism, the
excitability threshold can be tuned by changing accessible system parameters.

2 Model

An optical cavity filled with a nonlinear Kerr medium can be described by the model
introduced by Lugiato and Lefever [32]. This prototype model, obtained by averag-
ing the dependence of the field along the propagation direction, was first introduced
to study pattern formation in this system. Later studies showed that this model also
exhibits DSs in some parameter regions [24, 31]. In the paraxial limit, after suitably
rescaling the variables, the dynamics of the intra-cavity slowly varying amplitude
of the electromagnetic field E(x, t), where x = (x,y) is the plane transverse to the
propagation direction, is given by

∂E
∂ t

= −(1+ iθ)E + i∇2E +EI + i|E2|E. (1)

The first term on the right-hand side describes cavity losses (which make the
system dissipative), EI is the input field, θ the cavity detuning with respect to EI,
and ∇2 = ∂ 2/∂x2 + ∂ 2/∂y2 is the transverse Laplacian which models diffraction.
The sign of the cubic term indicates the so-called self-focusing case.

When neither loss nor input field is present, the intra-cavity field can be rescaled
to E →Eeiθ t to remove the detuning term and (1) becomes the nonlinear Schrödinger
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equation (NLSE). For the NLSE in two spatial dimensions, an initial condition with
sufficient energy collapses, so energy accumulates at a point in space, leading to
the divergence of the solution at a finite time [33]. Dissipation, such as that orig-
inating from the cavity losses, can prevent this collapse [34]. In any case, in the
parameter region in which DSs are stable, their dynamics is closely related to the
collapse regime. In our system, the above mechanism, which combines collapse and
cavity losses, is also responsible for various instabilities arising in regular patterns
which lead to complex spatio-temporal dynamical behavior, including the existence
of optical turbulence [35].

Firstly, we will consider the case in which the input field is homogeneous, viz.
EI(x) = E0. In Sect. 10, we address the case in which the pump consists of a local-
ized Gaussian beam on top of a homogeneous background. For a constant pump,
Equation (1) has a homogeneous steady-state solution which is implicitly given by
Es = E0/(1 + (i(θ − Is)), where Is = |Es|2 [32]. For convenience, we will use the
intra-cavity background, Is, together with θ , as our control parameters. It is well
known that the homogeneous solution shows bistability for θ >

√
3.

In the following sections, it is convenient to introduce the field A(x,y) as E =
Es (1 + A), so that A(x,y) describes the solution without the homogeneous back-
ground. Equation (1) can be rewritten as

∂A
∂ t

= −(1+ iθ)A+ i∇2A+ iIs
(
2A+A� +A2 +2|A|2 + |A|2 A

)
. (2)

Note that this equation is fully equivalent to (1), without any linear approximation.
For numerical simulations, we integrate (1) using a pseudo-spectral method

where the linear terms in Fourier space are integrated exactly, while the nonlinear
ones are integrated using an approximation which is second order in time [29, 36].
Periodic boundary conditions are used since they are convenient for the pseudo-
spectral code. The system size is large enough to ensure that the electric field reaches
the homogeneous steady state well inside the boundaries. A square lattice of size
512 × 512 points was used. The space discretization was taken as dx = 0.1875,
while the time step was dt = 10−3.

3 Dissipative Solitons for Homogeneous Pump

The homogeneous solution is stable for Is < 1. The so-called modulation instability
takes place at Is = 1 and the homogeneous solution becomes unstable, leading to the
formation of hexagonal patterns [32, 37]. For Is > 1, the homogeneous solution con-
tinues to exist, although it is unstable. The hexagonal patterns are sub-critical, viz.
through an S-shaped branch, and thus, they coexist with the stable homogeneous
solution for a certain parameter range. This bistability is at the origin of the exis-
tence of stable DSs that appear when suitable (localized) transient perturbations are
applied. The DS can be seen as a solution connecting a cell of the pattern with the
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Fig. 1 Phase diagram of DSs
in a Kerr cavity. KCSs are
stable in region II and oscillate
in III. (The line between these
two regions indicates a Hopf
bifurcation.) In the lower
part, below the saddle-node
bifurcation (solid line), there
are no KCSs. When crossing
from regions III to V (VI),
one KCS develops azimuthal
instabilities, with m = 5
(m = 6) which lead to an
extended pattern. To the left
of the saddle-loop bifurcation
(dashed line), the system
exhibits excitability
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homogeneous solution. While the existence of DSs in this bistable regime is quite
generic in extended systems, the stability of such DSs strongly depends on the par-
ticular system. The region of existence of DSs, also known as Kerr cavity solitons
(KCSs), in parameter space is shown in Fig. 1 [25].

The mechanism by which KCSs appear is a saddle-node (or fold) bifurcation,
as can be seen in Fig. 2 for θ = 1.34 and Is ∼ 0.655 (|E0|2 ∼ 4.5), where a pair of
stable–unstable DSs are created [21, 38]. The middle-branch KCS is unstable and
ends at the modulational instability point where it collides with the homogeneous
solution. The middle-branch KCS then acts as a barrier. Thus, if an initial condition
is somewhat above the middle branch in phase space, it will evolve to the upper
branch (so that a DS is written), while it will decay to the homogeneous solution
if below it. This role of the middle-branch DS, as a separatrix in phase space, is
quite general and has been identified in a semiconductor model [39] and experi-
mentally observed for solitons in a sodium cell with feedback [40, 41, 42] and in a
semiconductor cavity [43].

The DSs are rotationally symmetric about their centers. Figure 2 shows the spa-
tial shape of a typical upper- and middle-branch DS. The transverse profile can be
accurately found by taking advantage of the symmetry. From (2), one obtains the
radial equation for A(r):

∂A
∂ t

=− (1+ iθ)A+ i

(
∂ 2

∂ 2r
+

1
r

∂
∂ r

)
A

+ iIs
(
2A+A� +A2 +2|A|2 + |A|2 A

)
. (3)
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Fig. 2 Bifurcation diagram of stationary KCSs: max(|E|2) vs. Is for θ = 1.34. Solid lines represent
stable solutions and dashed lines unstable ones. The lowest branch corresponds to the homoge-
neous solution that becomes unstable at Is = 1.0. The upper branch corresponds to the stable KCS,
while the middle branch corresponds to the unstable KCS. Upper and middle branches originate
at the saddle-node bifurcation. The upper branch becomes Hopf unstable for larger values of Is.
The 3D plots, from top to bottom, show the profiles of the upper-branch KCSs, the middle-branch
KCSs, and the homogeneous solution

Steady-state DS solutions, both stable and unstable, are found by equating the left-
hand side of (3) to zero. The boundary conditions for this problem are such that the
derivatives are zero at the boundaries: ∂A/∂ r(r = 0) = ∂A/∂ r(r = L) = 0, where the
system size, L, is large enough to ensure that the electric field smoothly approaches
the homogeneous solution (A(r) → 0) before reaching the boundary. Discretizing
the radial coordinate, one obtains a set of coupled nonlinear equations which can be
solved using a Newton–Raphson method [44, 45]. Spatial derivatives are computed
in Fourier space. The initial guess for the Newton method is obtained from a radial
cut of a numerical integration of the 2D equation (1). After obtaining a precise
solution for given parameter values, continuation techniques [46] are used to explore
the region of existence of KCSs in the parameter space. This approach is extremely
accurate, and it allows us to find both stable and unstable fixed point solutions.

The stability of the DS against radial and azimuthal perturbations is obtained, cf.
[47], by linearizing equation (2) around the stationary DS, ADS(r). This yields a lin-
earized equation for the time evolution of the perturbations δA(r,φ , t) = A(r,φ , t)−
ADS(r). The solutions of the linear problem can be written as

δA = [R+(r)eimφ +R−(r)e−imφ ]exp(λ t) , (4)

where m is the wavenumber of the azimuthal perturbation. This yields the eigenvalue
problem

UΨΨΨ = λΨΨΨ, (5)

where ΨΨΨ = (R+,R�
−)� and U =

(
U+ U−
U�
− U�

+

)
with
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U+ = −(1+ iθ)+ i

(
∂ 2

∂ 2r
+

1
r

∂
∂ r

− m2

r2

)
+ i2Is

(
1+ADS +A�

DS + |ADS|2
)

U− = iIs
(
1+2ADS +A2

DS

)
. (6)

For purely radial perturbations (m = 0), we have R− = R+. The matrix U is time
independent, as it is evaluated at the stationary DS (stable or unstable) under
study.

The problem thus reduces to finding the eigenvalues, λ , and eigenvectors, ΨΨΨ,
where it is important to mention that U is a complex matrix, so the eigenvectors are,
in general, complex quantities. Due to the symmetry of U, the eigenvalues are either
real or pairs of complex conjugates. This last property stems from the fact that,
considering the real and imaginary parts of As, U can be rewritten as a real matrix.
Due to the discretization of the space, ΨΨΨ becomes a vector whose dimension is 2N.
The set of eigenvectors ΨΨΨi (i = 1,2N) forms a basis, and their amplitudes define a
natural phase space for studying the dynamics of DSs. Thus, the stability problem
of stationary DSs, which, in principle, live in an infinite-dimensional phase space,
is numerically reduced to the study of these stationary DSs in a finite, albeit large,
dimensional phase space. However, we note that U is not self-adjoint, and these
modes do not form an orthogonal basis. To find the components of a field profile on
a mode ΨΨΨi, one has to project it onto the corresponding eigenmode ΦΦΦi of the adjoint
Jacobian matrix U†.

The stability of the 2D KCS, as function of the two control parameters (θ , Is),
is displayed in Fig. 1. The lowest curve corresponds to the saddle-node bifurcation
where the upper and middle KCS branches collide. There are no KCS solutions be-
low this line. The area above the saddle-node curve shows where 2D KCSs exist,
and region II corresponds to the parameter values for which they are stable. For a
given detuning, KCSs only exist for a finite range of background intra-cavity in-
tensities, Imin < Is < 1. While the range of existence is broader when the detuning
is increased, the range in which KCSs are stable is, in fact, narrower. For θ > 1.5,
it is so narrow that early studies missed the existence of stable KCSs altogether
[31]. DSs can be unstable to perturbations at zero azimuthal number (m = 0), when
crossing from regions II to III in Fig. 1, or to azimuthal perturbations (m 	= 0),
when crossing from II to V or VI [25]. In the first case, the instability preserves
the shape of the KCS and leads to an oscillatory DS. This case will be discussed
in detail in Sect. 5. On the other hand, when the KCS undergoes an azimuthal in-
stability, its radial symmetry is broken and a pattern arises, as discussed in the next
section.

4 Azimuthal Instabilities

For the approximate range θ < 1.22, shown in Fig. 1, the KCS become unstable as
Is is increased due to an azimuthal instability with m = 5 or m = 6, depending on the
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Fig. 3 Development of m = 6 azimuthal instability. From left to right: t = 0,100,200,300. θ = 1.1,
I = 0.97

detuning. The ring surrounding the KCS core breaks into five or six spots, respec-
tively. Numerical integration of (1) shows that the resulting structure then grows to
invade the homogeneous background. For θ < 1.1, the system is unstable to pertur-
bations with azimuthal number m = 6, leading to a hexagonal pattern (Fig. 3). This
pattern is not stationary but oscillates because of the values of Is and θ [35]. For
a narrow domain around θ = 1.2 (Fig. 1), m = 5 dominates and the growing pat-
tern, though locally hexagonal, retains its global five-fold symmetry (Figs. 4 and 5).
Due to periodic boundary conditions, penta–hepta defects are created as soon as the
pattern fills the whole system.

Fig. 4 Eigenmode corre-
sponding to an azimuthal
m = 5 instability. θ = 1.2,
I = 0.95

Fig. 5 Development of m = 5 azimuthal instability. From left to right: t = 0,200,400,600. θ = 1.2,
I = 0.95
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5 Oscillatory KCSs

The upper branch DS remains stable for a range of values of Is, but undergoes a
Hopf bifurcation when Is is increased, leading to a limit cycle, and the DS oscillates
autonomously [25, 31, 48]. The oscillatory regime is shown in parameter space in
Fig. 1. Thus, in these conditions, a DS is an autonomous oscillon. An interesting
connection to the conservative case is that the growth of the DS during the oscilla-
tions resembles the collapse regime observed for the 2D (or 2 + 1) NLSE. In this
case, however, dissipation arrests this growth after some value is attained for the
electric field, E. For one spatial dimension, Equation (1) also has DSs in the appro-
priate parameter regime, but these structures never undergo any Hopf instability.

As either the intra-cavity intensity, Is, or the detuning, θ , is increased, the limit
cycle gets closer and closer to the middle-branch KCS and the period of oscillation
increases. This is illustrated in Fig. 6 for an increase in the detuning θ . The time
evolution of the KCS maximum, as obtained from numerical integration of (1), is
plotted in the left column, while the dashed line shows the maximum of the middle-
branch KCS for comparison. The evolution in phase space, projected onto two vari-
ables, is sketched in the right column. At a critical value, θc, a global bifurcation

Fig. 6 Left: DS maximum intensity as a function of time for increasing values of the detuning
parameter θ . From top to bottom: θ = 1.3,1.3047,1.30478592,1.304788. Is = 0.9. Right: Sketch
of the phase space for each parameter value. The thick line shows the trajectory of the DS in phase
space
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Fig. 7 Spectrum of the
unstable (middle branch)
DS for θ = 1.30478592 and
Is = 0.9

takes place – the cycle touches the middle-branch KCS and becomes a homoclinic
orbit [Fig. 6(c)].

It is perhaps surprising that the overall scenario can be understood qualitatively
by resorting to a planar dynamical system, i.e., one with a 2D phase space. As we
will show later, these two phase space variables correspond to the amplitude of lo-
calized modes of the system. The spectrum of eigenvalues for an unstable (middle)
branch DS is shown in Fig. 7. There is only one positive eigenvalue, so this structure
has a single unstable direction in the full phase space. The limit cycle corresponding
to the oscillating KCS is such that it approaches the stable manifold of the middle-
branch KCS and then escapes along the 1D unstable manifold. The middle-branch
KCS is a saddle point in the reduced planar phase space. Once it is created, the
middle-branch DS does not undergo any bifurcation for the parameter values ex-
plored here, and so remains a saddle point in phase space. When the limit cycle cor-
responding to the oscillating KCS touches the middle branch, the KCS undergoes
a so-called saddle-loop bifurcation, and this is the subject of Sect. 6. An excitable
regime, which will be described later in Sect. 8, emerges beyond this bifurcation.

6 Saddle-Loop Bifurcation

A saddle-loop bifurcation is a global bifurcation in which a limit cycle becomes
bi-asymptotic to a (real) saddle point, or, in other words, becomes the homoclinic
orbit of a saddle point (cf. [49, 50]), i.e., at criticality, a trajectory leaving the saddle
point through the unstable manifold returns to it through the stable manifold. Thus,
on one side of this bifurcation, one finds a detached limit cycle (stable or unstable),
while on the other side, the cycle no longer exists, and only its ghost remains, as
the bifurcation creates an exit slit that makes the system dynamics leave the region
in phase space previously occupied by the cycle. (See the long plateau between
t = 15 and t = 60 in Fig. 6(d).) Thus, after the bifurcation, the system dynamics
jumps to another available attractor. In the present case, this alternative attractor is
the homogeneous solution.
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Let us take θ as the control parameter and assume that the saddle-loop bifurca-
tion occurs for θ = θSL and that θ < θSL corresponds to the oscillatory side, where
the limit cycle is detached from the saddle point, while, in turn, θ > θSL corre-
sponds to the side where the limit cycle is no longer present and there is only one
stable solution, which is a fixed point. The fact that the bifurcation is global implies
that it cannot be detected locally (a local eigenvalue passing through zero), but one
can still resort to the Poincaré map technique1 to analyze it, and, interestingly, the
main features of the bifurcation can be understood from knowledge of the linear
eigenvalues of the saddle.

The case studied here is the simplest: a saddle point with real eigenvalues, say
λs < 0 and λu > 0, in a 2D phase space. Strictly speaking, in our case, the saddle
has an infinite number of eigenvalues (Fig. 7), but only two eigenmodes take part in
the dynamics close to the saddle. This will be studied in more detail in Sect. 7. It
is convenient to define the so-called saddle index ν = −λs/λu and saddle quantity
σ = λs + λu. It can be shown2 that this cycle is stable for σ < 0, or ν > 1, at the
side of the saddle-loop bifurcation where one has a detached cycle, while for σ > 0
(ν < 1), the cycle is unstable. Analogously, one can study the period of the cycle
close to this bifurcation, and, to leading order, it is given by [51]

T ∝ − 1
λu

ln |θ −θSL| . (7)

This expression is accurate for θ close enough to θSL. Interestingly, the transient
time spent by a trajectory in the ghost region after the cycle has ceased to exist,
close enough to the bifurcation point, also shows this scaling.

Numerically, the bifurcation point will be characterized by the fact that, on
approaching it from the oscillatory side, the period will diverge to infinity (see
Fig. 8 (a)) and also because, past this bifurcation point, the DS disappears and the
system relaxes to the homogeneous solution, as shown in Fig. 6. For Is = 0.9, the
saddle loop takes place at θSL = 1.30478592. In Fig. 6, the time evolution of the
maximum of the DS is plotted for two values of the detuning, differing by 10−7,
with one just above and the other just below θSL. Figure 8 (b) displays a log-linear
plot of the period versus a control parameter. As expected, it exhibits a linear slope.
Furthermore, one can compare the value of the slope obtained from the simulations
with its theoretical prediction, equation (7), namely −1/λu. The full spectrum of the

1 The Poincaré map can be constructed through two cross-sections, i.e., two planes that are
transversal to the limit cycle and that are placed slightly before and after the closest approach
of the cycle to the saddle point. One can construct two maps from these two planes. The first is the
so-called local (or linear or singular) map, T0, that takes the flow from the plane before the saddle
point to the plane after the saddle point, and is dominated by the saddle point. The second is the
global (or nonlinear) map, T1, that takes the flow all the way from the plane, past the saddle point
through all of the limit cycle back to the plane before the saddle point. The complete Poincaré map
is the composition of these two maps. It has to be remarked that the T0 map is unbounded, as the
return time is infinity at the onset of the global bifurcation.
2 For details refer, e.g., to Sect. 12.3 of [49].
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Fig. 8 (a) Period of the limit cycle, T , as a function of the detuning, θ , for Is = 0.9. The vertical
dashed line indicates the threshold of the saddle-loop bifurcation, θc = 1.30478592. (b) Scaling of
the period in the saddle-loop bifurcation. Crosses correspond to numerical simulations, while the
solid line, arbitrarily positioned, has a slope −1/λu, with λu = 0.177, obtained from the stability
analysis of the middle-branch KCS

middle-branch soliton for θ = θSL is shown in Fig. 7. The agreement between the
simulations and theoretical slopes is within 1%.

A comment is in place here regarding the spectrum shown in Fig. 7. The spectrum
is formed by a stable continuous spectrum (although numerically discretized) and a
discrete one with a positive (λu = 0.177) and a negative (λs = −2.177) eigenvalue.
Having this spectrum in mind, it is perhaps surprising that one can describe the
bifurcation route very well qualitatively, and to some extent quantitatively (cf. the
observed scaling law, Fig. 8), by resorting to a planar dynamical system when many
modes could, in principle, be involved. The first mode of the planar theory unequiv-
ocally corresponds to the positive (unstable) eigenvalue, λu = 0.177, while, in first
approximation, the second mode should correspond to the second nearest to zero
eigenvalue. However, this eigenvalue belongs to a continuum band, and the arbi-
trarily close eigenvalues of its band could play a role in the dynamics, modifying
the planar theory. Moreover, considering this mode, λ ∼ −0.10, the saddle index
ν = −λ/λu < 1, indicating that the cycle emerging from the saddle loop should be
unstable, although we observe otherwise. The analysis of the modes of the unstable
DS and dimensionality of the phase space is addressed in detail in the next section.

7 Quantitative Phase Space Projection

We now study the dynamics in terms of the modes obtained when performing
the stability analysis of the middle-branch DS in a parameter region close to the
saddle-loop bifurcation. By plotting the spatial profile of the modes, one obtains
a clue to identifying the relevant modes for the dynamics. It turns out that most
of the modes of the stable spectrum are delocalized. Figure 9 contains a represen-
tation of two such delocalized modes. The bands of extended modes correspond
to modes of the homogeneous background, and are basically Fourier modes, apart
from a radial dependence coming from the fact that we are using radial instead of
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Fig. 9 Stable extended modes
from the continuous band.
The top (bottom) panel shows
the transverse cut of the mode
associated with the eigenvalue
λ =−0.1 (λ =−1+ i0.24) of
Fig. 7. The solid (dashed) line
indicates the real (imaginary)
part of the eigenmode

Cartesian coordinates. As illustrated in Fig. 9, the basic difference between these
modes is the wavenumber of their oscillations. There are, however, two exceptions,
viz. two localized modes which are the one corresponding to the unstable direction
and the most stable mode (which has eigenvalue λs = −2.177). Figure 10 displays
the spatial profiles of these two modes. The fact that the dynamics of the DS remains
localized in the space indicates that only these two localized modes take part in the
dynamics.

Using this knowledge of the spectrum and the relevant eigenmodes, we can now
explain the stability of the orbits emerging out of the bifurcation, specifically by em-
ploying the saddle index introduced above. Computing this index for the two modes
that participate in the saddle-loop bifurcation, one obtains ν = 2.177/0.177 > 1,
and this fits perfectly with the fact that the cycle that detaches at one side of the

Fig. 10 Transverse cut of
the unstable (top) and the
most stable (bottom) modes
of the unstable DS. These
modes are associated with the
eigenvalues λu = 0.177 and
λs =−2.177 of Fig. 7, respec-
tively. The solid (dashed) line
indicates the real (imaginary)
part of the eigenmode
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bifurcation point is stable. Thus, one may understand that the whole dynamical in-
stability scenario of the DS can be analyzed qualitatively in a planar dynamical
system.

A closer inspection of the dynamics in the linear region, namely the region close
to the saddle point, provides a justification of the role of the two participating lo-
calized modes – stable and unstable. Figure 6a contains a time trace of one such
trajectory in the parameter region in which the limit cycle is stable, but close to the
saddle-loop bifurcation. We project the deviation of the trajectory from the unstable
DS onto the most stable and the unstable eigenvectors of the adjoint Jacobian matrix
of the middle-branch KCS. These projections are the amplitudes of the unstable (β1)
and the most stable (β2) modes, whose profiles are shown in Fig. 10. In the linear
region close to the saddle point, the amplitudes of the other modes are negligible.
The trajectory enters the linear region through the stable mode and leaves the region
through the unstable one. This behavior is clear in the insets of Fig. 11. Next, we
reconstruct the qualitative sketch of the bifurcation shown in Fig. 6 from our knowl-
edge of the projections onto the modes, that is, we represent the trajectories before
and after the saddle-loop bifurcation in mode space. Thus, Fig. 11 contains a quan-
titative, reconstructed, 2D phase space from the two localized modes involved in the
transition for a set of parameter values in the oscillatory (a) and excitable (b) sides
of the transition. The dynamics takes place on a plane when close to the saddle, but,
away from it, the nonlinear dynamics bends the trajectory out of the plane into a
higher-dimensional space which produces the apparent crossing of the trajectory in
Fig. 11.

This is the final numerical confirmation that the infinite-dimensional dynami-
cal system on which DSs live can be reduced to a 2D dynamical system with an
excellent degree of precision, and that the picture is fully consistent with a saddle-
loop bifurcation.

Fig. 11 Phase plane reconstructed by finding the amplitude of the deviation of the trajectory from
the unstable DS in the unstable (β1) and the most stable (β2) modes of the middle-branch KCS.
(a) Oscillatory trajectory (θ = 1.3047859). (b) Excitable trajectory (θ = 1.3047860). The symbols
are equally time-spaced along the trajectory, so sparse symbols indicate fast dynamics while dense
symbols indicate slow dynamics. The saddle point is at (0,0). The inset is a close-up of the linear
region around the saddle
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8 Excitable Behavior

The saddle-loop bifurcation described above involves a fixed point (the homoge-
neous solution) on one side of the bifurcation and an oscillation on the other, so
the system is a candidate for exhibiting excitability [9]. While excitability as a re-
sult of a saddle-loop bifurcation has been observed in different systems [7, 8, 9],
it should be noted that it does not always appear. In particular, one needs a fixed
point attractor that is close enough to the saddle point that destroys the oscillation.
The excitability threshold in this type of system is the stable manifold of the saddle
point, which implies that the observed behavior is formally “Class I excitability”
[9]. This means that the excitability is characterized by response times that can be
infinite (if a perturbation exactly hits the stable manifold of the fixed point), or,
conversely, frequencies can start from zero. In our system, the excitable threshold
reduces by increasing Is (Fig. 2), since the middle-branch KCS (the saddle point)
gets progressively closer to the homogeneous solution (fixed point).

This excitability scenario was first shown in [28], and, in parameter space, it is
found in the region above the dashed line corresponding to the saddle-loop bifurca-
tion shown in Fig. 1. Figure 12 shows the resulting trajectories after applying a local-
ized perturbation in the direction of the unstable DS with three different amplitudes

Fig. 12 Top panel: Time evolution of the maximum intensity, starting from the homogeneous
solution (Is = 0.9) plus a localized perturbation of the form of the unstable DS multiplied by a factor
a. The dotted, dashed, and solid lines correspond to a = 0.8, a = 1.01, and a = 1.2, respectively.
The 3D plots show the transverse profile at different times for a = 1.01
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– one is below the excitability threshold (dotted line), while two are above it; of
these, one is very close to threshold (dashed line) and the other is well above it
(solid line). For the below-threshold perturbation, the system decays exponentially
to the homogeneous solution, while, for the above-threshold perturbations, a long
excursion in phase space is performed before returning to the stable fixed point. The
refractory period for the perturbation just above the excitability threshold is appre-
ciably longer, due to the effect of the saddle. The spatio-temporal dynamics of the
excitable DS is also shown in Fig. 12. After an initial localized excitation is applied,
the peak grows to a large value until the losses stop it. Then it decays exponentially
until it disappears. A remnant wave dissipating the remaining energy is emitted out
of the center.

It should be emphasized that, on neglecting the spatial dependence, equation (1)
does not present any kind of excitability. The excitable behavior is an emergent
property of the spatial dependence and it is strictly related to the dynamics of the
2D DS. The self-focusing collapse of the 2D NLSE is behind the long excursion
in phase space. When a localized perturbation concentrates enough power, the self-
focusing nonlinear mechanism induces a concentration of energy at that place. The
presence of losses prevents collapse, the perturbation is finally dissipated, and the
system returns to the homogeneous solution.

In parameter space, the excitable region is relatively large, as shown in Fig. 1.
Therefore, it is potentially easy to observe experimentally. The excitable behav-
ior belongs to Class I, as the period diverges to infinity when a perturbation hits
the saddle. However, due to the logarithmic scaling law for the period, the param-
eter range over which the period increases dramatically is extremely narrow (see
Fig. 8), so, from an operational point of view, systems exhibiting this scenario might
not be classified as “Class I excitable”, as the large period responses may easily
be missed [52].

9 Takens–Bogdanov Point

AU: Please check
whether the edit of
“The saddle-loop ....
generically” is Ok.

The saddle-loop (or homoclinic) bifurcation is, in some sense, not generic, namely,
a tangency between a limit cycle and a saddle point which occurs exactly so that
it happens simultaneously at both sides of the stable and unstable manifolds is, in
principle, not to be expected generically. In fact, also due to the fact that global
bifurcations are not always easy to detect, the most convincing argument for the
existence of such bifurcations is to show that a dynamical system exhibits a certain
type of co-dimension-2 point.

A scenario in which the unfolding of a co-dimension-2 point yields a saddle-
loop (or homoclinic) bifurcation is a Takens–Bogdanov (TB) point [46, 53]. This
is a double-zero bifurcation point in which a saddle-node bifurcation line and the
zero-frequency limit of a Hopf bifurcation line (hence no longer a Hopf line at the
crossing point) meet in a two-parameter plane. The particular feature that the Hopf
line has zero frequency at the TB point allows this co-dimension-2 bifurcation to
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occur in a 2D phase space. This bifurcation has to be distinguished from the occur-
rence of a crossing between a saddle-node and a Hopf line at non-zero frequency,
known as Gavrilov-Guckenheimer or saddle node-Hopf point, which requires a 3D
phase space to take place. One can prove that, from the unfolding of a TB point, a
saddle-loop line, apart from the saddle-node and Hopf lines, emerges [46, 53] from
the TB point.

This can be checked in Fig. 1, where a two-parameter bifurcation plot is pre-
sented as a function of the two parameters of the system, Is and θ . The problem here
is that the saddle-node and Hopf lines tend to meet only asymptotically, namely
when θ → ∞. We had previously checked, in [28], that the distance between the
saddle-node and the Hopf lines decreases as one increases θ . (The same happens
with the saddle-loop line.) By calculating the eigenvalues, it can be seen that the fre-
quencies (viz. their imaginary parts) do indeed go to zero as one approaches the TB
point. Figure 13 displays the two eigenvalues of the upper-branch DS, with largest
real parts for parameter values corresponding to three vertical cuts of Fig. 1. Open
symbols correspond to eigenvalues with a non-zero imaginary part, while filled sym-
bols are associated with real eigenvalues. The point where the open symbols cross
zero in the upper panel of Fig. 13 signals the Hopf bifurcation, while the point where
the filled symbols cross zero signals the saddle-node bifurcation. The origin for the
three plots is taken as the saddle-node bifurcation. At some point along the branch
of the two complex conjugate eigenvalues associated with the Hopf bifurcation, the
imaginary part vanishes, leading to two branches of real eigenvalues, the largest of
which is precisely the one responsible for the saddle-node bifurcation. As detuning
increases, the Hopf and saddle-node bifurcation points get closer and closer, but the
structure of the eigenvalues remains unchanged, so that when the Hopf and saddle-
node bifurcations finally meet, the Hopf bifurcation has zero frequency, signaling a
TB point.

The TB point appears asymptotically in the limit of large detuning, θ , and small
pump, E0. In this limit, equation (1) becomes the conservative NLSE [31]. The Hopf
instability in this limit was studied in [48], where evidence for a double-zero bifur-
cation point was given; however, the unfolding leading to the scenario presented
here was not analyzed.

Fig. 13 Real part (upper
panel) and imaginary part
(lower panel) of the eigen-
values corresponding to the
stable DS for three vertical
cuts in Fig. 1, corresponding
to three different values θ :
squares, 1.7; triangles, 1.5;
rhombs, 1.4, versus the differ-
ence between Is and its value
at the saddle-node bifurcation,
Is
s (θ)
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10 Effect of an Addressing Gaussian Beam

We now consider a pump consisting of a narrow Gaussian addressing beam on top
of a homogeneous background. This is motivated by the fact that the common way
to write and erase solitons in nonlinear cavities is by means of an addressing beam.
This beam is customarily applied during a prescribed short interval of time. Here,
we consider applying such a perturbation in a sustained way in order to control the
spatial position of a soliton and its susceptibility to be excited. Hence, we consider
a pump beam of the form EI(r) = E0 +H exp(−r2/r2

0), where E0 is a homogeneous
field, assumed real, H the height of the Gaussian perturbation, and r0 its width. For
convenience, we write the height of the Gaussian beam as

H =
√

(Is + Ish) [1+(θ − Is − Ish)2]−E0, (8)

where Is + Ish would correspond to the intra-cavity field intensity of a cavity driven
by a homogeneous field with an intensity equal to the intensity at the top of the
Gaussian beam, EI = E0 +H. This directly relates the height of the Gaussian beam,
H, to a more intuitive quantity such as the equivalent intra-cavity intensity for a
homogeneous pump.

The control parameters are the intra-cavity background intensity, Is, the detun-
ing, θ , and Ish, which is associated with the Gaussian beam. Now the translational
symmetry of the system (and also of its solutions) is broken, and the fundamental
solution, which is no longer homogeneous, exhibits a bump which is small (when
compared to the true DS), and this is the system response to the Gaussian perturba-
tion. The bifurcation diagram for fixed Ish and θ is given in Fig. 14.

On comparing Fig. 14 with the bifurcation diagram for a homogeneous pump
(Fig. 2), it is clear that one feature which has changed is the region around the mod-
ulational instability point which signals the instability of the fundamental solution,
i.e., the right end of the bistability region. In the homogeneous case, this instability
occurs exactly at Is = 1, but the introduction of a localized pump makes this point
shift to a lower value (around Is = 0.7 for these parameter values). One can also

Fig. 14 Bifurcation diagram,
max(|E|2) vs. Is, for homo-
geneous pump plus Gaussian
addressing beam (Ish = 0.7)
for θ = 1.34. Solid lines rep-
resent stable solutions and
dashed lines unstable ones.
The 3D plots show, from
top to bottom, the profiles
of the upper-branch KCS,
the unstable middle-branch
KCS, and the fundamental
solution, which is no longer
homogeneous
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notice that no line is plotted for the localized pump case, while, in the homoge-
neous case, the fundamental branch continues to exist as an unstable branch. This
is because, in the latter case, the bifurcation has changed to a saddle-node bifurca-
tion, in which the stable and unstable branches that meet at this point coalesce and
disappear. This bifurcation is, in fact, a saddle node on the invariant circle (SNIC).

Exploring now the upper branch, past the (left) saddle-node bifurcation, a pair of
stationary (stable, upper branch and unstable, middle branch) solutions are found,
and they are not qualitatively different from those found in the homogeneous pump
case. These two DS solutions are now slightly modified and fixed spatially (in the
transverse plane) by the localized Gaussian beam, but their localized nature mainly
comes from the self-focusing feature of the model, which implies that the DSs are
self-sustained. On increasing Is, the stable high-amplitude DS undergoes a Hopf
bifurcation, resulting in a periodically oscillating DS. The oscillation is, however,
destroyed for larger Is in a saddle-loop bifurcation, leading to an excitable regime,
in an analogous manner to what happens with a homogeneous pump. The saddle
loop occurs at a value of Is which is below the SNIC. The excitable regime is pos-
sible only while the fundamental solution exists (Is between the saddle loop and the
SNIC). After the SNIC, both the fundamental and the upper-branch DS are unsta-
ble, and a new, oscillatory, regime appears. Figure 15 shows the temporal evolution

AU: In caption of
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whether “Ish” can be
changed to “Ish”

Fig. 15 Left: KCS maximum intensity, as a function of time, for decreasing values of Is. From top
to bottom, Is = 0.72, 0.7075, 0.707, 0.6. Ish = 0.7, θ = 1.34. Right: sketch of the phase space for
each parameter value. First two parameters correspond to region V (oscillating DS) in Fig. 16; the
third one is very close to the SNIC bifurcation, while the fourth is in region IV (excitable), where
this excitable behavior is dominated by the SNIC bifurcation
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in the new oscillatory regime. As Is is decreased, the period of the oscillations be-
comes longer and it finally diverges on reaching the SNIC. The scaling of the period
of oscillation shows that this is, in fact, a saddle node on the invariant circle (SNIC).
A SNIC bifurcation induces excitable behavior for Is below the critical value. This
scenario is different from the previous one, although both lead to a regime where
DSs are excitable. Here the excitable threshold can be controlled by the intensity of
the addressing Gaussian beam that effectively causes the saddle and the stable fixed
point to approach each other in phase space.

A better understanding of these instabilities can be gained through a two-
parameter bifurcation diagram, Fig. 16, in which just one parameter is kept fixed,
namely θ = 1.34. (On the other hand, however, the structure of the branches can-
not be seen in this diagram, as the electric field is not plotted. In this sense, these
two representations, Figs. 14–16, have to be seen as complementary.) A first remark
on this diagram is that the Ish = 0 line must match the homogeneous case (Fig. 1).
In the diagram shown in Fig. 16, the one-parameter bifurcation diagram in Fig. 14
corresponds to a cut along a vertical line located at Ish = 0.7, and the saddle-node,
Hopf, and saddle-loop bifurcation lines are found when going upward, followed by
a final bifurcation line, viz. the SNIC. The sequence of behaviors exhibited by the
system is as follows. Below the (left) saddle-node (SN) line, region I, the system
has a single stationary (fundamental) solution, which has a small bump at the spa-
tial region where the Gaussian pump is applied. On increasing Is, a saddle point is
created in a saddle-node bifurcation, along with another fixed point which is a DS
(region II). Further on, this fixed point becomes unstable in an Andronov-Hopf bi-
furcation, and a cycle is created (region III). At this point, the stable fundamental
solution and a stable cycle (oscillating DS) coexist in the system, together with the

V

I

IV

II

SNIC

SN

Ish

H

III

SL

I.     No KCS
II.   Stationary KCS
III.  Oscillatory KCS
IV. Excitable KCS
V.   Oscillatory KCS

Fig. 16 Phase diagram Is vs. Ish for θ = 1.34
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unstable middle-branch KCS and the upper-branch KCS (which is now also unsta-
ble). If we further increase Is, the limit cycle approaches the middle-branch KCS
and collides in a saddle-loop bifurcation (SL line). Beyond this saddle loop, the
fundamental solution becomes excitable in two possible ways (region IV). If the
line indicated by SNIC is crossed, the fundamental solution (stable) and the lower
DS stationary solution (saddle) annihilate each other inside an invariant circle, lead-
ing to oscillatory DS behavior (region V). Region IV is excitable in the sense that
suitable perturbations of the fundamental solution lead to long excursions in phase
space. This appears in two possible ways when changing system parameters de-
pending on whether the SL or the SNIC bifurcation lines are crossed.

11 Concluding Remarks

We have analyzed the instabilities of dissipative solitons in a nonlinear Kerr cav-
ity. Azimuthal instabilities lead to the destruction of the soliton, resulting in the
formation of an extended pattern. On the other hand, instabilities occurring at zero
azimuthal number lead to a localized structure whose amplitude oscillates in time,
but in which the localized character of the soliton is preserved. More interestingly,
beyond this oscillatory regime, an excitable regime, associated with the existence
of dissipative structures, arises. This shows that, in order to exhibit excitability, ex-
tended systems do not necessarily require local excitable behavior. Instead, such
phenomena can emerge because of spatial dependence through the dynamics of a
coherent (localized) structure. This opens up the possibility of observing excitable
behavior in a whole new class of systems where excitability was not thought to be
present.

In Kerr cavities, there are two different mechanisms leading to excitability. One
is based on a saddle-loop bifurcation in which a stable oscillating cavity soliton
collides with an unstable one. The other occurs through a saddle node in the invari-
ant circle (SNIC) bifurcation. The first one appears when either studying a homo-
geneous pump or considering a system pumped by a Gaussian beam on top of a
homogeneous background, while the second mechanism appears only in the latter
case. For both mechanisms, the excitability threshold is determined by the distance
in phase space between the stable fixed point and the saddle. However, in the saddle- AU: Please check

whether the edit of
“However, in the
saddle-loop... point”
is OK.

loop scenario, this distance cannot be easily tuned by changing system parameters,
but, in the SNIC case, this distance vanishes precisely at the bifurcation point. By
choosing to operate close to the SNIC bifurcation point, the threshold can be as low
as desired. Therefore, it is possible to control the excitability threshold by changing
a system parameter, e.g., the amplitude of the Gaussian addressing beam.

It has been shown that an excitable system can be used for computational pur-
poses such as noise filtering or addition of input signals [54]. Thus, the excitable
properties of cavity solitons open the possibility of optical information processing
beyond the storage capabilities already suggested. This is a dynamical regime in
which firing neuron-like structures could be generated at arbitrary points on the
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transverse plane of a nonlinear optical cavity. By coupling several of these optical
neurons, reconfigurable optical networks could be created with the aim of process-
ing information in a similar way to networks of neurons.
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