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Chapter 1

Introduction

Since the development of telecommunications there is an ever growing interest in

finding more secure ways to send the information. A possible way to do this is

using the Vernam cipher[1] which is based on digital information (strings of N

binary data.) where any analogic signal is first digitalized. Subsequently the digi-

talized message is convoluted with a given binary pattern (the key composed also

of N binary data) so that it is scrambled and an eavesdropper cannot recover the

message. The key is supposed to be known by the sender of the message and the

new binary string is safely sent in a public communication channel [2]. Usually, the

sender transmits this key to the addressee who uses to recover the original message

by deconvoluting the sent message. Thus, with this technique, an eavesdropper has

2N possible messages and it is more difficult to know which is the original one.

However, it is not suitable for secure communications between two persons who

do not know each other: it is not accordingly suitable for the business operations

and digital signature. Furthermore, it is very constraining for very long messages

since the code is long as the message and therefore demands larger physical space to

be kept. On the other hand the key should be used only once. Thus all the efforts

deployed to keep the key secret are inverted for the transmission of a single message.

To circumvent the drawbacks of the Vernam cipher, other software cryptosystems

have been developed, and the most popular is the so-called RSA algorithm proposed

by Ron Rivest, Adi Shamir and Len Adelman in 1978 [3]. This algorithm gen-

erates two keys, one public and one private so that two persons who did not know

each other before can communicate securely. Nowadays, the growing of technology

performance threatens current techniques used to secure the communications. For

example in 1994, the american scientist Peter Shor developed an algorithm which

may potentially crack any ciphertext (convoluted message) encripted with a public

key algorithm, mainly the short message [4]

To get around these drawbacks, people developed an alternative way of en-

cryption relying on chaos. Before that the chaos was useful in the understanding
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of some phenomenons in biology, chemistry, physics, etc... But its most exciting in

lasers goes back to the pioneering works of Haken in 1975 [5] who implemented the

possibility of chaotic behaviour in lasers. It has proven that when a system presents

both nonlinearity and complex enough phase space, it can lead to chaotic behaviour.

Subsequently, the chaotic behaviour has encountered in almost all types of lasers

(solid-state [6], gas ring [7], semiconductor [8], etc...).

This last decade, the chaos has utilized to cryptography and the key lies on

synchronization of chaotic carriers used to encode the message. The first syn-

chronization of chaotic carriers was proposed by Pecora and al. in 1990 [9] and

the first chaos based on communications was done with the electronic circuits by

Cuomo and al. in 1993 [10]. Subsequently, several investigations have dealt with

chaos cryptography by synchronizing fiber ring lasers [11, 12], semiconductor lasers

[13, 14, 15, 16] and microchip lasers [17] with applications in communications using

optical fibers and those based on semiconductor lasers. In the concept of chaos

encryption, high-quality synchronization of chaos in the transmitter and receiver

lasers is required to recover the hidden message. This synchronization is facilitated

when the receiver is similar enough to the emitter. In addition, synchronized chaotic

carriers could be used in the technique explained before for generating correlated

random signals to obtain secret keys which are secure in the sense of information

theoretic security [18, 19]. When the message is encoded within the chaotic carrier,

a possible eavesdropper cannot distinguish the message from the chaos. The secu-

rity of chaos cryptography also demands that the message to be encoded should be

small compared to the chaotic carrier. Even though the eavesdroppers try to build

a chaotic receiver identical to the emitter, they would have to face the parameter

mismatch problem which impedes the proper extraction of the message

The first chaotic communication schemes have shown vulnerable to be attacked

because of the narrow spectra of the chaos used. Thus, another method for com-

municating by chaos has been reported. It relies on nonlinear optical delayed feed-

back systems. Ikeba obtained the chaos using semiconductor lasers with delay [20].

Along the same line, Lang and Kobayashi proposed similar device where a fraction

of the delayed output radiation of a semiconductor laser is fed back into the active

region layer [21] . Subsequently, the introduction of both (feedback+parameter

modulation) has proven to be useful in the optical systems where chaos cryptogra-

phy was first theoretically proposed [22]. The first experimental demonstration was

built in 1998, by Van Wiggeren and Roy using erbium-doped fiber ring-lasers

[23, 24], and by Larger et al. using the chaos generated by a semiconductor laser

[25, 26]. Some of its properties have been theoretical and experimentally investi-
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gated by Chembo and al.[27, 28, 29]

In this report, we review the properties of this last system and explore an-

other scheme involving the combination of electro-optical elements which consists

in injecting back a fraction of the signal in the laser serves as a light source. It is

organized as follows:

• In chapter II, we present the semiconductor laser with electro-optical feed back

loop,

• In chapter III, we deal with new model of semiconductor lasers subjected to

feedback pump current: linear and nonlinear in feedback carrier will be ex-

plored.

• Chapter IV is devoted to the conclusion and future work.
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Chapter 2

Semiconductor lasers with

electro-optical feedback

Generally, electro-optical systems are a combination of electronic and electro-optical

components such as light emitting diodes, image intensifiers, and lasers. Examples

of such devices are the night vision goggles and rifle sights, laser range finders,

markers and designators, and forward looking infrared receivers. However, all the

electro-optical devices need some source of light to produce an image of an object

through illumination, amplification, or thermal imaging. Most of the devices use

lasers as the light source because of their low running threshold.

The lasers are also associated with electro-optical elements for the production

of chaotic carriers. One way to do that consists in embedding a resonator and

electro-optical feedback through the Mach-Zehnder modulator and pump this with

semiconductor laser. With this device, we can distinguish two main blocks: The first

is the light source which involves the laser and the second is the feedback loop. In

this chapter, we first briefly describe the dynamics of the semiconductor (SC) laser.

Secondly, we introduce an electro-optical loop to produce chaotic behaviour. Then

we will show how this chaos can be used to encode the message whose decoding is

also performed in the conditions which are described by the end of the chapter.

2.1 Semiconductor laser

2.1.1 Principles of photon emission

There is a wide variety of lasers (solid state-, gas-, dye-, and fiber-lasers, etc...). All

these lasers are composed by the same elements: Lasing material (crystal, gas, etc...),

an optical cavity, power source. Among the variety of lasers, the most widespread

ones are the semiconductor lasers because of their large range of wavelengths, cou-

pled to the wide variety of structures. In addition, they are compact and cheap, and

they are used in many devices like CDs, DVDs, optical communications, etc... They

11
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Figure 2.1: illustration of 3 mechanisms of photon interaction with 2 level system

can also be associated in array configurations to produce high-power laser sources

which are used to drill and cut, or to pump other types of lasers. SC lasers operate

with the principle of doping which is characterized by the extra-electrons coming

from forward electrical bias which causes two species of charge carrier: holes with

positive charge and electrons with negative charge. The performance depends on

the base material and the widespread ones are silicon and gallium.

Lasers operate by the principle of stimulated emission. Electrons in the atoms

of the lasing material reside in a steady-state. When energy is pumped into an

atom, its electrons are excited to the higher energy level which is unstable (Fig.2.1,

absorption). The electrons will stay in this state for a short time and then decay

back to their original energy state. This decay occurs in two ways:

• Spontaneous decay: When an electron and a hole are present in the same re-

gion, they may recombine or ”annihilate” with the result being spontaneous

emission i.e., the electron may reoccupy the energy state of the hole, emitting a

photon with energy equal to the difference between the electron and hole states

involved. Hence, the electron simply falls to their ground state while emit-

ting randomly directed photons (Fig.2.1, spontaneous emission). Spontaneous

emission is necessary to initiate laser oscillation.

• Stimulated decay: In the absence of stimulated emission (i.e., lasing) condi-

tions, electrons and holes may coexist in proximity to one another, without

recombining, for a certain time (named the ”upper-state lifetime” or ”recom-

bination time,” of about a nanosecond for typical diode laser materials before

they recombine. If the atom is in this state, a nearby photon with energy equal

to the recombination energy can cause recombination by stimulated emission.

This generates another photon of the same frequency, travelling in the same
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direction, with the same polarization and phase as the first photon: coherent

photon (Fig.2.1, stimulated emission). This means that stimulated emission

causes gain in an optical wave (of the same wavelength) in the injection region,

and the gain increases as the number of electrons and holes injected across the

junction increases.

The second ingredient of a laser is the resonator. The light is amplified in a

cavity resonator also known as an optical cavity, which is usually composed of two

or more mirrors. This will allow standing wave modes to exist with little loss. There

are many kinds of resonators: klystron tube waveguide with at least two apertured

cavity resonators and the reflex klystron utilizing only a single apertured cavity

resonator through which the beam of charged particles passes.

2.1.2 Modelization of the semiconductor laser

The semiconductor laser (SC) with constant frequency can be described by the rate

equations in terms of the number of photons I and the carrier number N inside the

active layer [30]

dI

dt
= (G − γ)I + 4kN +

√
4kNIζ(t) (2.1)

dN

dt
= J0 − γeN − GI (2.2)

G = gm(N − N0)/(1 + sI) (2.3)

The carrier lifetime 1/γe is defined as the average time it takes an excess of

carriers to recombine; the photons lifetime 1/γ is a time constant that describes the

decay (or the growth) of energy in a cavity; gm is the gain parameter; N0 is the

carrier number at transparency; k is the amplitude of noise and the J0 the injected

current: The behaviour of the laser mostly depends on the excitation density (in-

jection current). If the material is not excited enough, the number of carriers in

the excited state is weak and then the absorption probability is greater than the

probability of emission. However, when we increase the injected current, the num-

ber of carriers in the excited state grows and beyond a threshold (called threshold

current), the recombination probability by stimulated emission is greater than the

absorption one and therefore, the laser starts to lase.

In eqs.(2.3), the gain saturation factor given by (1 + sI) is included in [31]

to summarize a set of physical effects that eventually bound the material gain as

the number of intracavity photons is increased. Thus, the laser cannot have an in-

finite gain for any value of the injected current. The term 4kN is the mean photon
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Figure 2.2: Evolution of the number of photons (a)) and carrier(b)) in time with parameters given

in Table 1

number emitted by spontaneous emission while the term
√

4kNIζ(t) stands for the

fluctuations around this mean photon number. The noise is considered to be white

Gaussian . We have neglected the effect of the radioactive and nonradioactive carrier

generations and the noise recombination of the carrier number since it is negligible

compared with the fluctuations induced by the noise on the number of photons I

[32, 33].

To simplify the study, let us consider the ideal case which corresponds to the

absence of spontaneous emission (k = 0). Thus, the random processes (spontaneous

emission and fluctuations) are eliminated. The rate equations become

dI

dt
= (G − γ)I (2.4)

dN

dt
= J0 − γeN − GI (2.5)

The steady state for N and I is obtained when dI
dt

= dN
dt

= 0. The minimum current

beyond which all the losses (absorption, etc...) are compensated is obtained for

I = 0 and G = γ i.e., Jth = γeNst = γe(
γ

gm
+N0). According to the injected current,

one can distinguish two different regimes :

• J0 < Jth: In this case, the gain is less than the losses and thereby no power is

delivered at the output of the laser (I=0). The steady state is given by I = 0,

i.e., (Ist = 0, Nst = J0/γe). This stationary point is unprofitable in practice

because the laser has no output , however, it allows us to the undertanding of

the laser dynamics.
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• J0 > Jth : In this case, the gain is greater than the losses and therefore there

is an optical power of the laser. The stationary state is obtained when G = γ,

I > 0 i.e.,

Ist =
J0gm − γegmN0 − γeγ

γ(gm + sγe)
(2.6)

Nst =
gmN0 + γ + sJ0

gm + sγe

(2.7)

It is important to remark that the difference between Nst and Nth is only due to

the gain saturation effects. Hence if s = 0 then Nth = Nst but Ith = 0 whereas

Ist > 0.

In the following, we address in the performance of the laser when it operates

above the threshold. We work with the parameters compatible with the experiment

as written in Table 1 [34].

Table 1: laser parameters

Parameter Meaning Value Units

gm gain parameter 1.5X10−8 ps−1

s gain saturation factor 2X10−7 adimensional

N0 carrier number at transparency 1.2X108 adimensional

γ inverse photon lifetime 3.3X1011 s−1

γe inverse carrier lifetime 5X108 s−1

Jth threshold current 7.1X1016 s−1

J0 injection current J0 = 1.5Jth s−1

With our parameters, Jth = 7.1X1016s−1 and fixing J0 = 1.5Jth, we plot the

time traces of N and I starting with I = 102 photons and N = 1.3X108 carriers in

the active layer in Fig.(2.2). The observed oscillations called “relaxation oscillations

“are due to the intrinsic frequency of the laser which is in the order of 10GHz. In

fact, there is a time during which the injection current is changed from the thresh-

old to a constant value above the threshold. After this time, the laser relaxes to

steady-state conditions. After this transient regime, it goes to the stable stationary

lasing state given by eqs. (2.6) and (2.7). Using the parameters stated in Table 1,

we have N = 1.42X108 and I = 1.068X105 which are in good agreement with the

numerical results shown in Fig.(2.2) after the transient time.

Eqs. (2.6 ) and (2.7 ) predict that semiconductor lasers are not chaotic. Typ-

ically ways to induce chaos are:
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Figure 2.3: Four sub-class of nonlinear dynamics in Optics mostly involved in optical chaos gener-

ation for encryption (Figure taken from ref.[35]).

♣ To add an optical feedback: the external cavity lasers (see Fig.2.3, upper

left) can involve linear feedback delay terms. In this case, the nonlinear operation

consists in a coupling in the rate equations between the optical field amplitude and

the inversion population density.

♣ To add a system with electro-optical feedback: In this case, the delayed

feedback has two main properties: it is nonlinear, and it is optical phase insensitive

due to the electronic nature of the feedback. This situation can be explored in two

distinct schemes. In the first one (Fig. 2.3, upper right), the lasing process still orig-

inates from the laser rate equations, in which the nonlinear coupling between the

inversion population density and the optical field amplitude involves a delay term

originating from the feedback signal acting on the electronic pumping strength. In

the second case (Fig. 2.3, lower left), the lasing process is determined by the linear

filtering performed by the electronic part of the oscillator feedback; this filtering

is applied to a scalar nonlinear feedback transformation. This latter case is briefly

detailed in this work.

♣ Modulating the injection currentJ0: It involves nonlinear coupled rate equa-
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tions in a solid state laser between population inversion and the optical electric field,

when the population inversion is driven by an externally modulated pump laser (see

Fig. 2.3, lower left).

2.2 The feedback loop

Figure 2.4: setup of semiconductor laser with one electro-optical feedback

In this section, we focus on the basic setup of Fig.(2.3, lower left) and we

choose the Mach-Zehnder modulator as our electro-optical device. The architecture

is brought together in the setup shown in Fig.(2.4) made up as follows:

• A continuous-wave (CW) semiconductor laser delivering a constant power P

which is proportional to the number of photons I: P = k1I. The proportion-

ality coefficient is k1 = hν where h stands for Planck constant while ν is the

emission frequency of the photon.

• The Mach-Zehnder modulator: a Mach-Zehnder is an interferometer with two

inputs of which one is an optical signal and other an electrical. Its main prop-

erty consists in dividing ideally the input light beam into two light beams and

recombining it at the output. Thus, when the voltage V is applied in the trans-

verse direction of one arm, its refractive index changes almost linearly. This

difference of index generates a phase-shift on the light propagating on that arm
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and then interferes with the light coming from the other arm. Therefore, the

incoming light P is modulated during the recombination at the output in such

away that the output power is Pcos2(π
2

V
Vπ

) where Vπ is called half-wave voltage

and it corresponds to the voltage needed to impose a π phase-shift. The Mach-

Zehnder modulator has two components involving the voltage: a constant or

DC (direct current) component VB that serves to select the operating point

of the modulator; and a RF (radio-frequency) component V (t) which ensures

nonlinear dynamics operations. Therefore, the output of the Mach-Zehnder

modulator can be rewritten as Pcos2(π
2

V (t)
VπRF

+ π
2

VB

VπDC

) where VπRF and VπDc

stand for the RF half-wave and the bias electrode half-wave respectively.

• A fiber delay line used to shift the optical signal in time with a delay T

• An amplified diode which detects and converts the optical signal into the elec-

trical one with sensitivity s.

• Radio-Frequency (RF) driver which is a linear filter with a gain G whose elec-

trode is applied directly to Mach-Zehnder. This linear filter is modeled by a

second-order bandpass filter with a low cutoff response time fL and the high

cutoff frequency fH . The bandpass filter is made up of a low-pass filter whose

output voltage U(t) is related to the input U1(t) by the first order differential

equation as follows

U1(t) =
1

2πfL

d

dt
U(t) + U(t) (2.8)

and a high-pass filter for which the output is related to the input by U2(t) is

U(t) = 2πfH

∫ t

t0

U2(t)ds + U2(t) (2.9)

The combination of eqs.(2.8) and (2.9) leads to

U1(t) = (1 +
fL

fH

)U2(t) +
1

2πfL

d

dt
U2(t) + 2πfH

∫ t

t0

U2(t)ds (2.10)

On the other hand, the output voltage V (t) amplified with the RF gain G is pro-

portional to the output voltage U2(t) of the high-pass filter: V (t) = gGU2(t). Then

it modulates the optical power of the semiconductor laser which subsequently, is

delayed in time travelling the optical fiber and finally arriving at the photodetector

with sensitivity s before being used as the input in low-pass filter:
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U1(t) = gGsk1Icos2(π
2

V (t−T )
VπRF

+ π
2

VB

VπDC
).

In terms of the radio-frequency voltage V (t), we have

(1 +
fL

fH

)V (t) +
1

2πfL

dV (t)

dt
+ 2πfH

∫ t

t0

V (t)ds = gGsk1Icos2(
π

2

V (t − T )

VπRF

+
π

2

VB

VπDC

)(2.11)

we take the advantage that fL ≪ fH and introducing the dimensionless variable

X(t) = πV (t)
2VπRF

, then we have

x + τ
dx

dt
+

1

θ

∫ t

t0

x(s)ds = β1I cos2[x(t − T ) + φ], (2.12)

with the parameters defined in Table 2. The overall normalized electro-optical os-

cillator gain β = β1I.

Table 2: electro-optical loop parameters

Parameter Meaning Value Units

τ = 1/2πfH . high cutoff frequency 25 ps

θ = 1/2πfL low cutoff response time 5 µs

β1 = πgsGk1/2Vπ normalized electro-optical gain coefficient 2.89X10−5 adimensional

φ = πVB/2VπDC
off-set phase 0 ≤ φ ≤ 2π rads

T delay time 2.5 ns

2.3 Theoretical and numerical study

In this section, we work with the numerical values stated in Table 1 and 2, and

compatible with those of experiment in [27]. We take φ as the control parameter

and we study the effects of the injection current as well. Because I and N are

constant after the transient time as we showed in Fig.(2.2 ), the normalized electro-

optical gain β = β1I is constant and can be considered as a parameter. In this case,

I is given by the relation (2.6).

Eq. (2.12 ) can be rewritten letting w =
∫ t

t0
x(s)ds as a pair of equations such

as follows

x + τ
dx

dt
+

1

θ
w = β1I cos2[x(t − T ) + φ] (2.13)

dw

dt
= x (2.14)

When dx
dt

= dw
dt

= 0 there is a fixed point that is (xs = 0, ws = θβ cos2 φ). Taking

x = xs + x1 and w = ws + w1, linearizing eq. (2.13 ) around the fixed point and
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Figure 2.5: Real part of solutions given by the eigen equation versus off-set phase

taking into account eq.(2.14 ) we obtain

x1 + τ
dx1

dt
+

1

θ
w1 = −β sin 2φx1(t − T ) (2.15)

dw1

dt
= x1 (2.16)

Assuming x1 ∼ eλt and w1 ∼ eλt we investigate the stability of the fixed point

through 2 by 2 matrix with eigen equation given by

detM=

∣

∣

∣

∣

−λ − 1
τ
− β

τ
sin(2φ)e−λT − 1

τθ

1 −λ

∣

∣

∣

∣

=0

where λ are the eigenvalues. From this determinant, we have.,

λ2 + λ(
1

τ
+

β

τ
sin(2φ)e−λT ) +

1

τθ
= 0 (2.17)

The system is stable if and only if all the real part of λ are negative; otherwise

it is unstable. The computation of the eq.(2.17) can be done using Netwon-Raphson
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Figure 2.6: Bifurcation diagram versus off-set phase φ for different injection currentJ0

method. Because of the term e−λT , eq.(2.17) can have an infinite number of so-

lutions. A practical way to find the stability is to compute eq.(2.17) using DDE-

BIFTOOL algorithm in matlab [36]. The presence of sin2φ in eq.(2.17) shows that

the function is π − periodic and thereby we can restrict the stability analysis only

over a range of π. Fig.(2.5) shows the real part Re(λ) of λ with respect to the values

of offset phase φ and the injected current.

♠ For Re(λ) < 0, the fixed point is stable (steady state). This occurs for some

values of the phase. This behaviour is due to the fact that in the interferometer

the phase-shift provokes in some points destructive effects and constructive effects

in some others. In fact, the input light beam is ideally divided in two equal parts

inside the interferometer but only the light beam of the arm where the voltage has

been applied undergoes the phase modulation whereas the second beam only suf-
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Figure 2.7: Bifurcation diagram versus injection current J0

for different values of the off-set phase φ

fers the material phase-shift. Thus, when the two light beams interfer during the

recombination at the output, they mutually destroy if the phase difference is π/2.

In Fig.(2.5, top), the stability shows three domains of steady state: the system is

stable for the values of phase belonging to φ ǫ [0, 0.25] ∪ [1.3; 1.8] ∪ [2.9; π]. When

one increases the injected current to J0 = 1.5Jth, each stable area becomes more

narrow. We notice for J0 = 1.8Jth that the steady states have disappeared for the

small values of phase and those close to π but it remain around π/2

♠ For the offset phase values given Re(λ) > 0, the system is unstable. We can

collect information on the unstable area by plotting the bifurcation diagram. All

the results are performed after integrating over a time of 80µs which is 16 times

longer than the slowest scale of the model θ. The time step used for the numerical

simulations is 1ps. We deal with the parameters of the laser and the feedback loop
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Figure 2.8: synchronization setup

which are easy to measure in experiments, i.e., offset phase for feedback loop and

the injection current for the laser. Because of the cos2 () term in eq.(2.13 ), φ is

equivalent to φ + π. Thus it is reasonable to explore the effects of phase by analyz-

ing the bifurcation diagram only over a range of π. Fig.(2.6) shows steady states

in good agreement with those found by the stability analysis. For β = 2.16, the

first unstable area shows narrow band chaos alternating with oscillations depending

on the value of φ. The transition from the steady state to the chaos or vice versa

passes through period doubling. The second unstable area shows non-stationary

dynamics. If β is increased to β = 3.08, this area becomes chaotic while the first

unstable one becomes ever more chaotic and further increasing the injected current,

all the non-stationary areas become chaotic as it is seen with β = 4.94.

The change of the injected current is necessary in experiments where it is tuned

to observe different dynamical regimes such as the chaotic one. The bifurcation

diagram plotted in Fig.(2.7) shows how J0 can induce chaos . Thus, one notices
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that J0 should be large compared with Jth to induce instability in the filter loop.

For small values of φ, the system moves directly from the steady state to chaos (see

Fig.(2.7, top-left)) while it passes through a Hopf bifurcation or period doubling

before becoming chaotic for slightly large φ (see Fig.(2.7), for π = 0.6; 1.2 or 2.5).

As it is seen in Fig.(2.7), it is necessary to take at least J0 > 1.6Jth corresponding

to β = 3.7 to have the chaotic regime required for encryption. The key of the

decryption lies on the synchronization of the chaotic carrier with the receiver.

2.3.1 Synchronization of two electro-optical semiconductor lasers with

electro-optical feedback

We consider two separate electro-optical systems consisting in one with closed loop

namely emitter and other with open loop which is forced by the signal coming only

from the transmitter (receiver). The receiver (slave) is built similarly to the emitter

(master). The schematic setup of the coupled master-slave system is exhibited in

Fig.(2.8) and its dynamics is described by the set of equations

{

x + τ dx
dt

+ 1
θ

∫ t

t0
x(s)ds = β1I cos2[x(t − T ) + φ]

y + τs
dy

dt
+ 1

θs

∫ t

t0
y(s)ds = β1sIs cos2[x(t − Ts) + φs]

(2.18)

where the subscript ”s” denotes the receiver and y(t) = πVs(t)
2VπRF

.

The synchronization capability of the device relies essentially on the proximity

of the physical parameters between the emitter and receiver. Thus, to expect perfect

synchronization, we assume the same parameters for the master and slave, i.e.,

τ = τs, θ = θs, β1 = β1s, φ = φs, I = Is. we introduce ∆T = Ts − T and using

the values stated in Table 1 and 2 and taking φ = π/4, we synchronize the emitter

and receiver as it is shown in Fig.(2.9). When ∆T > 0, the slave follows the master

while it anticipates the master for ∆T < 0. Hence, ∆T is the shift between the

master and the slave. These results are in good agreement with those of experiment

shown in Fig.(2.10). From these results it can be seen that the synchronization is

independant of the coupling delay Tc. Thus, it does not depend on the flying time,

time delays due to the electrical connections, and the response times of the system

which play exactly the same role as the receivers delay time. The slight difference

observed in experimental results is due to the fact that it is impossible to have the

receiver perfectly identical to the emitter because of manufacturing errors which are

unavoidable. Thus it is particularly important to explore the parameter mismatches.
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Figure 2.9: Emitter (solid line) and receiver (dashed line) time traces for ∆T = 0.1ns (top),

∆T = 0(center) and ∆T = −0.1ns (bottom). J0 = 1.5Jth and φ = π/4

2.3.2 Single-parameter mismatch

The potential characterization of the effects of parameter mismatches can be done

using two indicators:

• The maximum cross-correlation between the master and slave, defined as

MAX[Γ(s)] = MAX[
〈[xp(t) − 〈xp(t)〉][yp

′(t + s) − 〈yp
′ (t)〉]〉

√

[〈xp(t) − 〈xp(t)〉〉]2[〈yp
′ (t) − 〈yp

′(t)〉〉]2
] (2.19)

which is the qualitative indicator showing how the trajectory is topologically

distorted. When ∆T = 0, MAX[Γ(s)] = Γ(0).
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Figure 2.10: Experimental chaotic time traces, with x in continuous lines and y in dashed lines. The

parameters areP = 7.60 mW , VB = 1.05 V (emitter), and Ps = 3.91 mW ,VBs = 0.34 V (receiver),

Vπ,DC = 4.0 V , and a RF value (at 1 GHz) of Vπ,RF = 4.2 V for λ = 1550 nm, photodetector

gain 2V/mW The amplification within within the nonlinear feedback loop was performed by a

pair of RF amplifiers with a power gain of 18 dB and a bandwidth ranging from 30 kHz to 6.5

GHz(a)(top) ∆T = 0.15 ns, the slave is delayed relatively to the master; (b) (center) ∆T = 0.0,

the slave is isochronous to the master; (c) (bottom) ∆T = −0.15 ns, the slave anticipates the

master [27]

• And a quantitative indicator measuring the time-averaged proximity between
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Figure 2.11: Average synchronization error (σ∆φ, σ∆τ , σ∆θ and σ∆β) and maximum correlation

(Γ∆φ, Γ∆τ , Γ∆θ and Γ∆β) for the φ, τ , θ, β-mismatches, respectively. Analytical approximations

are shown in solid line and numerical results in symbols. The parameters are: β = 5, τ = 50ps,

θ = 2µs, φ = 0.1, T = 20ns [27]

the master and slave, namely the average synchronization error defined as

σ∆p =

√

〈ε2
∆p〉

〈x2
p〉

(2.20)

where ε∆p = yp
′ (t) − xp(t) stands for the instantaneous synchronization, ∆p =

p − p
′

is the parameter mismatch and xp(t) and yp
′ (t) the time traces of the

master and slave obtained with the parameter p and p
′

respectively. This last
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Figure 2.12: Maximum correlation (left) and average synchronization error (left

for the γe-mismatch.

indicator is the sensibility one as well as an indicator of threshold of the mini-

mum modulation index below that any encoded message cannot be recovered.

The single parameter mismatch is performed assuming all other mismatches to

be zero. Fig.(2.11, a,b) shows that the synchronization error and cross-correlation

at ∆φ = ±π/2 are σ∆φ = 2 and Γ∆φ(0) = −1, respectively. It means exact anti-

synchronization between the master and slave whereas for ∆φ = 0 we have σ∆φ =

0 and Γ∆φ(0) = 1 which mean perfect synchronization between the master and

slave. From the results of parameter mismatches displayed in Fig.(2.11), it is seen

that the most relevant mismatches are the offset phase where 0.005 rad induces

1% synchronization error, high cut frequency and nonlinear feedback-strengh where

1% mismatch originates almost 1% and 0.5% synchronization error, respectively.

In practice, however, the parameter mismatch occurs for several parameters at the

same time. Nevertheless, choosing appropriate parameters and the mismatches can

be compensated enough to obtain satisfactory synchronization. One can notice that

the mismatch of the feedback-strengh is a global mismatch effect introduced by

the SC laser, the amplified gain and the photodiode sensibility. Fig.(2.12) shows

inverse carrier lifetime mismatch as a function of SC laser mismatch plotted for

our parameters. One can see that this single parameter mismatch of the laser is

similar to the overall laser mismatch (β). It is seen perfect correlation at equal time

independently to the γe-mismatch while the synchronization error linearly increases

with respect to ∆γe. It is due to the fact that, despite the good synchronization, this

parameter affects considerably the amplitude of the signal. Therefore, the master

and slave synchronize at different amplitude depending on the mismatch. To the

best of our knowledge, all the laser parameter mismatches play the same role as ∆γe.

When the synchronization conditions are satisfied, the message is encoded within

the chaotic carrier
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Figure 2.13: skeleton of chaotic masking message

2.3.3 Encoded/Decoded message

Masking communications based on chaotic dynamics can be useful only if we are

able to recover the message. The encoded message should remain hidden from the

eavesdroppers without loosing its original quality. Basically, the chaos encryption

is based on the standard principle that we schematically present in Fig.(2.13). In

this framework, the message is embedded within the chaotic carrier provided by the

emitter. Then, the signal is split and one part is sent to the receiver before being

sent to the combiner together with the second part. First of all, the message to

be encrypted should be smaller compared to the amplitude of chaos to ensure the

secrecy as well as to avoid large distortions of the transmitter output which could

prevent the receiver from synchronization.

There are several ways to encode the message. The most important ones in-

clude:

♣ Chaos shift key (CSK): In this type of the scheme, the digital message

directly modulates the current to the transmitter laser. Thus, the current to the

transmitter laser switches between two distinct levels depending on whether a ”0”

or ”1” bit is transmitted. Meanwhile, the receiver laser is biased at a fixed current

level which is the level at which ”0”bit is transmitted. In the transmitter laser, the

message is recovered by measuring the synchronization error between the transmit-

ter and receiver.

♣ Chaos masking (CMS): In this case, the message is added on the chaotic

waveform after the chaotic waveform leaves the optoelectronic feedback loop of the

transmitter. Thus, the message does not affect the feedback loop of the transmitter.
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Figure 2.14: encryption/decryption setup

In this type of the scheme, the two electro-optical devices (emitter and receiver)

are always biased at the same current level when they synchronize perfectly. At

the combiner, the message is performed by subtracting the receiver output and the

second part of the signal which is the emitter output and message.

♣ Chaos modulation: possible encoding and decoding schemes include ad-

ditive chaos modulation (ACM) and multiplicative chaos modulation (MCM). The

widespread one is ACM scheme where the message is added on the chaotic waveform

within the optoelectronic feedback loop of the transmitter. Therefore, the dynamics

of the transmitter laser is also affected by the encoded message. At the receiver,

message is achieved through the same process as that in the CMS scheme.

When the message is encoded, its effects can affect the system performances

(dynamics, synchronization and communication performance) depending on encod-
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ing/decoding scheme. The first experimental demonstration of the effects of message

encoding and decoding on the chaotic dynamics, chaos synchronization, and chaotic

communication performance of a chaotic optical communication system has been re-

ported in [37]. Numerical simulations have shown that the ACM scheme can increase

the complexity of the chaotic waveforms while at the same time it can maintain the

synchronization quality before and after a message is encoded [38].

In the following, we encode the message by ACM scheme. We assume the

message to be encoded and decoded in the chaotic system as a sequence of a non-

return-to- zero (NRZ) pseudorandom digital bits at 1.0Gbit/s bit rate. A NRZ line

code is a binary code in which ”1s” are represented by one significant condition

(usually a positive voltage) and ”0s” are represented by some other significant con-

dition (usually a negative voltage), with no other neutral or rest condition. We

add the message using another semiconductor laser with wavelength close to that

of the emitter which is modulated by the digital message to be sent in the chaotic

carrier. The complete schematic setup with encoded/decoded mechanism is shown

in Fig.(2.14). The output of this laser diode containing message is p1m(t) where

m(t) takes 1 bit when an optical power p1 is transmitted and 0 bit when no optical

power is transmitted. The mixing is performed through an all-optical mean namely

2X2 fiber coupler. When the message is embedded within the chaos, eq.(2.13) for

the emitter becomes

(1+ fL

fH
)V (t)+ 1

2πfL

dV (t)
dt

+2πfH

∫ t

t0
V (t)ds = gGsk1Icos2(π

2
V (t−T )
VπRF

+ π
2

VB

VπDC
) + P1m(t)

which normalization leads to

x + τ
dx

dt
+

1

θ
w = β1I cos2[x(t − T ) + φ] + αm(t) (2.21)

p1m(t) is a binary message light beam and α is the P1-normalized value, i.e.,

α = πP1/2Vπ with α << (β1I). Thus, the transmitted signal from the emitter is

sT = β1I cos2[x(t−T )+φ] +αm(t). Subsequently, this signal is split into two parts

by a variable fiber coupler and one part travels through the receiver feedback loop

while a second part serves to decode the encoded message. Similarly to the previous

study, we find that the receiver driven by the emitter with the embedded message

is ruled by (assuming the same parameters for the emitter and receiver)

y + τ
dy

dt
+

1

θ
ws = β1Is cos2[x(t − T ) + φ] + αm(t − T ) (2.22)

On the other hand, the output of the receiver Mach-Zehnder crossing the PD
−

photodiode is expressed by Kβ1Is cos2[y(t) + φs] where k is a factor referring to the
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Figure 2.15: original message (top and left), emitter time trace with message (top and right),

recovered message (bottom-left) by substraction and recovered message (bottom-left) by tuning

the receiver off-set phase for J0 = 1.5Jth, J1 = 0.1J0 and φ = π/4

PD
−

sensitivity and fiber coupler used. Subsequently, this electrical signal is sent

in the combiner together with the second part which after crossing PD+ photodiode

becomes K
′

(β1I cos2[x(t)+φ] +αm(t)) where k
′

refers to PD+ sensitivity and fiber

coupler. There are two ways to recover the message with the combiner:

• The first one is to cancel the chaos by tuning the receiver offset phase φs. It

takes the advantage of the perfect anti-synchronization when the phase differ-

ence ∆φ = ±π/2. Thus during the recombination at the combiner output, the

time traces of the master and slave which perfectly synchronize in opposition

cancel out each other. The output of the combiner is given by

Sc(t) = K
′

(β1I cos2[x(t) + φ] + αm(t)) + Kβ1Is cos2[y(t) + φs] (2.23)

If the receiver and the emitter synchronize perfectly, x(t) = y(t) and I(t) =
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Is(t). In addition, taking k = k
′

and φs = φ + π/2, we have from eq.(2.23)

Sc(t) = kβ1I + Kαm(t). (2.24)

which is the message shifted by kβ1I. It is possible to cancel this shift using

the bandpass filtering of usual high speed preamplified photodiodes [28].

• The second way to recover the hidden message is to subtract off the second

part of the signal and the output of the receiver PD+.

Sc(t) = K
′

(β1I cos2[x(t) + φ] + αm(t)) − Kβ1Is cos2[y(t) + φs] (2.25)

With the same parameters, perfect synchronization means x(t) = y(t) and

I(t) = Is(t) and taking k = k
′

and φs = φ , we have from eq.(2.25)

Sc(t) = Kαm(t),

which gives the recovered message.

For K = 1 and α = 0.2, the recovered message is shown in Fig.(2.15) collected

with both methods..

We have shown in this chapter that it is possible to induce chaos from SC

laser by introducing nonlinear electro-optical loop. We have shown how the chaos

generation can help to secure the message. But, strictly speaking, even though J0

is tuned to induce chaos in the system, it does not guarantee strong chaos required

for encryption for most of the phases when J0 ≤ 1.8Jth. Present-day devices use

5 ≤ β ≤ 10 which corresponds in our case to 1.81Jth ≤ J0 ≤ 2.63Jth. Our purpose

is to induce more complexity of chaotic carrier even with J0 smaller than 1.5Jth.
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Chapter 3

Semiconductor lasers with double

feedback Loop

In this chapter, we explore the previous electro-optical device in which a fraction

of the signal performed at the oscillator feedback loop is injected back in the ac-

tive layer of the laser. This process generates an unidirectional coupling from the

filtering loop to the inversion population density. We will explore the situation in

two distinct schemes. First, we will devote to the scheme in which the feedback

pump current is linear. In the second scheme, we deal with nonlinear feedback

pump current. In both cases, we briefly describe the model, as well as, its properties

upon the synchronization, parameter mismatches and encoded/decoded message in

comparison with the results described in chapter 2.

3.1 Electro-optical device subjected to Linear feedback pump

current

3.1.1 The Model

We study the setup shown in Fig. (??). In the optoelectronic feedback loop, the

optical output signal of the Mach-Zehnder crosses the delay line, then it is converted

into electronic signal by the photodetector and fed into the RF driver. After its

amplification, the electronic signal is split into two parts. One part is applied directly

to the Mach-Zehnder while the second part is re-injected back in the active layer

of the laser which serves as the light source. Therefore the light source feeding the

Mach-Zehnder switches from the continuous wave form to the regime depending on

that of the RF voltage. Thus, in the chaotic regime for instance, the light source

erratically fluctuates. Taking an analog to the previous model, the global dynamics

of the system is governed by the set of eq.(3.1), where the parameters are written

in Table 1 and 2.

35
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Figure 3.1: setup of semiconductor laser with two electro-opticalfeedback















dI
dt

= (G − γ)I
dN
dt

= J0 − γeN − GI + J1X(t)

x + τ dx
dt

+ 1
θ
w = β1I cos2[x(t − T ) + φ]

dw
dt

= x

(3.1)

we notice an extra term on the inversion population density equation coming

from the feedback pump current. In this equation, J1 stands for the feedback con-

stant of the pump current. Because the carrier number N depends to the RF voltage,

the overall normalized gain β becomes an implicit function of x(t) and therefore of

time (β = β1I 6= Constant).

3.1.2 Theoretical and numerical study

The system under study has the same single stationary point as previously investi-

gated namely, (xs, ws, Is, Ns) where

xs = 0, ws = θβ1Is cos2 φ,

Ist = J0gm−γegmN0−γeγ

γ(gm+sγe)
, Nst = gmN0+γ+sJ0

gm+sγe
.

The stability of this fixed point is found assuming x = xs + x1, w = ws + w1,

I = Is + I1 and N = Ns + N1, and taking an analog to previous section , we obtain
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Figure 3.2: Real part of solutions given by the eigen equation versus off-set phase for J1 = 0.1J0

a set of equations



















dx1

dt
= − 1

τ
x1 − 1

τθ
w1 + β1 cos2 φ

τ
I1 − β1Ist

τ
sin(2φ)x1(t − T )

dw1

dt
= x1

dI1
dt

= − sγIst

1+sIst
I1 + gmIst

1+sIst
N1

dN1

dt
= J1x1 − (γ + sγIst

1+sIst
)I1 − (γe + gmIst

1+sIst
)N1

(3.2)

Once more assuming x1 ∼ eλt, w1 ∼ eλt, I1 ∼ eλt and N1 ∼ eλt, the set of

eq.(3.2) can be written as a 4 by 4 matrix with eigen equation given by the deter-

minant

detM=

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ − 1
τ
− β1Ist

τ
sin(2φ)e−λT − 1

τθ

β1 cos2 φ

τ
0

1 −λ 0 0

0 0 −λ − sγIst

1+sIst

gmIst

1+sIst

J1 0 −γ + sγIst

1+sIst
−λ − γe − gmIst

1+sIst

∣

∣

∣

∣

∣

∣

∣

∣

∣

=0

where λ is the eigenvalue. From this determinant, we have



38

Figure 3.3: Bifurcation diagram versus off-set phase φ

for different injection current J0

λ4−λ3[a44 +a33 + ã11 +a11e
−λT ]+λ2[a33a44−a43a34 + ã11(a44 +a33)+a11(a44 +

a33)e
−λT −a12]+λ[(a43a34 −a33a44)ã11 +(a43a34 −a33a44)a11e

−λT +a33a12 +a12a44 −
a41a13a34] − a12a44a33 + a12a43a34 = 0

(3.3)

where

a11 = −β1Ist

τ
sin(2φ) ; ã11 = − 1

τ
; a12 = − 1

τθ

a13 = β1 cos2 φ

τ
; a33 = − sγIst

1+sIst
; a34 = gmIst

1+sIst

a41 = J1; a43 = −γ + sγIst

1+sIst
; a44 = −γe − gmIst

1+sIst

The computation of this eigen equation allows to qualify the effects of J1 on the

steady state by comparison with that without the feedback current. Therefore, Using

DDE-BIFTOOL algorithm in Matlab, we collect the results displayed in Fig.(3.2)

with J1 = 0.1J0. We can notice from Fig.(3.2) that, in both cases, only the steady

states close to π/2 remain with almost the same width while others have disappeared.

Next, we estimate the effects of J1 on the unstable area by plotting the bifur-

cation diagram with respect to φ. The steady states shown in Fig.(3.3) are in good

agreement with those found by the stability analysis. Compared to the previous

case (J1 = 0.0), the steady states near to 0 and π offset phase and periodic areas

become chaotic.

On the contrary of the previous case, Fig.(3.4) shows chaotic behaviour from

J0 = 1.3Jth corresponding to β = 1.8. It is therefore seen that with J1 the value of J0
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Figure 3.4: Bifurcation diagram versus injection current J0

for different off-set phase φ

required to induce chaotic behaviour can be lowered from J0 = 1.6Jth to J0 = 1.3Jth.

When J0 is enough, the system moves directly from steady state to chaos for some

values of phase (particularly the small ones like φ = 0.1) and passes through the

bifurcation otherwise. We also notice large fluctuations of the signal when J1 in-

creases. However, the presence of the low cutoff integral term in eq. (2.12) imposes

the mean value of X(t) to be zero in order to ensure the convergence of the solu-

tion even at infinite. As a consequence, the average of the total normalized gain

〈β〉 = β1〈I〉 remains unchanged. For example with our parameters, 〈β〉 = 3.08 when

J1 = 0 and 〈β〉 = 3.10 for J1 = 0.1J0.

Another potential approach to qualify this chaos can be done using the nor-
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Figure 3.5: Auto-correlation function with respect to the time for J1 = 0.0 (left-solid line), J1 = 0.1

(left-dashed line), J1 = 0.05 (right-solid line),J1 = 0.1 (right-dashed line)

malized auto-correlation function defined as

Γ1(s) =
〈[x(t) − 〈x(t)〉][x(t + s) − 〈x(t)〉]〉

[〈x(t) − 〈x(t)〉〉]2 , (3.4)

which is the qualitative indicator showing how the points upon the trajectory are

correlated in time. From Fig.( 3.5), it is seen that the correlation function decreases

faster when J1 is added. it means the feedback pump current increases the unpre-

dictability dynamics of the chaotic carrier. The points of the trajectory separated

by the delay time T keep some correlation, but this correlation damages when the

complexity of the chaos increases or when the time separation is large enough. This

is known as one of the characteristics of differential with constant delay systems.

Thus, the application of the feedback pump current allows to increase the complex-

ity of the chaos complexity. In order to make it profitable, we synchronize in next

section a pair of this device.

3.1.3 Synchronization of two electro-optical devices subjected to feed-

back pump current

We consider two separate electro-optical systems with similar architecture as it is

shown in Fig.(3.6). The receiver is still fed only by the signal coming from the emitter

and its feedback pump current is taken at its RF driver output. The dynamics of

the system is now described by
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Figure 3.6: setup of semiconductor laser with two electro-opticalfeedback

Emitter :















dI
dt

= (G − γ)I
dN
dt

= J0 − γeN − GI + J1X(t)

x + τ dx
dt

+ 1
θ
w = β1I cos2[x(t − T ) + φ]

dw
dt

= x

(3.5)

receiver :















dIs

dt
= (Gs − γs)Is

dNs

dt
= J0s − γesNs − GsIs + J1sy(t)

y + τs
dy

dt
+ 1

θs
ws = β1sIs cos2[x(t − Ts) + φs]

dws

dt
= y

(3.6)

where the subscript ”s” denotes the slave and y(t) = πVs(t)
2Vπ

. As we emphasized

earlier, the master and slave should be closer as possible to synchronize perfectly.

Thus we assume both to be identical, i.e., the same parameters for both devices:
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Figure 3.7: Emitter (solid line) and receiver (dashed line) time traces for ∆T = 0.1ns (top-left),

∆T = 0 (top-right) and ∆T = −0.1ns (bottom). J0 = 1.5Jth,J1 = 0.1J0 and φ = π/4

γ = γs, gm = gms, N0 = N0s, s = ss, J0 = Jos, γe = γes, J1 = J1s for the laser

parameters and

τ = τs, θ = θs, β1 = β1s, φ = φs for the feedback loop.

We plot in Fig.(3.7) the time traces for different values ∆T . In agreement with

synchronization principles shown the previous chapter, the slave follows the mater

when ∆T > 0, anticipates the master when ∆T < 0 or similar when ∆T = 0. These

results show that the extra-feedback added does not matter for the synchronization

when devices are identical. But it could seriously impede the synchronization quality

when the mismatch is taken into account since in practice, it is impossible to build

a pair of identical devices. Therefore, more attention should accordingly devote to

parameter mismatch.



43

Figure 3.8: Average synchronization error (right) and maximum correlation (left) for J1 mismatch

at equal time

Figure 3.9: Average synchronization error (right) and maximum correlation (left) for γe mismatch

at equal time

3.1.4 Single-parameter mismatch

*Pump current parameter mismatch J1

The mismatch in feedback pump current coefficient can stem to the fiber used to split

the signal. Assuming that others parameters are equal for the master and the slave,

we display in Fig.(3.8) the synchronization error and the maximum cross-correlation.

The synchronization is relatively more sensitive to the mismatch in feedback pumped

current parameter since 1% mismatch induces almost 1% of synchronization error.

This ratio is not enough to damage badly the synchronization quality. However, it

is damaged seriously when the feedback current parameter of the slave is greater

than the master one in relative shift greater than 10%.
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Figure 3.10: Average synchronization error (right) and maximum correlation (left) for φ mismatch

at equal time

*Inverse carrier lifetime mismatch γe

It can stem in slight difference in average of the recombined time. It can be due

to spontaneous emission, etc.. It is found from Fig.(3.9) that the synchronization

is more sensitive to the γe mismatch in presence of J1. Comparing the two results

obtained with J1 = 0.0 and J1 = 0.1J1, respectively, we notice that the presence of J1

imposes the two lasers to be similar enough to give satisfying synchronization since

1% error induces 2% synchronization error. On the contrary of the previous case

(J1 = 0.0), it considerably affects the synchronization quality when the mismatch is

greater than 1%.

*off-set phase mismatch φ

This parameter mismatch is performed on the bias electrode half-wave VπRF or DC

component VB assuming others parameters of the system equal. From the results

displays in Fig.(3.10), the perfect synchronization occurs at null-mismatch with π-

period. However, the φ − mismatch shows the exact anti-synchronization is not

satisfied as we showed in section 2.3.2 since Γ∆φ(0) = −1 or σ∆φ = 2 is by far being

satisfying.

3.1.5 Encoded/Decoded message

The architecture of decryption is also similar to that described in Fig.(2.14) using

ACM scheme. Similarly to the previous study, we find that the emitter and receiver
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Figure 3.11: recovered message for J0 = 1.5Jth, J1 = 0.1J0 and φ = π/4

with the embedded message are ruled by (assuming the same parameters for the

emitter and receiver)

x + τ
ds

dt
+

1

θ
w = β1I cos2[x(t − T ) + φ] + αm(t − T ) (3.7)

y + τ
dy

dt
+

1

θ
ws = β1Is cos2[x(t − T ) + φ] + αm(t − T ) (3.8)

where I and Is are varying in time. Because of that, eq.(2.24) does not give the

message shifted as previously investigated since in this regime I is proportional to

I. moreover, in regard to offset phase mismatch, it is impossible to have the perfect

anti-synchronization by tuning the off-set phase. As a consequence, the only way to

decode the message is by subtraction. Thus in the conditions described in section

2.3.3, the output of the combiner is given by

Sc(t) = K
′

(β1I cos2[x(t) + φ] + αm(t)) − Kβ1Is cos2[y(t) + φs] (3.9)

When both devices synchronize perfectly, we have x(t) = y(t) and I(t) = Is(t)

and taking k = k
′

and φs = φ, the analytical solution is given by

Sc(t) = Kαm(t), For K = 1 and α = 0.2, the results obtained from eq.(3.9)

are collected in Fig.(3.11).
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Figure 3.12: setup of semiconductor laser with two electro-opticalfeedback

3.2 Electro-optical device subjected to Nonlinear feedback

pump current

3.2.1 The Model

In this section, we explore the effects of nonlinear feedback injected current on the

laser as it is implemented through the setup exhibited in Fig.(3.12 ) where we can

recognize the emitter. Here, the optical output of the Mach-Zehnder is now split

into two parts using 2X2 fiber coupler: One part is detected by a photodiode which

converts the optical light into electrical one with a sensibility s. After this opera-

tion, this electrical fraction of the signal is re-injected back in the active layer and

therefore affects the stimulated emission dynamics of radiations in the laser which

serves as a light source. The SC laser is therefore subjected to modulated feed-
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Figure 3.13: Real part of solutions given by the eigen equation versus off-set phase for J1 = 0.25J0

back pump current and the optical input of Mach-Zehnder is thereby related to it

output. The second part of the signal crosses through the delay line, another pho-

todiode and the linear filter which electrode is directly applied to the Mach-zehnder.

For the feedback loop, the equations remain unchanged whereas for the laser,

we have

dI

dt
= (G − γ)I (3.10)

dN

dt
= J0 − γeN − GI + J1cos

2(X(t) + φ) (3.11)

where one notices the presence of the modulated extra-term coming from the

modulated feedback pump current with the maximum value J1 .

3.2.2 Theoretical and numerical study

The fixed point for this model is now (xs, ws, Is, Ns) where

xs = 0
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Figure 3.14: Bifurcation diagram versus off-set phase φ

for different injection current J0

Figure 3.15: Bifurcation diagram versus injection current J0

for different off-set phase φ

ws = θβ1Is cos2 φ

Ist = (J0+J1cos2φ)gm−γegmN0−γeγ

γ(gm+sγe)

Nst = gmN0+γ+s(J0+J1cos2φ)
gm+sγe

We can notice that with this mechanism the number of the photons at the

steady state increases depending to DC component and bias electrode half-wave

values of the Mach-Zehnder. Expanding the cos2(X(t) + φ) terms in Fourier se-

ries around the fixed point, and taking into account only the first order terms, we

find that the stability of the fixed point can be investigated through the eq.(3.2)

where J1 is shifted to −J1sin2φ (J1 −→ −J1sin2φ). We work with the parameters

stated in Table 1 and 2 . Fig.(3.13) displays the stability analysis of the system

using DDE-BIFTOOL algorithm in matlab with J1 = 0.25J0. We remark J0 is that

obtained without any feedback pump current. We notice that the predominated
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Figure 3.16: pulses generated with J0 = 1.01Jth and φ = π/4.

zone of destructive effects remain only around π/2 with almost the same width as

previously found.

Inspecting Fig.(3.14), we find that the feedback pump current induces more

chaotic complexity of the carrier with respect to the phase and depending to the

injection current. The implementation of nonlinear feedback pump current induces

a variety of rich and complex behaviors of the system. First, the modulated injected

current has an advantage that beyond the amplification of chaotic carrier, we can

control the maximum injected back current which is J1 and thereby avoid the large

fluctuations which can destroy the laser.

In Fig.(3.15) we find that the presence of modulated injected current allows

to generate instability even with the values of injected current closer to Jth. The

value of Jth here is one obtained without any feedback injected current. With the

value J1 associated with appropriate pump current value J0, the system generates

more others rich behaviours. It is seen for instance that we can generate chaos

from J0 = 1.15Jth for small phases (φ = 0.1) or periodic behaviour with some ones

(φ = π/4). Among the periodic behaviours, we find the pulses plotted in Fig.(3.16)

for J0 = 1.01Jth and φ = π/4. Typically, we find that chaotic behaviour can be

obtained for any phase (but those closer to π/2) using J0 ≥ 1.25Jth which corre-

sponds to the gain from about β ≥ 1.5. Along the same line, one remarks that any

chaotic behaviour becomes more chaotic independently of the off-set phase φ, and

the injection current J0 is added.

On the other hand, we can evaluate the effects of the feedback injected current
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Figure 3.17: Auto-correlation function for different values of J1

on the chaotic areas obtained without this latter feedback by comparing both carrier

complexities (J1 = 0.0 and J1 = 0.25J0 ). To meet this need, we plot in Fig.(3.17)

the auto-correlation function for different values of the injected current. Fig.(3.17,

left) confirms that the application of J1 allows to have strong chaos from periodic

oscillations since the correlation function decreases faster to zero when J1 is applied.

In addition, increasing the feedback pump current leads to faster decrease of the cor-

relation function to zero shown in Fig.(3.17, right). Thus, further J1 increasingly

induces more chaotic complexity of the carrier.

Because the average of the feedback term in pump current is different to zero,

it affects the laser gain which increases proportionally to gmJ1cos
2φ/(γ(gm + sγe))

which is the extra photon numbers at the steady state compared with one obtained

without any feedback current. This term causes an increase of the gain parameter

due to φ. With our parameters, the overall normalized gain is β = 3.08 witout any

feedback pump currant and β = 4.26 with J1 = 0.25Jth and φ = π/4 at the steady

state. Nevertheless, the average of the overall optoelectronic gain is almost the same

given at the steady state.

3.2.3 Synchronization of two electro-optical semiconductor lasers with

two electro-optical feedbacks

As lately investigated, we consider two identical devices in the conditions described

in section 2.3.1 with extra condition that the modulated injected current of the

receiver is taken at the output of its Mach-Zehnder modulator. The emitter and
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Figure 3.18: Emitter (solid line) and receiver (dashed line) time traces for ∆T = 0.1ns (left), and

∆T = −0.1ns (right). J0 = 1.5Jth,J1 = 0.25J0 and φ = π/4

receiver lasers are , respectively governed by

Emitter :

{

dI
dt

= (G − γ)I
dN
dt

= J0 − γeN − GI + J1cos
2(X(t) + φ)

(3.12)

receiver :

{

dIs

dt
= (Gs − γ)Is

dNs

dt
= J0 − γeNs − GsIs + J1cos

2(y(t) + φ)
(3.13)

assuming the same parameter for the master and slave. Fig.(3.18) shows syn-

chronization of the master and slave when the injected pump current is modulated.

Thus the model obeys the fundamental principles of synchronization in the same

conditions as previously described.

3.2.4 Single parameter-mismatch

Fig.(3.19 ) displays the J1 − mismatch which embeds mismatch coming from the

photodetector sensibility, as well as, coupler delay line. With this model, the feed-

back pump current coefficient J1 has a minor effect on the synchronization since the

correlation is still close to 1. Despite of this good correlation, the amplitude of the

signal is affected by the mismatch since 1% mismatch generates 0.5% of synchro-

nization error.
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Figure 3.19: Average synchronization error at equal time (right) and maximum correlation (left)

for J1 mismatch

Fig.(3.20) confirms that J1 has menor influence on the synchronization since

there is only a slight difference between the model without and with modulated

feedback injected current. Therefore , 1% of mismatch induces almost 1% of syn-

chronization error in both cases while the correlation is still good even with large

mismatch.

Figure 3.20: Average synchronization error at equal time (right) and maximum correlation (left)

for γe mismatch

3.2.5 Encoded/Decoded message

We encode and recover the message using the mechanism shown in Fig.(3.12). The

message can be recovered by subtracting off the chaos. Thus, using this process of

recovery, we have:

Sc(t) = K
′

(β1I cos2[x(t) + φ] + αm(t)) − Kβ1Is cos2[y(t) + φs] (3.14)
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Figure 3.21: recovered message for J0 = 1.5Jth, J1 = 0.25J0 and φ = φ/4

The analytical solution taking x(t) = y(t) and I(t) = Is(t) and taking k = k
′

and

φs = φ leads to

Sc(t) = Kαm(t)

Fig.(3.21) shows the recovered message for K = 1 and α = 0.2.
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Chapter 4

Conclusion and future work

We have focused in this report on optical communications involving semiconductor

laser with electro-optical feedback. This type of communications needed for confi-

dential data transmission required chaotic complexity to scramble the message sent

in public. This theory evolves many steps and the first one consists in generating

the output power of the laser. To meet this need, the current is pumped in the ac-

tive layer to induce photon emission which is necessary to obtain an optical power.

We have shown that this technique predicts the laser to provide continuous wave-

form. By introducing the Mach-Zehnder modulator associated through the feedback

loop, we have generated chaotic carrier complexity required for encryption and we

have seen that, the chaos complexity increases with the injected current and also

depends on the offset phase. However, we have found that, for some values of off-

set phase, the system leads to stationary state independently on the injected current.

On the other hand, we have described the processes guaranteeing the security

and recovery of the encoded message. Thus, we have synchronized two chaotic car-

riers in which one is the emitter and other the receiver, unavoidable to the recovery

process. The parameter mismatches have shown to be the key of the security for the

model since we have proven that the mismatches should be small enough to guar-

antee high-quality synchronization required for the decryption of the message. The

message has been encoded and decoded in the context of perfect synchronization.

This study has shown narrow spectra for most of the offset phases if the in-

jected current is not high enough compared to the threshold current. To circumvent

these drawbacks, a fraction of the signal has been taken in the feedback loop and in-

jected back into the active layer of the laser. We have found in two different schemes

that, this extra-feedback induces more complexity of the chaotic carrier. First, the

situation has been explored by feeding back the laser with 10% of the pump current

taken at the output of the filter. The properties of this extra-feedback on syn-

chronization, and encoded/decoded message have found to be close enough to the

previous device while the mismatch has shown to be more sensitive to the feedback

55
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injected current mismatch. In the second scheme, 25% of the pump current taken

at the output of the Mach-Zehnder modulator has also injected back in laser. In

this last model, the synchronization, mismatches and encoded/decoded have shown

quite similar to the results obtained without the feedback in laser.

The present work represents the development of reliable simulation and an-

alytical analysis for this new model. Priority will devote in our future work to

experimental implementation of these new models. The influence of the noise will

be studied as well.
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