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Resumen

Esta tesis estd dedicada al estudio de diferentes aspectos de la dinamica Espacio—temporal
compleja. Las estructuras espacio—temporales estan universalmente presentes en la na-
turaleza. Estas pueden ser formadas via bifurcaciones, a menudo a partir de un estado
de referencia uniforme. Un aspecto interesante de estas estructuras es que tienen un
caracter universal y pueden llegar a evolucionar, a través de sucesivas inestabilidades, a
Caos Espacio-Temporal (STC) (M. Cross and P. Hohenberg, Science 263, 1569 (1994),
J. Gollub, Nature 367, 318 (1994)). El cardcter universal de este fendmeno permite una
descripcién en términos de modelos generales. Un modelo paradigméatico es la Ecuacion
de Ginzburg-Landau Compleja (CGLE). La CGLE es una ecuacién de amplitud que de-
scribe los aspectos universales de la dindmica de sistemas cerca de una bifurcacién de
Hopf. (M. Cross and P. Hohenberg, Rev. Mod. Phys. 65, 851 (1993), W. van Saarloos
and P. Hohenberg, Physica D 56, 303 (1992)). La CGLE presenta una rica dindmica
compleja espacio—temporal que ha sido recientemente clasificada, tanto para el caso de
una dimensién como para el de dos dimensiones, en un diagrama de fases en el espacio de
pardmetros (B. Shraiman et al., Physica D 57, 241 (1992), H. Chaté, Nonlinearity 7, 185
(1994)).

En este contexto general esta tesis contribuye al estudio de la CGLE en una dimension.
Los principales logros alcanzados incluyen la posibilidad de realizar una descripcién de los
estados de la CGLE en términos de un potencial de no—equilibrio, la caracterizacién de la
transicion de fase entre diferentes estados de STC, el control y estabilizacion de estados
ordenados en la fase STC y la sincronizaciéon de STC en sistemas extendidos.

Primero, en esta tesis estudiamos numéricamente en el caso unidimensional la validez
del funcional calculado por Graham y colaboradores (R. Graham and T. Tel, Phys. Rev.
A 42, 4661 (1990), O. Descalzi and R. Graham, Z. Phys. B 93, 509 (1994)) como potencial
de Lyapunov para la ecuaciéon compleja de Ginzburg-Landau. En la regién del espacio
de parametros no—cadtica este funcional decae mondétonamente en el tiempo a los atrac-
tores onda plana, tal como se deberia esperar para un funcional de Lyapunov, siempre y
cuando no hayan singularidades en la fase. En la region de turbulencia de fase el potencial
relaja a un valor caracteristico del atractor turbulento, y la dindmica preserva este valor
aproximadamente constante.

Segundo, en ésta tesis se da una caracterizacion estadistica de los estados con nimero
de rotacién no nulo en la regién de Turbulencia de Fase (PT) de la ecuacién de Ginzburg—
Landau compleja unidimensional. Encontramos que los estados con nimero de rotacion
mas grande que un cierto valor critico son inestables, es decir, que decaen a estados con
nimero de rotacién mas pequeno. La transicién de Turbulencia de Fase a Turbulencia de
Defectos puede ser interpretada como una transicién de rompimiento de ergodicidad que
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viii Resumen

ocurre cuando el rango de niimero de rotacién estables se hace cero. Los estados estables,
asint6ticos (wound states) que no tienen comportamiento espacio-temporal caético son
descritos dentro del régimen de PT de niimero de rotacién no nulo. Ademads de la com-
pleta caracterizacion numérica de estos estados de niimero de rotacién no nulo también se
explican en términos de soluciones de una ecuacién de fase.

Hemos considerado también el rol que juega la difusién compleja no-lineal en la estabil-
idad de las soluciones periddicas en el régimen de STC. Esto es estudiado en el contexto del
control de STC. Se demuestra la estabilizacién de ondas planas inestables en la ecuacién de
Ginzburg-Landau compleja tanto en los regimenes de turbulencia débil, como la turbulen-
cia de fase o la Intermitencia Espacio-Temporal (STI) como en los regimenes fuertemente
cadticos como la turbulencia de defectos.

El comportamiento espacio—temporal cadtico fue también considerado para dos ecua-
ciones de Ginzburg-Landau acopladas (CCGLE). Se muestra que es posible sincronizar
STC en sistemas extendidos en el contexto de CCGLE. Se identifica un régimen de in-
termitencia espacio—temporal (STI) acoplado y se describe en términos de funciones de
distribucion y medidas de la informacién. Se describen también propiedades adicionales
del sistema descripto por un par de ecuaciones de Ginzburg-Landau complejas acopladas
como la desaparicion de la STT cuando se pasa de un acoplamiento débil a uno fuerte.



Abstract

This thesis is devoted to study different aspects of Spatio—temporal complex dynamics.
Spatio—temporal structures are universally present in nature. These structures commonly
referred as patterns, can be formed via bifurcations, often from a uniform reference state.
An interesting aspect of patterns is that many of them have a universal character and can
evolve, under subsequent instabilities, to Spatio—temporal chaos (STC) (M. Cross and P.
Hohenberg, Science 263, 1569 (1994),J. Gollub, Nature 367, 318 (1994)). The universal
character of this phenomenum allows a description through general model equations. A
paradigmatic model is the Complex Ginzburg-Landau Equation (CGLE). The CGLE is
the amplitude equation describing universal features of the dynamics of extended systems
near a Hopf bifurcation (M. Cross and P. Hohenberg, Rev. Mod. Phys. 65, 851 (1993),
W. van Saarloos and P. Hohenberg, Physica D 56, 303 (1992)). The CGLE displays a rich
variety of complex spatio-temporal dynamical regimes that have been recently classified,
for the one (and also two) dimensional case, in a phase diagram in the parameter space
(B. Shraiman et al., Physica D 57, 241 (1992), H. Chaté, Nonlinearity 7, 185 (1994)).

In this general context this thesis contributes to current studies of the d = 1 CGLE.
The main issues addressed include the feasibility of a description of states of the CGLE
in terms of a nonequilibrium potential, the characterization of a phase transition between
different states of STC, the control and stabilization of ordered states within a STC phase
and the synchronization of STC in extended systems.

First, in this thesis we study numerically in the one-dimensional case the validity of
the functional calculated by Graham and coworkers (R. Graham and T. Tel, Phys. Rev.
A 42,4661 (1990), O. Descalzi and R. Graham, Z. Phys. B 93, 509 (1994)) as a Lyapunov
potential for the Complex Ginzburg-Landau equation. In non-chaotic regions of parameter
space the functional decreases monotonically in time towards the plane wave attractors, as
expected for a Lyapunov functional, provided that no phase singularities are encountered.
In the phase turbulence region the potential relaxes towards a value characteristic of the
phase turbulent attractor, and the dynamics there approximately preserves a constant
value.

Second, this thesis addresses a statistical characterization of states with nonzero wind-
ing number in the Phase Turbulence (PT) regime of the one-dimensional Complex Ginzburg-
Landau equation. We find that states with winding number larger than a critical one are
unstable, in the sense that they decay to states with smaller winding number. The tran-
sition from Phase to Defect Turbulence is interpreted as an ergodicity breaking transition
which occurs when the range of stable winding numbers vanishes. Asymptotically stable
states (wound states) which are not spatio-temporally chaotic are described within the
PT regime of nonzero winding number. Besides the complete numerical characterization
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X Abstract

of these wound states some analytical insight is brought to such states by explaining them
in terms of solutions of a phase equation.

We have also considered the role of nonlinear complex diffusion terms in the stability
of periodic solutions in the regime of STC. This is discussed in the context of control of
STC. The stabilization of unstable plane waves in the Complex Ginzburg Landau equation
in weakly chaotic regimes such as phase turbulence and spatio-temporal intermittency or
in strongly chaotic ones like defect turbulence is demonstrated.

STC behaviour has been also considered for two coupled CGLE. It is shown that the
synchronization of STC extended systems is possible in the context of Coupled Complex
Ginzburg-Landau equations (CCGLE). A regime of coupled spatiotemporal intermittency
is identified and described in terms of distribution functions and information measures.
Additional properties of coupled CGLE are also described as the disappearance of STI
when crossing from weak to strong coupling.



Chapter 1

Introduction

Dream on

We can solve everything in science
Naturally

Science
It’s a picture of how to get what you want
out of life

Joni Mitchell, The Reoccuring Dream

1.1 Overview

1.1.1 Motivation and Organization of the Thesis

A field of knowledge often named as “Nonlinear and Statistical Physics” has emerged in
recent years in the modern interdisciplinary context of research in complex systems. This
field incorporates a number of techniques developed in the theory of Dynamical Systems
(bifurcation and chaos) and Statistical Mechanics (phase transitions, nonequilibrium sys-
tems, correlations). It is probably better defined by its methodology than by study of a
specific physical system. In fact a main focus is in the understanding of generic of uni-
versal features of nonlinear and nonequilibrium systems. Beyond more mature subjects
of research , as low dimensional chaos or stationary pattern formation, present research
focuses in the characterization and understanding of the regime of Spatio Temporal Chaos
(STC) sometimes also called weak turbulence regime. It is hoped that this regime, at the
crossroads of phase transitions and dynamical chaos, can be understood with concepts and
methods developed in these fields and, in turn, this can be a significant step towards the
understanding of fully developed turbulence. Theoretical studies of this regime are very
often based in model equation which describe universal features. A well known proto-
type example of such models is the Complex Ginzburg-Landau Equation (CGLE) which
displays a rich variety of spatiotemporal dynamics.

This thesis is a contribution to the line of research described above which focuses in
the analysis of the one dimensional CGLE. In the analysis of this specific model it uses
methodology borrowed from other more established fields. On the one hand the idea of
a nonequilibrium potential (“Free energy”) to describe the complex phases of the CGLE
is explored following the general lines of thought of Statistical Mechanics. Also within

1



9 Introduction

the same spirit of Statistical Mechanics a characterization of a phase transition between
two different STC phase is addressed. On the other hand the new techniques of control
and synchronization of chaos are used here to achieve control and synchronization of STC
phases.

Chapter 1 of the thesis is a general review of background material needed for the
research which has lead the results presented in chapters 2-5. Each of these chapters is
written in a selfcontained way, so that repetition of some definitions and equations is not
avoided.

In the remaining of this Chapter 1 an introduction to pattern formation phenomena
and STC, mostly from an historic perspective is presented (Sec. 1.1.2). Section 1.1.3
describes different approaches to pattern formation problem to put into context the ap-
proach followed here (amplitude equations and numerical analysis). Section 1.2 gives an
introduction to the CGLE, its derivation as the amplitude equation for a Hopf bifurca-
tion in extended systems and the description of two specific physical systems that can be
described by the CGLE. Section 1.3 contains an introduction to the solutions and phe-
nomenology associated with the CGLE. This sections starts with a description of the plane
wave solution of the CGLE an the analysis of their stability. Next we describe the “phase
diagram” of this equation and the different spatiotemporal regimes which are known. At
the end of this section an introduction to localized solutions of the CGLE is presented.

In chapter 2 we study numerically the validity of the functional calculated by Graham
and coworkers as a Lyapunov potential for the Complex Ginzburg-Landau equation. We
first discuss in Sect. 2.2 a classification of dynamical flows. In sect. 2.3 we review the
essential analytical results for the Lyapunov functional of the CGLE. Next, sections 2.4
and 2.5 contain our numerical analyses. The chapter ends with a summary of the main
conclusions on this issue in section 2.6.

In chapter 3 we give a statistical characterization of states with nonzero winding num-
ber v in the Phase Turbulence (PT) regime. Section 3.1 is devoted to an introduction to
the Phase Turbulence regime. The characterization of the transition from PT to DT in
terms of the range of conserved v is presented in section 3.2. States with v # 0 found
in the PT region of parameters are described in section 3.3 in terms of three elementary
wound states: Riding turbulence, frozen turbulence and quasiperiodic state. Section 3.4
constitutes an analytical approach that gives insight into the states numerically obtained,
in terms of solutions of a phase equation. Also, theoretical predictions are made for such
states. The Chapter is closed with some final remarks.

In chapter 4 we study in detail the role of nonlinear complex diffusion terms in the
stability of periodic solutions in the regime of spatio temporal chaos. This chapter begins
introducing the ideas of control of chaos and giving a concise review of this feature on
extended systems. In section 4.2 we introduce the modified CGLE with nonlinear complex
diffusion. Section 4.3 is devoted to the linear stability analysis of plane wave solutions
for this modified equation. In section 4.4 the analytical prediction of the linear stability
analysis is verified through numerical simulations of the equations. This chapter ends with
some concluding remarks in section 4.5.

In chapter 5 we address the problem of synchronization of spatiotemporally chaos in
extended systems. This study is done considering two coupled CGL equations. A regime of
coupled spatiotemporal intermittency is identified and described in terms of distribution
functions and information measures. Additional properties of coupled CGLE are also
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described, namely the disappearance of Spatio—Temporal Intermittency (STI) for strong
enough coupling, and the inadequacy of the description in terms of a single equation for
that regime.

Chapter 6 of this thesis contains some general conlusions. Appendix A contains details
on the numerical integration scheme used thereupon the thesis. Appendix B accounts for
localized solutions in two coupled CGLE.

1.1.2 Pattern Formation and Spatiotemporal Chaos

At absolute thermodynamic equilibrium, a given macroscopic system rests in a structure-
less and time-independent state. It can be brought out of equilibrium in several ways. A
first possibility is to prepare the system in a metastable state and to let the stable phase
nucleate. This is, for example, the case of an undercooled liquid that solidifies as soon
as a sufficiently large germ is present; at a given temperature the solid phase is more
stable than the liquid phase and the fraction of the solid phase spontaneously increases,
separated from the remaining liquid by a solidification front. A second possibility is to
consider homogeneous open systems driven far from equilibrium, by imposed gradients
of intensive quantities: pressure, temperature, chemical potential. Along the thermody-
namic branch, the response of the system in terms of fluxes of extensive quantities will
display the same spatio-temporal symmetries as the excitation. However, the system can
choose other solutions breaking these symmetries. When a system is removed far from
equilibrium by subjecting it to a stress, it will often undergo a transition from a spatially
uniform state to a state with spatial variation. This spatially varying state is called pat-
tern. Besides, this variation can also vary temporally giving rise to oscillatory patterns.
The pattern formation phenomena (stationary or oscillatory) is generally associated with
nonlinear effects, which lead to qualitatively new phenomena. Among them, Spatiotem-
poral Chaos[52, 70](STC) is an extreme case of combined complex dynamics and spatial
organization.

Patterns in nature have attracted the interest of scientists for a long time. They have
been observed in chemistry, fluids, biology, etc. Different efforts from all areas came to
quantify these phenomena. On the other hand, such a diversity in the origins of the
phenomena prevented for a long time to put all the ideas in a common framework. The
history of pattern formation theory can be made up of a number of achievements. The
universality of pattern phenomena was put forward in the book[53] “On growth and Form”
by D’Arcy Thompson. In this book he showed through a wide variety of photos and
analogies how different systems, mostly taken from biology, can look similar, that is, have
similar patterns.

The list of experiments in fluids is very long, however Rayleigh-Bénard convection
evolved into the primary model system for the experimental study of pattern forma-
tion. Bénard performed the first systematic investigation of convection in a shallow fluid
layer heated from below. The results of his studies, actually the results of his doctoral
thesis, were published in two papers[26, 27]. The prime result of Bénard’s experiment
was the discovery of a stable, steady-state, regular pattern of hexagonal convection cells.
Rayleigh[153], in 1916, tried to give an explanation of Bénard’s experiments. However,
introducing other type of boundary condition in the mathematical problem, he changed
Bénard’s problem[1], but he succeeded in introducing what we now call the Rayleigh-
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Bénard convection. Rayleigh’s paper is a pioneering work on the theory of convection
caused by heating from below. A first book that summarized this topic was written by
Chandrasekhar’s[38] in 1961. His book dealt with hydrodynamic and hydromagnetic sta-
bility in general. Bénard convection and the Taylor vortex instability were described in
all the detail known at that time. Chandrasekhar’s book has a nearly complete list of the
publications concerned with Bénard convection up to that time.

In the 1960’s there was relatively little quantitative experimental work by physicists on
patterns. However an exception is the work of Donnelly and coworkers on Taylor-vortex
flow[60]. An important theoretical result of that decade, which had a great impact on
subsequent experimental activity, should be mentioned. This is the work of Lorenz[117]
through which it became widely appreciated that systems describable by coupled nonlinear
ordinary differential equations can exhibit non-periodic time dependence. Besides, this
work provided the link to the numerous work done in the field of Dynamical Systems by
the mathematics community. A list of authors that laid the foundations and developed the
tools used nowadays for describing dynamical systems is revised, for example, in [90, 28].

Greatly improved techniques of parameter control and data acquisition and analysis
played a vital role in increasing the understanding of the theoretical framework. Among
others, the work Libchaber and Maurer[116] is of particular interest since it provided
experimental evidence of a chaotic evolution on convection in small aspect ratio.

In the 1970’s there was an important push on experiments. Although there is a long
history of the study of bifurcations and pattern formation in fluid mechanics by the applied
mathematics and engineering community, physicists for the most part had not really ap-
preciated the interesting aspects of this field prior to about 1970. The experimentalist did
not feel constrained by the practical needs of the engineer and felt free to concentrate on
problems which were just complicated enough to be challenging but still simple enough to
be amenable to theoretical analysis and quantitative experimental study. At Bell Labora-
tories, G. Ahlers started a series of experiments in Rayleigh-Bénard convection[9, 10, 11]
and constituted what became one of most important groups dedicated to the study of
pattern formation phenomena. Among others, it should also be mentioned the detailed
review on Bénard’s convection by Busse in 1978[34].

The idea that the global properties are a consequence of self-organization and of coop-
erative behavior not reducible in a trivial (neither interesting) way to a microscopic point
of view took form during this decade. The connection between spatiotemporal pattern
formation in macroscopic systems and linear instabilities was first emphasized in 1952 by
the outstanding mathematician Turing. But it was not until late in the 1980’s that these
ideas gained maturity. That stage could only be achieved thanks to the contribution done
late on the 1970’s. Examples of these relevant contributions are the famous paper of H.
Haken in 1975[80] and the book of G. Nicolis and I. Prigogine in 1977[137].

Dynamical systems and the behavior of chaotic nonlinear systems had a big push at
the beginning of the 1980’s. The next development during this decade was the study of
systems of a large number of degrees of freedom with a special emphasis in patterns. This
kind of study has been summarized by M.C. Cross and P.C. Hohenberg[51]. The success
of this universal approach is due to the cooperation of different fields. Nowadays, there
is no single accepted name for pattern formation theory. The main issues can be found
under titles such as Synergetics[81], Dissipative Structures[137], Nonequilibrium Statistical
Mechanics, Irreversible Thermodynamics, Nonlinear Science, Complex Systems, etc. .
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As an example of an experimental set up, the Rayleigh-Bénard Convection Cell, or
simply the Rayleigh-Bénard experiment will be explained. A fluid layer is heated from
below and kept at a fixed temperature from above (Fig. 1.1). At a small temperature
difference (more precisely, gradient) heat is transported by heat conduction and the fluid
remains quiescent. When the temperature gradient reaches a critical value, the fluid starts
a macroscopic motion. Since heated parts expand, these parts move up by buoyancy, cool
and fall back again to the bottom. Amazingly, this motion is well regulated. Either rolls,
hexagons are observed as can be seen in Fig. 1.2 . Thus, out of a completely homogeneous
state, a dynamic well ordered spatial pattern emerges. When the temperature gradient
is further increased, new phenomena occur. The rolls start a wavy motion along their
axes. An extended and clear introduction to this topic can be found in the book by
Koschmieder[100] .
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Figure 1.1: The Rayleigh-Bénard convection cell consist of a fluid contained between two
parallel horizontal plates. A stationary pattern is obtained heating from below by a heat
current.
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Figure 1.2: Rayleigh Bénard patterns. a) Typical rolls [30]. b) three pulses traveling in
an annular cell of a binary mixture[138] c) a one arm spiral[31] d) a defect-free hexagonal
lattice of convection cell obtained with a non-Boussinesq sample[31]

A great variety of experimental conditions have been explored since the early days of
Bénard’s convection. In particular a wide range of fluids have been used beyond. Rolls,
hexagons or even spirals can be viewed in non-Boussinesq fluids. Traveling pulses can also
be observed in binary mixture with a particular geometry (see Fig. 1.2 b)[138]. Bénard’s-
Marangoni convection is obtained if the top boundary is left free and standing hexagons
are observed (see Fig. 1.3)[145].

Figure 1.3: Bénard-Marangoni patterns. A spontaneous hexagonal pattern[145]

Convection experiments can also be set up in liquid crystals, including electrohydro-
dynamic convection of nematic liquid crystals. This experiment consists in two parallel
transparent electrodes with an applied AC voltage separated by a thin layer of nematic
liquid crystal[128]. A roll pattern develops as in the R-B case (Fig. 1.4 a). Actually, up
to 300 rolls can be seen in this experiment.
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Another example of pattern formation, also from the fluid mechanics, is the Taylor
Vortex flow. The centerpiece of the Taylor vortex problem is the instability of an infinitely
long fluid column between a rotating inner and a resting outer cylinder[172], as was first
possed by him in 1923. In fact, he went a step further and studied the instability when
both cylinders rotate[170] (Fig. 1.4 b).

"

Figure 1.4: a) Typical pattern in electrohydrodynamic convection in nematic liquid
crystals[128]. b) Center section of a fluid column with axisymmetric Taylor vortices be-
tween a rotating inner and resting outer glass cylinder[100]
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Examples from Chemistry can also be found. A nonlinear chemical reaction with
sufficiently complex reaction mechanism, maintained far from equilibrium may show the
phenomenon of chemical pattern formation. A wide variety of patterns can be observed,
concentric circles, spirals, hexagons, etc. (Fig. 1.5).
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Figure 1.5: a) Spiral waves in the concentration of intermediate species in oscillating
chemical reactions[127]. b) Idem as in a) but using a three-dimensional surface image of
the collision area between a pair of spiral waves[127].

In Fig. 1.6 some experiments from nonlinear optics are displayed. Laser patterns
obtained using counterpropagating laser beams in rubidium vapor are showed. Fig. 1.6a
shows the near field pattern and Fig. 1.6b shows the far field[146]. The far field displays
the characteristic peaks associated with a hexagonal structure of the near field pattern.
Another optical pattern can be observed in Fig. 1.7. The pattern is produced with a
nonlinear interferometer with two dimensional feedback .

Figure 1.6: Hexagonal pattern produced by the intensity of two counterpropagating beams
that have crossed a rubidium cell [146]
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Figure 1.7: Still photograph of a rotatory wave pattern in an liquid crystal valve feedback
system with rotated feedback[12].

Underlying universal phenomena can be found in the various experiments coming from
different areas presented above. Similar patterns are found no matter which is the actual
experiment (chemical reaction, R-B convection, nonlinear optics). The goal of a theory
for describing Pattern Formation phenomena is to provide a means of understanding and
explaining these patterns from a macroscopic viewpoint that both simplifies and unifies
classes of problems which are seemingly unrelated at the microscopic level. Then, the
interest is to describe the pattern by quantities like a characteristic wavelength, and to
check its stability and possible further bifurcations.

Most of the stationary patterns shown in the experiments described above may un-
dergo a sequence of transitions leading to regimes displaying aperiodic dependence in both
space and time. Such disordered regimes will be referred as spatiotemporal chaos (STC).
Systems exhibiting chaotic behavior that are not reducible to a model with a small num-
ber of degrees of freedom, even at the onset of chaos, are said to display spatiotemporal
chaos because their description appears to require a large number of chaotic elements dis-
tributed in space. Loosely, the term spatiotemporal chaos is commonly accepted to refer to
a deterministic system that has irregular variation and is unpredictable in detail, both in
space and in time. The combination of spatial and temporal degrees of freedom has made
such states extremely hard to characterize, both experimentally and theoretically. Often
the experiments are possible only in regions difficult for theory to address, or theoretical
models have no close experimental realizations. However, there are known examples of
experimental systems, well characterized and precisely controlled[55, 52] that show such
a behavior. Here I will mention a few of them. The Kiipper—Lortz unstable state in
rotating Rayleigh-Bénard convection is a system that exhibit STC and has been stud-
ied profusely experimentally[88], theoretically[130] and numerically[187, 54]. Also in the
granddaddy of these experiments Rayleigh-Bénard convection “spiral defect chaos” has
been experimentally reported[126, 139]. Figure 1.8 shows two shadowgraphs of the men-
tioned experiments. In Fig. 1.8a the pattern was obtained for convection in gaseous C'O-
(Prandtl number = o = 0.96) in a large aspect ratio system (I' = radius/height = 78).
The second picture 1.8b shows a pattern for Rayleigh-Bénard convection in a cylindrical
container with an aspect ratio I' = 41 rotating at rotation rate {2 = 16 (in dimensionless
rotation rate) filled with COs.
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Figure 1.8: Spatio-Temporal Chaos in Rayleigh Bénard convection. a) Spiral defect chaos
in large aspect ratio [126]. b) Chaotic patterns in rotating Rayleigh Bénard convection
[139].

Another system exhibiting spatiotemporal chaos is electroconvection in nematic liquid
crystal[55]. In Figure 1.9 a shadowgraphs of a spatiotemporal chaotic pattern in the weakly
nonlinear regime is shown.

Figure 1.9: Spatio—Temporal Chaos in Electroconvection. An example for a Spatiotem-
poral chaos in a sample of nematic crystal [55].

An important problem in the study of these complex patterns is finding a suitable
method for their analysis. In most cases it is possible to describe STC by weakly nonlinear
theories valued in the proximity of threshold. Weak spatiotemporal chaos is an ubiquitous
phenomenon in large nonequilibrium systems. Recent experimental and theoretical work
has characterized this behavior and yield detailed data on the spatiotemporal evolution.
Still there is no yet available a simple unified description of these essential features. Such
description seems to be a new challenging task for the theorist and experimentalists in the
field of nonequilibrium phenomena where concepts and methods from statistical mechanics
and the theory of dynamical systems merge. Success in this field can be an important step
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forward in the understanding of fully developed turbulence, which still stands as “the
unsolved problem” in classical physics.

1.1.3 Approaches to the Problem

While the concern for unification is central in every attempt of man to explain the natural
world, the particular approach followed in the studies of pattern formation phenomena
is characterized by a great variety of techniques employed that differentiates from other
traditional studies. The study of pattern formation phenomena introduces a new way
of thinking based on a subtle interplay between qualitative and quantitative techniques,
between topological , geometric and metric considerations, between deterministic and sta-
tistical aspects. It uses a large variety of methods from very diverse disciplines. Most
important of all, the study of pattern formation phenomena helps to identify the appro-
priate level of description in which unification and universality can be expected.

The study of pattern formation has benefited from careful and controlled experiments
as well as the development of new concepts and new analytic and numerical tools. This
leads to different approaches to the problem:

The experimental approach continues giving rich information on the phenomena. A
partial list of experiments has been provided in 1.1.2, but the list keeps growing day by
day. Other lists can be found in some reviews[51, 179, 136, 33]. The prototypical exper-
iment is that of a large system in d dimensions with control parameter R that can be
varied through the first threshold R, where the uniform state becomes unstable. The bulk
of the experiments are focused in hydrodynamic systems. They have significant advan-
tages: basic equations and parameter values are well understood, controlled quantitative
experiments can be carried out, and a body of intuition about fluid flow has been built
over centuries.

The theoretical approach begins by assuming a set of equations of motion, the micro-
scopic equations, for which we assume that a uniform solution exists, and an instability
to a spatially dependent solution arises for certain parameter values. One possible theo-
retical analysis is perturbation theory. The instability of the uniform state is established
by a linear analysis, which reveals the basic physical mechanism leading to pattern for-
mation. Immediately above the linear threshold perturbation theory in the nonlinearity
leads to a simplified description in terms of amplitude equations[134, 133], whose forms
are universal and whose numerical parameters reflect the details of each physical system.
The word “universal” is here borrowed from critical phenomena meaning that: there are
classes of phenomena all of which lead to the same equation. An interesting point is
that no matter the physical system of departure, and therefore the detailed microscopic
model, the analysis mentioned above leads to the same amplitude equations, depending
only on very general characteristics such as symmetries or kind of instability. Further
away from threshold a different type of perturbation is used: weak distortions of regular
patterns involving spatial modulations over distance large compared to the basic period
can be treated perturbatively leading to “phase equations”[147, 103, 102]. Another gen-
eral method of analysis uses the qualitative theory of differential equations to find general
features of the solutions. This approach is geometrical and topological and can be ap-
plied either at the microscopic level of description or the amplitude and phase equations.
Apart from perturbation theory and qualitative methods it is sometimes possible to find



12 Introduction

restricted classes of nontrivial exact solutions. In addition, statistical tools had proved to
be useful in characterizing spatiotemporal chaotic behaviour[139, 69].

Finally there is the numerical approach of the problem. Quantitative data can be
obtained through the numerical simulations of nonlinear systems. These “numerical ex-
periments” allow to study systems inaccessible to analytic methods. Rather than simply
confirming quantitatively results already anticipated by qualitative analysis, numerical
experiments could produce qualitative insight where none has existed before.

Among these different approaches, this thesis focus on the analysis of universal fea-
tures as described by amplitude equations introduced in the next section, and numerical
methods

1.2 The Complex Ginzburg-Landau Equation

1.2.1 Amplitude Equations

The goal of the theory is to understand patterns from a macroscopic point of view that
both unifies and simplifies classes of problems that are unrelated at microscopic levels. A
significant step in achieving a macroscopic description is the identification of a suitable
order parameter (or order parameters) for the system and writing down equations that
capture its space-time evolution. These equations have universal properties. Though the
coefficients depend on the particular microscopic system under consideration, the shape
of the equation is determined by the nature of the symmetries, such as translation and
rotation, that the original microscopic system enjoys, and by the type of instability.

The starting point is a reference state. Typically such a choice is associated with
the state with the simplest behavior. Usually the choice is the spatially uniform, time—
independent solution. From the loss of stability of this state one may determine the
dominant shape (or shapes) of the first pattern to emerge.

The basic point of view is that, as the control parameter R is increased, these spatially
extended, continuous, dissipative systems, undergo a symmetry—breaking phase transition
or bifurcation. The first patterns to arise are periodic, in space and/or time, breaking
translational symmetry (spatial and/or temporal). As the control parameter is increased
the patterns become more complicated, and eventually exhibit spatiotemporal chaos.

Suppose that at some threshold value R = R, the system becomes unstable to infinites-
imal perturbations with wave vector gy and frequency Qg (either of which may be zero).
For R > R. we expect a pattern centered around gy and Qg to grow and in many cases to
saturate to a macroscopic amplitude proportional to some power of R — R.. When 2y =0
we speak of stationary instability and when Qg # 0 we have oscillatory instablity. It is
important to understand that, because of degeneracies, the pattern that finally emerges
is not uniquely identified by linear stability investigation of the simple state. The set of
states which are equally linearly amplified or remain neutrally stable as R > R, can contain
many modes. Therefore linear theory can not discriminate between competing configura-
tions. Instead, the final outcome is determined by a combination of external biases and
the nonlinear coupling between various competing configurations linearly equivalent. The
dimension of the system can be drastically reduced by choosing a coordinate system that
clearly separates the modes that are dynamically active from those which play a passive
role[134]. Near the onset (R 2 R.) and provided the spectrum of the stability operator
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is discrete, such reduction leads to amplitude equations[134]. If the spectrum of growth
rates is continuous it is possible (in some cases) to arrive to envelope equations[134]. In
what follows I will use the same name of amplitude equation for describing both type of
reduced equations.

Im Q

Figure 1.10: Behavior of the growth rate as a function of q
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Figure 1.11: Slow modulation of the critical modes. The envelope is represented as a
surface

Amplitude equations describe the slow modulation in space and time of the dominant
modes near the threshold for an instability. T will use as control parameter e = R — R, so
that the instability occurs when e becomes positive. In a translationally invariant system
it is then natural to consider the stability of Fourier modes. ¢. denotes the wave number of
the mode whose growth rate is zero at ¢ = 0. Then there is a narrow band around ¢. where
the growth rate is slightly positive (of order €) for € > 0 (see fig. 1.10). Let us assume that
the bifurcation is such that the pattern slightly above threshold has a small amplitude
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(supercritical bifurcation). The pattern is expected to have a wavelength near 27/q..
However, due to the fact that the width of the band of unstable modes is nonzero and of
order €'/2, there can be slow modulations of the patterns on length scales of order 1/ el/2.
Close to threshold, a typical field looks like that sketched in fig. 1.11. We will restrict
ourselves to the one dimensional case. In the case in which a traveling wave (Re[Q2] # 0,
that is, the bifurcation is of the Hopf type) mode of the form exp[—i€2.t + ig.z] becomes
unstable for ¢ = 0, the separation of the dynamics of the patterns close to threshold
in terms of a fast component (with length scale set by the critical wave number) and
an envelope that varies slowly in space and time can then be formulated by writing the
relevant field(s) close to threshold as follows:

physical fields oc A(z,t)e” “PiHie 4 A% (g, ¢)e¥t! 1T | higher harmonics , (1.1)

where A(z,t) is the complex envelope. A complex number is chosen since a phase change
corresponds to a spatial translation of the unstable mode. “Higher harmonics” stands
for terms proportional to exp(2ig.z) and beyond. If the original system has a reflection
symmetry x — —x, we have always two such traveling wave modes becoming unstable at
the same time, so that 1.1 should read;

physical fields oc Ay (, £)e 4T 1 Ay (2, t)e™?!=1T ¢ ¢ 4 higher harmonics , (1.2)

where A; and Ay are right— and left—traveling wave amplitudes, respectively and c.c.
means complex conjugate. To lowest order in e, A1 and As obey a set of coupled equations:

A1 0,0, A10 = pAig+ (1 +ia)02A;,
—(1+14pB) (| Ao [P+ | Ay |2) A, (1.3)

If the mode suffering the Hopf bifurcation (Re[2] # 0) is the one with g, = 0, then 1.2
should be written as

physical fields oc A(z,t)e™" %! + A*(x, t)e’*! + higher harmonics , (1.4)
and the corresponding equation for A is

0A ,0%A
05 = 6A+§0W

For a given problem, the complex constants 79,£p and g can in principle be calculated
from the starting equations. As they only set the scales of time, length, and of the size of
the amplitude, they can be properly rescaled giving'

—g|A)PA. (1.5)

0A 92A
= pA+ (1 +ic)—— — (141 A2 A. 1.
5 — M + ( +ZCI)6(II2 (1+ico) | A (1.6)

This equation is commonly referred as the Complex Ginzburg—-Landau Equa-
tion(CGLE)[51, 179, 178, 134]. The coefficients u,c; and ¢y are real. The coefficient p
can be positive or negative above or below the threshold of instability. This coefficient

'There are many different conventions for these coefficients, T follow those of [125]
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can be rescaled to p = 1. This equation reminds the form of Ginzburg-Landau equa-
tion for superconductivity [68]. In fact, it seems that these authors never wrote down
an evolution partial differential equation (see historical note on page 403 of [134]). Nev-
ertheless, Landau wrote down amplitude equations (o.d.e.’s) to describe post—bifurcation
behaviour of unstable modes. Thus, they introduced the concept of a space dependent
order parameter for describing the behaviour of a thermodynamic system close to con-
tinuous phase transitions[108] and, as mentioned before, the structures of inhomogenous
superconductors.

For the use of 1.6 in systems out of equilibrium pioneering work was made by Newell
and Whitehead[135], and Segel[163] studying the post—critical Bénard convection. Later
Stewartson and Stuart[167] applied these ideas to a wave system in a plane Poiseuille
flow. A few years later, Kuramoto and Tsuzuki derived this equation for a model chemical
reaction, the Bruselator[105]. A review of many of those developments has been given
by Cross and Hohenberg[51]. For a rather extensive specific review on the CGLE, see
Hohenberg and van Saarloos[179]. Now, I will summarize the main features of the CGLE
equation.

e Symmetry considerations

— This equation can be derived from the full equations describing the physical
problem under study. Nevertheless, this equation arises naturally near any
supercritical Hopf bifurcation if the system is time translationed invariant and
reflection symmetric.

— The reflection symmetry (z — —z) dictates that the lowest order spatial deriva-
tive term is of second order.

— If the original pattern has time translational symmetry by an arbitrary time
shift Q% equation (1.6) has to be phase invariant ( A — Ae'?).

— Keeping lowest order nonlinearities satisfying these symmetry requirements
leads to the CGLE.

e Special cases

— For ¢; = ¢ = 0 the CGLE reduces to the Real Ginzburg-Landau Equation[135,
163], adequate for describing superconductivity in the absence of a magnetic
field. It can be written easily in terms of a “free energy” or Lyapunov functional.

— In the limit ¢;,co — 400 the equation reduces to the defocussing nonlinear
Schrédinger equation. And for ¢co — +00 and ¢; — —oothe equation reduces
to the focussing nonlinear Schrodinger equation. In both cases the equations
are not only Hamiltonian but also integrable[96].

The fact that the CGLE reduces to an equation having a Lyapunov function in one limit
and to a Hamiltonian equation in another limit makes it very interesting from a theoretical
point of view. Besides, it is commonly stated that the nontrivial dynamical behavior,
occurring also in other nonequilibrium systems, originates from the non-potential or non-
variational character of the dynamics. Although for ¢; # ¢y the CGLE has not been
derived from a Lyapunov functional the non—existence of such Lyapunov is not proven
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and subject of a intense discussion. A detailed discussion of this problem will be the
center of Chapter 2.

The CGLE presents, besides the well known plane wave solutions, other interesting
solutions such as coherent structures with known analytic expression . It also presents
chaotic behavior for certain values of the parameters (see 1.3.2). All these properties are
enough for making valuable a study of the CGLE by its own. Besides, the CGLE has been
used to explain the results of several experiments as described below.

1.2.2 Concrete Examples

Since the CGLE is the normal form for a Hopf bifurcation, it is possibly suitable for many
systems that display such behavior as experiments on chemical reaction—diffusion, binary
convection, and nonlinear optics (see 1.1.2). In general, the coefficients of the CGLE
arise from the derivation from the microscopic equations. However, there are just a few
experiments that allow to determine the values of the CGLE after the experimental data.

Here I will comment only two systems described by the CGLE. A reaction—diffusion
chemical model and a fluid experiment. The first particular example is reaction—diffusion
model known as the Prigogine-Lefever—Nicolis model (Brusselator model) [109, 110, 181].
This model was derived in an attempt to describe the experimental reaction—diffusion
experiment of Belousov—Zhabotinsky.

The reaction scheme for this model is given as:

A - X,
2X+Y — 3X,
B+X — Y+D,
X —» FE, (1.7)

with the concentrations of reactants A and B constant, and the concentrations of species
X and Y as the variables of interest. The species D and E leave the system after forming.
Additionally all the reaction rates are set equal to one.

The equation of motion for X and Y is given by:

/X — DI?X =F(X), (1.8)

where X is a column vector with components X and Y, D is the diagonal diffusion matrix
with components D, and D, (the diffusion constants), 0? is the spatial derivative, and F
is the reaction term obtained from eq. (1.7) by application of the law of mass action:

F:<A—BX—X+X2Y>. (1.9)

BX — X%y

As explained in detail in [9] when g—: > 7%‘4271 the equation for the envelope u(R,T')
of the mode that destabilizes for B > 1 + A? can be written as:

oru = u+ (1 +icy)0%u — (1 +ico) | u > u, (1.10)
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where T' and R are rescaled time and space variables and the coefficients ¢; and ¢y are[106,
181]:

AL - 3*)
cT = 7Dz
145
4 TAZ 444
S L 1.11
“ 3A(2 + A2) (1.11)

As a second experiment I will comment here the bluff body flow experiment. In a
series of recents papers Provansal and collaborators[115, 114, 113, 15] presented a model
for the transition in bluff body wakes. These authors use as a theoretical model for
such transition the CGLE. Besides, they calculated the parameters of the CGLE from
the experimental data. The wake behind a circular cylinder, placed perpendicular to a
uniform stream, is generally considered a reference system for the study of the transition
to turbulence in open flows. The first step in this process is the Bérnard—von Karmén
instability[23], which is characterized by the appearance of a periodic laminar vortex street
in the Reynolds number range 50 < Re < 180 for circular cylinders (Re = Ud/v with U:
free stream velocity, d: cylinder diameter, v: kinematic viscosity). The Bérnard-von
Kérman instability for low Reynolds numbers is a supercritical Hopf bifurcation which
can be described by a Ginzburg-Landau envelope equation. It had been found that end
effects, always present in experiments, are not negligible, even for long cylinders. This led
Provansal and collaborators[115, 114, 113, 15] to study the wake of a ring, a bluff body of
circular cross section, but without any ends. The ring is held in a plane perpendicular to
the flow (see fig. 1.12).

Figure 1.12: The torus is placed in plane perpendicular to the flow U. The cylindrical
coordinates are indicated in the figure.

The wake parameters are U, d, v, and D, the largest diameter of the ring. d?/v and d
can be used as natural time and lengh units. Cylindrical coordinates (z,r, @), with the
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origin at the center of symmetry of the ring and the z axis pointing in the downstream
direction, will be used in the following (see fig. 1.12). In this system, the wake formation
region is represented by a one-dimensional array of diffusively coupled nonlinear oscillators
distributed along the spanwise direction of the body (¢). The wake pattern is obtained
by relating the downstream direction z to the time ¢. It must be emphasized that the
CGLE model is used for modeling diffusive processes along the spanwise direction, allowing
periodic boundary conditions, and therefore it has no dependence on the x direction. For
the ring wake the following CGLE can be written[115, 114]:

2

%—? =o(l+ico)A+ p(l+ icl)%
where A(p,t) is the complex amplitude of the velocity fluctuations, o = k(v/d?)(Re —
Rey), and k, u,1, ¢y, c1 and ¢y are model parameters [15]. For different aspect ratio (D/d)
different Re numbers and different geometries ( cylinders or rings) these coefficients were
determined (see [15] and references therein). The values of the parameters in the laminar
range have been determined from measurements of the amplitude and the frequency of
the velocity fluctuations in the wake of the bluff ring. After an appropriate rescaling[15]
the equation (1.12) reduces to

— (1 +icy) | AJ? A, (1.12)

2
aa—’;l = (1+z'co)A+(1+z'c1)?97‘;1 —(1+ic) |A)P A, (1.13)
With z the dimensionless spanwise coordinate. A satisfies periodic boundary conditions
in z.

Furthermore, these authors found that the model parameters vary with the Reynolds
number, suggesting then that secondary instabilities like Benjamin-Feir-Newell (see below
1.3.1 ) may appear. In fact, based in the experimental determination of the CGLE pa-
rameters in the periodic regime they posed the following dependence of these parameters
in Re
27 R,
'k Re — Re,
where R, a dimensionless frequency, the Roshko number, of the parallel vortex shedding
is obtained experimentally. Also the parameter & is experimentally determined[15]. They
also proposed that these values are valid for the transition range too, and so

cy = +c2, (1.14)

cp =cg+ 2.7, (]_]_5)
with
) =3 for Re < 100
27\ _4140.011Re for Re > 100 .

For Re < 100, ¢ is approximately constant. But for Re > 100 the wake describes a
trajectory in the [c1, co] parameter plane which is a function of the Reynolds number (Re).
This allows a description of the different experimental behaviors in terms of the different
behavior observed in the CGLE model as one moves through the parameter space (see
1.3.2). Actually the transition regime in this experiment could be explained in terms of
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the transition from periodic stable regime to the turbulent regimes in the CGLE reported
by Shraiman et al.[165].

In conclusion, in the latter experiment, the authors make several remarkable contribu-
tions.

e Once the identification with a supercritical Hopf bifurcation is established, they use
the associated normal form, the CGLE, to model the phenomena.

e The coefficients of the CGLE were determined from experimental data and not from
a deduction from a microscopic equation.

e They show experimental evidence of the transition from the stable regime to the
turbulent regimes of the CGLE that was previously theoretically predicted.

The typical behavior of the CGLE equation through the different regions will be de-
scribed bellow in 1.3.

As a final remark, very recently M. van Hecke and W. van Saarloos[177, 176] has
calculated the coefficients for the CGLE that describes weakly nonlinear convection in
large rotating annulus for a range of Prandtl numbers. They showed that the rotation
rate can tuned the coefficients of the amplitude equations predicting that this system can
be used to study spatio—temporal chaos in a controlled experiment.

1.3 General analysis of the Complex Ginzburg-Landau Equa-
tion

1.3.1 Plane Wave Solutions and Eckhaus Instability

The one dimensional Complex Ginzburg-Landau Equation (CGLE) has several known
analytical solutions. In what follows I will use the scaled version of the CGLE:

NA = pA+ (1 +ic))?A - (1 +ic) |A2 A (1.16)

where 9, means partial derivative with respect to time, 92 means the second partial
derivative with respect to space and A = A(z,t) is a complex function. The parame-
ters c1,co and p are real constants with the only restriction that p > 0, since I will be
dealing with the case above threshold.

The simpler solutions known are the traveling waves (TW)

Apy (1) = Agelko=wt) (1.17)

Both the amplitude(| Ay |) and the frequency (w) of the traveling wave solutions are
related to the wave number £.

| Ao |= Vi — k2 w=cop+ (c1 — c2)k? (1.18)

Ap is undetermined in an arbitrary constant phase.

As can be seen from eq. (1.18) there is a range of existence for the traveling wave
solution(—u'/? < k < p'/?). There is also a well known band of stability for these
solutions that will be reviewed further on. Just like k£ measures the difference between the
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wave number of the physical pattern and the critical wave number, so w: measures the
difference between the frequency of the physical pattern and the frequency of the critical
mode. The equation for the frequency (1.18) can be rewritten as w = ¢y | Ag |2 —c1k?
illustrating that c; is the coefficient that measures the strength of the linear dispersion, i.e.,
the dependence of the frequency of the waves on the wave number, while ¢y is a measure
of the nonlinear dispersion. A typical profile of a traveling wave solution is shown in Fig.
1.13. In Fig. 1.13a-c), the phase, the phase gradient, and the modulus as a function of x
at a fixed time is shown. The modulus corresponds to the constant | Ay | and the gradient
of the phase to the wave number (k) while the phase grows linearly with =z (p = kz).
Finally Fig. 1.13d) represents (for a given time) the complex envelope (A) as a function
of z. Note that the plane perpendicular to the z axis is a complex plane. In this last
representation the meaning of the winding number or rotation number is clearly be seen,
as the number of windings of the traveling wave. Such quantity is defined in terms of the
phase ¢ as

1 L
= %/o Oy pdzx (1.19)

L is the system size.
The linear stability analysis of the traveling wave solutions 1.17 is quite straightforward,
and can be found in various reviews[51, 179, 102, 33, 65].

? z00f a)

ImA

0.80[ b)

c)

Re A

Figure 1.13: Typical profile of a traveling wave solutions at a given time. It corresponds
to ¢; = —1.5 and ¢, = —0.9 and a wave number k = 0.549 a) Corresponds to the phase ¢
as a function of the space = b) the phase gradient 0, = k c) the modulus | Ay |= V1 — k?
d) Complex envelope (A) as a function of space.

Consider the time evolution of small perturbations in the amplitude and phase of a
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plane wave

A1) = (Q + er(a, £))eithewtreolen) (1.20)

where Q = /p — k? is the amplitude of the plane wave, r(z,t) and ¢(z,t) are real per-
turbations in the amplitude and phase respectively and € is a formal parameter to keep
track of small numbers.

Substituting (1.20) in (1.16) yields to a polynomial in € up to order €>. The terms

of order €” vanish identically. The first order terms yield the linearized equations for the
perturbations

or = 2Q%r —2Qkd,¢ — 2¢1kdyr — 1 QI*P + P (1.21)
8“25 == —262@’)” - 261k‘8w¢ + 2%81;7“ + 83@25 + %8%7’ (122)

The linear system (1.21) and (1.22) can be solved using Fourier modes, that is, solutions
proportional to "1 where for periodic boundary conditions ¢ is real whereas 7 is in
general a complex quantity. By substituting in (1.21) and (1.22) a dispersion relation can
be obtained

n+2Q% 4 ¢* + 2ici kq 2iQqk — ¢1Qq>

c1q® +26Q% — 2ikq  Qn+ Qq® + 2ic1 Qqk | - (1.23)
The solutions of (1.23) are
n=—(Q*+ ¢* + 2iciqk) + Vu + v (1.24)
where u and v are polynomials
u = Q' +4¢%kK? — 2¢1:Q%¢* — ¢t (1.25)
v = deikg® + 4eQ%qk (1.26)

The real part of ) indicates the growth rate.

Re(n) = —Q° —¢* + u++2+”2 (1.27)

There are two different branches. The “amplitude modes” correspond to the negative sign
of the square root in (1.27). For any value of ¢i, co and ¢, Re(n) as a function of the
perturbation wavelength k is always negative and takes the value Re(n) = —2Q? at ¢ =0
as shown in Fig. 1.14.
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Figure 1.14: The growth rate (1.27) vs. the wave number of the modes ¢ of the perturba-
tion. For the set of parameter values ¢; = —0.2,c9 = —4.0 and k& = 0.6, the ” Amplitude
modes” are damped, while the ”Phase modes” are unstable and identify a mode of fastest
growth.

The “phase modes” are associated to the positive sign of the square root in (1.27). This
branch vanishes identically at ¢ = 0 for any value of the parameters c;, co or plane wave
wavelength k. This indicates that all the plane wave solutions are marginally stable against
homogeneous perturbation. The origin of this neutral stability is the phase invariance A —
Ae’ of the solutions of eq. (1.16). For ¢ very large, this branch is negative and behaves
as —q?, so short wavelength perturbations are always damped. However, in general, long
wavelength perturbations can be either stable or unstable. To see this we expand (1.27)
for small ¢.

Re(n) = D¢’ + O(q"), (1.28)
where
k‘2

D=—1+4cico) +2(1+¢5) .- (1.29)

If this coefficient is positive, there is a range of unstable perturbation wavelengths. The
condition D > 0 identifies the standard Eckhaus[61] instability. For 1+ ¢jeo > 0 plane
wave solutions are linearly stable for wave numbers smaller than a limit value |k| < k.
For |k| > kg, plane waves are unstable with respect to long wavelength perturbations
(Eckhaus instability [61]). The limit value kg is given by

,U,(]_ + 0162)

k2 =2 - =l
E 3+ ciea + 23

(1.30)
However, this limit is only an upper bound, because it was obtained in an expansion of
eq. (1.27). If the full expression (1.27) is considered it may occur that for certain values
of k the plane wave is unstable also for k < kg, despite D < 0.

The stability and existence ranges of traveling wave solutions is indicated in Fig. 1.15
for given values of ¢; and ¢y. The stability range vanishes at 1+ ¢;co = 0 (the Benjamin—
Feir-Newell (BFN) line[173, 131]), and no stable plane wave solution exists for 1+c¢jeo < 0.
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Figure 1.15: Eckhaus instability diagram. The pattern generating primary instability
occurs inside the outer parabola (solid line), but the resulting pattern is stable only within
the inner parabola(dashed line) corresponding to (1.30).

Intuitively the Eckhaus instability could be understood in the following way. The
amplitude A for the homogeneous state (A = 0) is unstable. When the wave number
k is increased and goes near the limit of existence (kK — ), the amplitude goes to zero
(A% = ;1 — k?) so for continuity arguments it must be unstable too.

The fact that all traveling wave solutions are unstable for 1+ cico < 0 leads to various
types of chaotic behavior, which are described in the next section.

1.3.2 Regimes in the CGLE

Systematic numerical work for L large [165, 42, 43, 64] has identified regions of the pa-
rameter space displaying different kinds of regular and spatio-temporal chaotic behavior,
leading to a “phase diagram” for the CGLE. This diagram was obtained with numerical
solutions obtained for long time from particular initial conditions and periodic boundary
conditions. The initial condition was a steep pulse[43]. Also, in the phase turbulence
region, initial conditions with non-zero winding number were explicitly avoided, as will
be discussed in chapter 3. Five different regions, each leading to a different asymptotic
phase, are shown in Fig. 1.162 as a function of the parameters ¢; and ¢y (1 = 1, without
loss of generality, L large). In what follows I will describe this regions and I will com-
ment on the transition lines defined by them. The diagram shown in 1.16 is half of the
parameter space, the other half is symmetric, due to the symmetry of the equation under
simultaneous changes ¢; — —cy,co — —co.

2An interactive map of this diagram with the characteristic behaviour of the different zones can be
found in http://www.imedea.uib.es/ montagne/cgle/cglem.html
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Figure 1.16: Regions of the parameter space [c; — ¢ for the d = 1 CGLE displaying
different kinds of regular and chaotic behavior. The Benjamin-Feir—Newell line (B-F-N
line) determined analytically is shown as a solid line.

Two of these regions are in the BFN stable zone and the other three in the BFN

unstable one. One of the main distinctions between the different asymptotic phases is in
the behavior of the modulus of A at long times. In some regions it never vanishes, whereas
in others it vanishes from time to time at different points. A detailed description of the
asymptotic behavior in the different regions is as follows:

1. Non-Chaotic region. The evolution here ends in one of the Eckhaus-stable TW

solutions for almost all initial conditions. The attractors in this region are stable
TW solutions.

. Spatio-Temporal Intermittency region. Despite the fact that there exist stable TWs,

the evolution from random initial conditions is not attracted by them. Instead, a
chaotic attractor is reached in which typical configurations of the field A consist of
regions of TW interrupted by turbulent bursts. The modulus of A in such bursts
typically touches zero quite often. In Fig. 1.17 we show typical spatiotemporal
evolution for Spatio-Temporal Intermittency (STI). In 1.17a) I show the | A |? with
time running upwards and x in the horizontal direction. The lighter red corresponds
to the maximum value of | A |? and darker to the minimum. The triangular zones
correspond to regions of constant modulus, that is, regions of TW. These regions
are limited by localized structures, that evolve in a complicated way. Sometimes
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these localized structures burst in other ”hole-like” objects that resemble the Bekki—
Nozaki holes, that will explained in next section. Figure 1.17b) shows the phase
@(x,t). It can be observed that, corresponding to the regions of constant modulus
(i.e. TW zones) the lines of constant phase remain continuous whereas they are
interrupted at the edge of the triangle by a phase discontinuity due in general to a
zero of the modulus. In Fig. 1.17c—e) a snapshot for the phase, the phase gradient
and the modulus at a given time are shown, respectively.

3. Defect Turbulence (DT). This is a strongly disordered region in which the modulus
of A has a finite density of space-time zeros (defects). In addition, the temporal
correlation functions have a quasi-exponential decay [165, 42]. Finally, the winding
number v, defined in (1.19), presents strong fluctuations. In this region there are
not only defects, but also other localized structures displaying a rich dynamics. In
Figure 1.18 a typical configuration is shown. It can be seen in 1.18a) how the defects
evolve, colliding with each other, disappearing and creating new ones. It can be seen
in 1.18b) how at each (space-) time that the modulus goes to zero the phase is not
defined and thus, a discontinuity appears. As before, in 1.18c-€) snapshots show the
turbulent aspect for the three variables.

4. Phase Turbulence (PT). This is a weakly disordered phase in which |A(z, )| remains
away from zero, meaning that the density of spatiotemporal defects is zero. The
temporal correlations decay slower than exponentially [165, 42]. The behavior of the
phase in this region strongly resembles the turbulent behavior of the the Kuramoto—
Sivashinsky equation (KSE)[101, 102, 166]. Besides, within certain limits (that will
discussed in Chapter 3 ) the phase of states of the CGLE can be approximated by
a KS-like equation. On the other hand, while it was said that the winding number
remain constant[165, 42, 43], it was recently demonstrated that this is so[125, 123]
only if it lies in a given range (see Chapter 3). A typical configuration is shown in
Fig. 1.19 as in previous figures. The modulus shows (Fig. 1.19a) the evolution of
tiny pulses and wave shocks wiggling around. The lines of constant phase (1.19b)
are continuous due to the absence of defects. In the snapshots 1.19c—e) it can be
seen how the modulus keeps far apart from zero (notice the scale), and the pulse
and shocks are very small. The phase gradient presents a strong turbulent aspect.

5. Bi-Chaos region. Depending on the particular initial condition, the system ends up
on attractors similar to the ones in regions 3, 4, or in a new attractor in which the
configurations of A consists of regions of phase and defect turbulence. In Figure
1.20 a typical configuration of this last a attractor is shown. It can be observed how
regions of Phase Turbulence (triangular patches) alternate with localized structures
being themselves very often defects, corresponding to a Defect Turbulence behavior.

These regions are limited by several lines. The BFN line is the only one obtained
analyticaly in the diagram 1.16. It corresponds to the Benjamin—Feir—Newell line,
explained in 1.3.1. The other three lines were obtained numerically. The line Lo
corresponds to the limit of Spatio-Temporal Intermittency (2) and the No—Chaos
region (1). Although this line was obtained from numerical observation, there is
a great coincidence with the analytically obtained line Al for the stability of the
holes solution of the diagram in Fig. 1.24. The lines L; and L3 were first obtained
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through numerical observations in combination with some statistical analysis. Ls
separates the Bichaos from the Phase Turbulence region.

Recently, the transition line L; from DT (region 3) to PT (region 4) has received
much attention. Several questions about this line have been posed and the answer
to them is an effervescent theme of research[119, 63, 32, 64, 62, 125, 123, 174, 175].
The main question is if the PT-DT transition is a true phase transition in the sense
that it remains well defined in the infinite system size limit. Such question, together
with the analysis of proper diagnostic tools to characterize the transition will be
addressed in Chapter 3.
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Figure 1.17: a) Spatiotemporal evolution of | A(x,t) |. Typical configuration starting from
random initial condition for 250 time units in the STIregion. The lighter color corresponds
to the maximum value of | A(z,t) | and darker to the minimum. ¢; = 0.0 , and ¢y = —2.1.
b) Idem as (a) but for ¢(x,t) ¢) A snapshot of the phase ¢(z,t) as a function of = for
t = 210 which is indicated by an arrow in a). d) Idem as c) but for d,p(z,t). e) Idem as
c) but for | A(z,t) | .
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Figure 1.18: a) Spatiotemporal evolution of | A(x,t) |. Typical configuration starting from
random initial condition for 250 time units in the DT region. The lighter color corresponds
to the maximum value of | A(z,t) | and darker to the minimum. ¢; = 1.5 , and ¢y = —2.1.
b) Idem as (a) but for ¢(z,t) c) A snapshot of the ¢(z,t) as a function of z for t = 220
which is indicated by an arrow in a). d) Idem as ¢) but for d,¢(x,t). e) Idem as c¢) but
for | A(z,t) |.
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Figure 1.19: a) Spatiotemporal evolution of | A(x,t) |. Typical configuration starting from
random initial condition for 250 time units in the PT region. The lighter color corresponds
to the maximum value of | A(z,t) | and darker to the minimum. ¢; = 1.5 , and ¢ = —0.9.
b) Idem as (a) but for ¢(x,t) c) A snapshot of the p(z,%) as a function of x for ¢t = 220
which is indicated by an arrow in a). d) Idem as ¢) but for d,¢(x,t). e) Idem as c¢) but
for | A(z,1) | .
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Figure 1.20: a) Spatiotemporal evolution of | A(z,t) |. Typical configuration starting
from random initial condition for 250 time units in the Bichaos region. The lighter color
corresponds to the maximum value of | A(z,t) | and darker to the minimum. ¢; = 1.1 ,
and cg = —1.2. b) Idem as (a) but for ¢(z,t) c) A snapshot of the ¢(x,t) as a function
of x for t = 210 which is indicated by an arrow in a). d) Idem as ¢) but for d,p(z,t). €)
Idem as c) but for | A(z,t) | .
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1.3.3 Localized Solutions

In addition to the traveling wave solutions there are other solutions of the CGLE that can
be obtained in a closed analytic form. In what follows I will give a brief overview of the
other known analytic solutions of the CGLE. T will consider solutions generically called
coherent structures[179]. These are solutions that are either localized or that consist of
domains of regular traveling waves connected by localized defects or interfaces. Names
such as front, pulse or hole are given to them according to the shape of its modulus. When
they emit or absorb perturbations from the surroundings they are also called source or
sink, respectively.

PN a) PN b)

Al Al

Figure 1.21: Possible coherent structures solutions. a) Front. b) Pulse. ¢) A shock acting
as a source (vq is a group velocity in the frame moving with the structure) d) Sink.

In particular, I address uniformly moving solutions of the CGLE. This analysis can be
simplified if the partial differential equation (PDE) (1.16) is reduced to a set of ordinary
differential equations (ODE). This can be easily achieved through the change of variables
¢ = x — vt where v is the velocity of the uniformly translating solutions. Specifically, by
using the ansatz

Az, t) = e @ A(x —vt), Az —vt) = A(E) = a(€)e!®©) (1.31)

where w and v are real parameters. Substituting (1.31) into the PDE (1.16), this is reduced
to a set of ODE’s for the amplitude and the phase of A. Actually, this set of ODE’s can
be put as a set of first order ODE’s setting

q(&) = 0@, K(§) =a '0a. (1.32)
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Inserting (1.32) in (1.16), one obtains ( for details see [179])

dea = Ka
6§q = —w+ vk —vq— 2Kkq+ [Cm - (01 - 02)a2]
8§;<; = —Cclw — VK —Cvq — K2 + q2 — [u - (1 + 0102)02] ) (1-33)

The study of the dynamical system (1.33) was performed by W. van Saarloos and P. C.
Hohenberg[179]. They found fixed points, and studied their stability. From their analysis
they identified several possible coherent structures illustrated in Fig. 1.21 . Also guided
by heuristic stability arguments they make an ansatz for the solution of this set of ODE’s.
Introducing such ansatz in eqs. (1.33) leads to a set of overdetermined nonlinear algebraic
system of equations. The compatibility of such system is a set of equations that couple the
parameters introduced in the ansatz with the free parameters w and v introduced in (1.31)
(see [179]). The solution so obtained is a front solution. This front solution connects a
traveling wave solution of wavenumber & with the state A(x,t) = 0. Other known solutions
can be obtained with other ansatz.

This moving front solution can be obtained in a simpler way: introducing the ansatz
(1.31) in the CGLE (1.16) and assuming ®(£) = k¢ leads to the following expression for
the front

A(z, t) = a(z — vt)elFo—et (1.34)

where

CL(ZU — Ut) - h2 + h16_2h1(x_vt)

W = wp — 201k
W = Cop+ (co — c1)k?
v = 20k
—w o + 21k
hi =
2k
Cl1 — Cy
ho = 1.35
2 ok ) ( )

K. Nozaki and N. Bekki[25] obtained additional exact solutions of the CGLE. The
well known Nonlinear Schrodinger equation (NLSE) (an integrable equation) has coherent
exact solutions known as bright and dark solitons. These solutions can be obtained with
different methods ( see for example [132]): inverse scattering, symmetry reduction or the
Hirota’s bilinear method. K. Nozaki and N. Bekki applied the Hirota’s bilinear method[84]
to the CGLE in order to obtain exact solutions. The main idea is that after a suitable
transformation of the amplitude A(z,t) of the CGLE (1.16), the equation thus obtained
can be solved exactly. The transformation is the following

Gei(K:v—Qt)

A(z,t) = —piria

(1.36)

where K, Q and « are real parameters to be determined. The functions F'(z,t) and G(x, ),
with the restriction that F(xz,t) is real, are obtained solving a bilinear differential equation
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in terms of a modified bilinear operator function[140, 25]. After a tedious algebra three
exact solutions can be obtained (for a detailed calculation see W. van Saarloos and P. C.
Hohenberg[179] pags. 337-338 ). These solutions are known as the Bekki—-Nozaki solutions

(B-N). For these solutions the parameters «, 5 and A, are fixed and given by

31

a = _Bi 2+52 ,5:_ﬂ
202—01
14 cie

(1+cH)(a?-2) "

4 =

Setting K = Q = 0 a standing solitary wave or pulse solution is obtained

ge’

Az, t) = (1 +69+9*)1+m )

0=kx— wt,

*

where k, g and 6 are complex ( * means complex conjugate) and

(Rek)? = k7 = 5300 Imk=k; = kya,

) ’
| g = 4k2/Ao ,Imw =k? [c1(a? —1) —2a] , Rew=0,
When K, ) # 0 one obtains either a standing hole solution

1— e2nw

_ ((Kx—t
Az, t) = ge'"* >(1 e

2 —Aop
K ?
1—a2A0
2
2 K 2
gl = G =p-K",
9 = %

or a moving shock _
ez(waﬁt)efn(wfct)

A(:Ij,t) =9 [1 i e—n(m—ct)]1+ia ’
3
K',2 = Agu 1—A0(Ol+561)2 s
12
oF = = (K ),
3
K o= 39 o304,
Q = c(K+ar)+c|g| —cak.

(1.37)

(1.38)

(1.39)

(1.40)

(1.41)

(1.42)

W. van Saarloos and P. C. Hohenberg[179] showed that a hole solution is a wave source.
On the other hand, shock solutions are sinks. It should be noted that in these solutions
only the modulus of ¢ is defined since the CGLE is invariant under a change in the phase.
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I followed here the notation used by Nozaki and Bekki in their first paper ([140]). The
shock solution presented above was first obtained by these authors. On the other hand,
the solitary wave solution was previously obtained by Pereira and Stenflo[144]. The above
expression for the hole solution appeared in ([140]) and has zero velocity. A year later
Nozaki and Bekki in ([25]) reported the moving hole solution with velocity ¢ # 0. The
B-N hole solution for ¢ # 0 can be expressed, similarly as in (1.36)

Geilas (x/2)—wt)

A(IL‘, t) - Fltia

,X=1z —ct, (1.43)
with

G = ag (X 4 ze7FOX) | ' = eROX 4 g7ROX | (1.44)
where ao, kg, ¢, w, ¢, @ are real constants and z is complex. They depend on the coefficients

of the equation and on a free parameter which can be chosen to be either the velocity ¢
or a wavenumber ¢; (see below).

a5 = p+q
Ky = q1 — 42

2
4+ = @+aq
W = pey—c q192

Q1+ q

c = (c—c2)(q1+ )
a = —fB+4/2+ 32
g = ;14—0102

C2 —C1

@ +q—nlg — q2)
a1+ g+ (g — q2)
(1 4+icp) (1 —ia™th)

= 1.45
" 1 + 'iCQ ( )

Where ¢, ¢2 and ¢ are related by the following expression

(g —@)?
o=y 1.46
Z+ 2t (1.46)
with 4 4
@ = I 2 I (1.47)

@ errm T Tak
being n = n, + in; the parameter 1 in (1.45).

It is commonly accepted that, on the basis of the analysis of the ODE (1.33) one
expects the existance of a source with ¢ = 0 as well as a discrete set of sources with ¢ # 0
[179]. However, Bekki-Nozaki[140, 25] found a continuous one-parameter family of exact
source solutions of the CGLE, the hole family.

The Bekki-Nozaki solutions were reobtained by R. Conte and M. Musette[49] using
the Painlevé method. These authors show how all the known solutions can be described in
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the unified scheme of the Painlevé method. Since all the exact solutions necessarily obey
the singularity structure of the equation[49], a prerequisite is to determine such structure.
For doing so these authors use the Painlevé analysis extended to PDE’s by the the WTC
(Weiss-Tabor-Carnevale) method[184, 188]. Then, using a truncated expansion, in an
adequate representation, the same exact solutions found by Bekki—Nozaki are obtained.
Here I will write these solutions in the Conte-Musette notation, since several properties
of these solutions become much more clear.

I recall that the B-N hole—family of solutions is a one—parameter family and I use as
the free parameter the velocity of the solutions ¢. The following constants are the same
for the three solutions:

A=355(D,£0), A=/D2+5D7,

Dy =—-(1+cier), Di=ci—cz, (1.48)
_ D g2
@ =370

The hole solution can be written

k k i |aln L3 cf _
Az, t) = Ay (5 tanh (§£> —VC) ¢ [al cosh(3¢) +35; Qt} , E=x—ct, (1.49)

with v a complex constant,

_ Di+aD, —i(D, — aD;)

1.
21+ o)1+ 3)D; (1.50)
and €, k and ¢ must satisfy the following relationships
k*  2D2c; +2D; + 3co(£A — Dy)
Q— (2¢1 — — L ! 2 =
(2¢1 — 3a) 4+ S0+ )02 c 0,
k> e D; F3A-3(1+¢
(3C¥C1+2)Z— 8(1—1—0%)1()-2 1)02—,u = 0. (1.51)
The shock solution is
k k i|aln k vicé4vac?
Az, t) = Ag§<tanh <§§> —i—e)e [ : (COSh(Tg))Jr rebye t] (1.52)
where
=1,
v = 3c1—«a _ 149(1+¢})

T 6(+ed) 0 V27T 36+ 0

and k and c are fixed by the following relationships

A+p=0.

k—(_—c 1-9(1+c?)
2 6(1+c7) *  36(1+c7)2

Finally, the solitary wave or pulse solution is

A(z,t) = —iAgk sech (kz) ei[alncosh(km)Jr((lfa?)clea)t] : (1.53)
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where k is given by
(2&01 + (1 - aZ)) E+up=0. (1.54)

It can be shown, after some algebra, that the expressions reported above are equivalent
to the ones given by Bekki-Nozaki (for example, it can be shown that the constant «
defined in (1.48) is just —a given in (1.45) ). I now summarize the most relevant properties
of these exact solutions. Note first that the holes and the shock have a propagating
velocity ¢ associated with them. The pulse however has a stationary modulus. Also, the
expression given above in Conte-Mussete’s notation makes easier the comparison with
the exact solutions of the NLSE. For instance, for the hole solution (1.49) the expression
resembles very much the one of the dark soliton for the NLSE (see for example [96] and
references therein). Also the profile is very similar ( Fig. 1.22a). For the pulse solution
(1.53) the appropriate comparison is with the bright soliton of the NLSE (see also [96]).
The profile of the pulse solution for the CGLE is similar to the bright soliton of the NLSE
(see Fig. 1.21b). A sketch of the shock solution is given in Fig. 1.21d .

A a)

I A

x
2 b)
$ loa
Ay d=
x
Figure 1.22: Typical profile for a traveling hole for ¢; = —0.35 ¢co = 2.0 and velocity

¢ = —0.2. a) The amplitude of the hole is shown, and | A; | and | Ay | are the amplitude
of the asymptotic traveling waves. b) The phase for the hole of a) is shown. Notice the
phase jump o corresponding to the dip shown in a). The two slopes indicated in the figure
correspond to the two wavenumbers of the asymptotic plane waves.

Substantial effort has been devoted to the description of these exact solutions since
their discovery. However, the largest part of this effort was directed to the holes solutions.
Some of the main features of the hole solutions known up to now are decribed below.

The Bekki-Nozaki hole solution (B-N hole) is characterized by a sharp phase jump (o)
and a dip of amplitude (| A |= amin) where this phase jump is located (see Fig. 1.22a) and
1.22b)). The B-N hole is an heteroclinic orbit connecting two fixed points of the dynamical
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system (1.33), where the fixed points correspond to traveling wave solutions[179]. As a
consequence the B-N hole approaches asymptotically (¢ — £oo) traveling wave (TW)
solutions. The asymptotic TW solutions have wave numbers ¢; and g2 and amplitudes

Arp = /1 - in respectively. The wavenumbers can be written

Qo= Di + ok (1.55)

i

The phase jump o can be expressed

2kv;c
t = 1.56
ane 4(vpe)? — k2 + (vic)? (1.56)

where v = v, + iv; being v the expression given by (1.50).

This phase jump o is zero in the following cases:

1. ¢=0.
2. Co) —C1 = —1+3102_
3. q1 = £qo.

The sharp change ¢ becomes true discontinuity of size 7 in the phase for the standing
hole (¢ = 0), since the modulus | A | vanishes at £ = z = 0. The free parameter of the B-N
hole solution can be chosen as the speed ¢ or one of the wavenumbers of the asymptotic
TW since they are related by the following expressions. From (1.55 )

c= Di(qg + q1) R (157)
together with
k2 2
=+ 0_2 -1 (1.58)
a; a3

Notice that (1.58) is the equation® of an ellipse where a; and as are known functions of
c; and ¢ ( see [179, 112, 25]) and k is related to g2 through (1.55). When (1.58) is
written in terms of the variables ¢; and ¢ the ellipse gives, for each ¢, two values in the
vertical axis , namely, g1 and ¢s. These values correspond to the two wavenumbers of the
asymptotic traveling waves (see Fig.1.23).

3with the appropriate change of notation the equation (1.58) is the same as (1.46)
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Figure 1.23: The relation (1.58) represents an ellipse. The horizontal axis represent the
velocity of the moving holes and in the vertical axis the wavenumbers of the asymptotic
traveling waves.

While the study of the B-N hole solutions has been very intensive their stability analy-
sis is not an easy task. Several attempts ended up with some analytical-numerical results.
H. Chaté and Manneville[44] obtained some conclusions on phase and core instabilities
for the hole solution for velocity ¢ = 0 and ¢ = 0.2. The phase instability being associ-
ated with the stability of the asymptotic TW, while the core instability is associated with
the instability of the “dip” itself. Further studies on the stability of the hole solutions
were done by L. Kramer and collaborators[149, 148, 169, 168] and others[161]. Kramer
and collaborators had been able to draw a stability region for the standing hole (¢ = 0)
as a function of the coefficients of the CGLE. This graphic is reproduced in Fig. 1.24.
The hole solutions were found to be stable in a narrow region of the ¢;—cy plane. The
region is bounded from above by the border of (absolute) instability of the emitted plane
waves (solid curve Al in Fig. 1.24). From the other sides the stable range is bounded by
the instability of the core with respect to localized eigenmodes corresponding to a discrete
spectrum of the linearized problem ( solid curve CI in Fig. 1.24). This line was determined
analytically by Kramer et al.[168].
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Figure 1.24: Stability diagram for the standing hole solutions[168](red lines). The differ-
ent regions that were explained in 1.3.2 are also displayed (blue lines). Waves emitted
by the standing hole become convectively unstable above the dashed curve EI (Eckhaus
Instability)and absolutely unstable above the solid curve AI (Absolute Instablity). Out-
side the region bounded by the solid curve CI (Core Instability) the core of the standing
hole becomes unstable. Stable standing holes can be found below AI and inside CI. The
dotted line MO (Monotonic-Oscillatory) gives the boundary between monotonic (below)
and oscillatory (above) interaction between standing holes.

Transient hole type solutions were observed experimentally by Lega et al.[112] in the
secondary oscillatory instability in Rayleigh—-Bénard convection in an annular geometry.
In that work careful measurement of the different parameters of the hole were contrasted
against numerical and analytical results successfully.

As to the other solutions of the B-N family few results are yet known. The pulse
solution has received some attention by Kishiba et al. [95] who found them numerically
in a very small region of the parameter space. New solutions reported in [13, 14] are in
fact a particular case of the general form found by Conte and Musette.
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Chapter 2

Numerical Study of a Lyapunov
functional for the Complex
Ginzburg-Landau Equation

Isn’t it true— isn’t it true?

Good question — I know — who cares?
Look here, they tell you
If you had this
If you had that

Latest styles and colors
If you had that for us, mmmmm
Wouldn’t it be fabulous 7 ...

Joni Mitchell, The reoccuring dream

2.1 Introduction

The Complex Ginzburg-Landau Equation (CGLE) is the amplitude equation describing
universal features of the dynamics of extended systems near a Hopf bifurcation [51, 179].

HA =aA+ (D, +iD;)V?A— (b +ib;) | A* A. (2.1)

Examples of this situation include binary fluid convection [98], transversally extended
lasers [50] and chemical turbulence[104]. We will considered here only the one-dimensional
case, A = A(z,t), with z € [0, L]. Suitable scaling of the complex amplitude A, space,
and time shows that for fixed sign of a there are only three independent parameters in
(2.1) (with D, and b, > 0 that we assume henceforth). They can be chosen to be L,
¢1 = D;/D,, and ¢y = b;/b,.

The CGLE for a > 0 displays a rich variety of complex spatio-temporal dynamical
regimes that have been recently classified in a phase diagram in the parameter space
{c1,e2} [165, 42, 43]. It is commonly stated that such nontrivial dynamical behavior,

'This Chapter corresponds to Numerical Study of a Lyapunov functional for the Complezr Ginzburg-
Landau Equation, by R. Montagne, E. Hernédndez-Garcia and M. San Miguel, Physica D, 96, 47 (1996).
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occurring also in other nonequilibrium systems, originates from the non-potential or non-
variational character of the dynamics [8]. This general statement needs to be qualified
because it involves some confusion in the terminology. For example the term “non-
variational” is often used meaning that there is no Lyapunov functional for the dynamics.
But Graham and co-workers, in a series of papers [74, 75, 76, 57, 58], have shown that a
Lyapunov functional does exist for the CGLE, and they have constructed it approximately
in a small-gradient approximation. The correct statement for the CGLE is that it is not a
gradient flow. This means that there is no real functional of A from which the right hand
side of (2.1) could be obtained by functional derivation.

Part of the confusion associated with the qualification of “nonvariational” dynamics
comes from the idea that the dynamics of systems having non-trivial attractors, such
as limit cycles or strange chaotic attractors, can not be deduced from the minimization
of a potential which plays the role of the free energy of equilibrium systems. However,
such idea does not preclude the existence of a Lyapunov functional for the dynamics. The
Lyapunov functional can have local minima which identify the attractors. Once the system
has reached an attractor which is not a fixed point, dynamics can proceed on the attractor
due to “nonvariational” contributions to the dynamical flow which do not change the
value of the Lyapunov functional. This just means that the dynamical flow is not entirely
determined once the Lyapunov functional is known. This situation is very common and
well known in the study of dynamical properties within the framework of conventional
statistical mechanics: The equilibrium free energy of the system is a Lyapunov functional
for the dynamics, but equilibrium critical dynamics [86] usually involves contributions,
such as mode-mode coupling terms, which are not determined just by the free energy.
The fact that the dynamical evolution is not simply given by the minimization of the free
energy is also true when studying the nonequilibrium dynamics of a phase transition in
which the system evolves between an initial and a final equilibrium state after, for example,
a jump in temperature across the critical point [78].

A Lyapunov functional plays the role of a potential which is useful in characterizing
global properties of the dynamics, such as attractors, relative or nonlinear stability of
these attractors, etc. In fact, finding such potentials is one of the long-sought goals of
nonequilibrium physics [72, 73|, the hope being that they should be instrumental in the
characterization of nonequilibrium phenomena through phase transitions analogies. The
use of powerful and very general methods based on these analogies has been advocated
by a number of authors [35, 36, 165, 42, 43]. In this context, it is a little surprising that
the finding of a Lyapunov functional for the CGLE [76, 57, 58] has not received much
attention in the literature. A possible reason for this is that the construction of nonequi-
librium potentials has been historically associated with the study of stochastic processes,
in particular in the search of stationary probability distributions for systems driven by
random noise [72, 73, 79]. We want to make clear that the finding of the Lyapunov func-
tional for the CGLE [76, 57, 58], as well as the whole approach and discussion the present
work is completely within a purely deterministic framework and it does not rely on any
noise considerations. A second possible reason for the relative little attention paid to the
Lyapunov functional for the CGLE is the lack of any numerical check of the uncontrolled
approximations made on its derivation. The main purpose of this Chapter is precisely to
report such numerical check of the results of Graham and collaborators, thus delimiting
the range of validity of the approximations involved. We also provide a characterization
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of the time evolution of the Lyapunov functional in different regions of the phase diagram
of the CGLE [165, 42, 43|, which illustrates the use of such potential.

Our main findings are that the expressions by Graham and coworkers behave to a good
approximation as a proper Lyapunov potential when phase singularities (vanishing of the
modulus of A) are not present. This includes non-chaotic regimes as well as states of phase
turbulence. In this last case some small but systematic discrepancies with the predictions
are found. In the presence of phase singularities the potential is ill-defined and then it is
not a correct Lyapunov functional.

The Chapter is organized as follows. For pedagogical purposes, we first discuss in Sect.
2.2 a classification of dynamical flows in which notions like relaxational or potential flows
are considered. The idea of a potential for the CGLE is clearer in this context. In Sect.
2.3 we review basic phenomenology of the CGLE and the main analytical results for the
Lyapunov functional of the CGLE. Sections 2.4 and 2.5 contain our numerical analyses.
Section 2.4 is devoted to the Benjamin-Feir stable regime of the CGLE and Sect. 2.5 to
the Phase Turbulent regime. Our main conclusions are summarized in Sect. 2.6.

2.2 A classification of dynamical flows

In the following we review a classification of dynamical systems that, although rather
well established in other contexts [72, 73], it is often overlooked in general discussions
of deterministic spatio-temporal dynamics. Non-potential dynamical systems are often
defined as those for which there is no Lyapunov potential. Unfortunately, this definition is
also applied to cases in which there is no known Lyapunov potential. To be more precise,
let us consider dynamical systems of the general form

0 A; = Vi[A] (2.2)

where A; represents a set of, generally complex, dynamical variables which are spatially
dependent fields: A; = A;(x,t). V;[A] is a functional of them. The notation A} represents
the complex conjugate of A; and for simplicity we will keep the index 7 implicit. Let us
now split V' into two contributions:

V[A] = G[A] + N[4] , (2.3)
where G, the relaxational part, will have the form

L§F[4]
2 04"

G[A] = (2.4)
with F' a real and scalar functional of A. T' is an arbitrary hermitic and positive-definite
operator (possibly depending on A). In the particular case of real variables there is no
need of taking the complex conjugate, and hermitic operators reduce to symmetric ones.
The functional N[A] in (2.3) is the remaining part of V[A]. The important point is that,
if the splitting (2.3) can be done in such a way that the following orthogonality condition
is satisfied (c.c. denotes the complex conjugate expression):

/ dx <§Z—£N[A(x)] + c.c.> _0, (2.5)
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then the terms in NV neither increase nor decrease the value of F', which due to the terms
in G becomes a decreasing function of time:

dF[A(x, )]
— <0, (2.6)

If F is bounded from below then it is a Lyapunov potential for the dynamics (2.2). Equa-
tion (2.5) with N =V — G, that is

/ dx (gﬂﬂ <V[A(x)] + g ;ﬂg) + c.c.> —0, 2.7)

can be interpreted as an equation for the Lyapunov potential F' associated to a given
dynamical system (2.2). It has a Hamilton-Jacobi structure. When dealing with systems
perturbed by random noise, I" is fixed by statistical requirements, but in deterministic
contexts such as the present work, it can be arbitrarily chosen in order to simplify (2.7).

Solving (2.7) is in general a difficult task, but a number of non-trivial examples of the
splitting (2.3)-(2.6) exist in the literature. Some of these examples correspond to solutions
of (2.7) found in the search of potentials for dynamical systems [76, 74, 75]. Other examples
just correspond to a natural splitting of dissipative and non-dissipative contributions in the
dynamics of systems with well established equilibrium thermodynamics, as for example
models of critical dynamics [86] or the equations of nematodynamics in liquid crystals
[160].

Once the notation above has been set-up, we can call relaxational systems those for
which there is a solution F' of (2.7) such that N = 0, that is all the terms in V' contribute
to decrease F'. Potential systems can be defined as those for which there is a nontrivial
(i.e. a non-constant) solution F' to (2.7). In relaxational systems there is no long-time
dynamics, since there is no time evolution of A once a minimum of F' is reached. On the
contrary, for potential systems for which N # 0, the minima of F' define the attractors
of the dynamical flow, but once one of these attractors is reached, nontrivial sustained
dynamics might exist on the attractor. Such dynamics is determined by N and maintains
a constant value for the functional F'.

A possible more detailed classification of the dynamical flows is the following;:

1.- Relaxational gradient flows: Those dynamical systems for which N = 0 with T’
proportional to the identity operator. In this case the time evolution of the system
follows the lines of steepest descent of F. A well known example is the so called
Fisher-Kolmogorov equation, also known as model A of critical dynamics [86], or
(real) Ginzburg-Landau equation for a real field A(x,?):

A=aA+yV?A-BA? A, (2.8)

where «, v and 3 are real coefficients. This equation is of the form of Eqgs. (2.2)-(2.4)
with N =0, ' =1, and F = F[A], the Ginzburg-Landau free energy:

FarlA] = /dx <—a | A|?+y| VA +§ | A |4> (2.9)
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2.-

2.3

Relaxational non-gradient flows: Still N = 0 but with I' not proportional to the
identity, so that the relaxation to the minimum of F' does not follow the lines of
steepest descent of F'. The matrix operator I' might depend on A or involve spatial
derivatives. A well known example of this type is the Cahn-Hilliard equation of
spinodal decomposition, or model B of critical dynamics for a real variable A. [86]:

. 1 dFqL[A]
A= (—=V?) [ ———=— 2.10
(-39 (-7 (2.10)
The symmetric and positive-definite operator (—V?) has its origin in a conservation
law for A.

Non-relaxational potential flows: N does not vanish, but the potential F', solution
of (2.7) exists and is non-trivial. Most models used in equilibrium critical dynamics
[86] include non-relaxational contributions, and therefore belong to this category. A
particularly simple example is

dFGr[A]
JA*

where now A is a complex field. Notice that we can not interpret this equation as

being of type 1, because (1 + i) is not a hermitic operator, but still F5z, is a Lya-

punov functional for the dynamics. Equation (2.11) is a special case of the Complex
Ginzburg- Landau Equation (CGLE), in which V[A] is the sum of a relaxational

A=—(1+1) (2.11)

gradient flow and a nonlinear-Schrédinger-type term N[A] = —iéFg’TL*[A} .
The general CGLE[179] is of the form (2.8) but A is complex and «, v and /8 are
arbitrary complex numbers. For the special case in which ﬁzm = f:l[[%]}, as for

example in (2.11), the Lyapunov functional for the CGLE is known exactly [171].
Such choice of parameters has important dynamical consequences[154]. Beyond such
special cases, the calculations by Graham and coworkers indicate [57, 58] that the
CGLE, a paradigm of complex spatio-temporal dynamics, might be classified within
this class of non-relaxational potential flows because a solution of (2.7) is found.
The difficulty is that the explicit form of the potential is, so far, only known as a
uncontrolled small-gradient expansion.

Non-potential flows: Those for which the only solutions F' of (2.7) are the trivial
ones (that is F' = constant). Hamiltonian systems as for example the nonlinear
Schrodinger equation are of this type.

A Lyapunov Functional for the CGLE

It is well known that for @ < 0 the one dimensional CGLE (2.1) has A = 0 as a stable
solution, whereas for a > 0 there are Traveling Wave (TW) solutions of the form

Ay = Agellhrteti+eo (2.12)

with Ag = \/(a — D,k2) /by, |k| < \/a/b., and w = (b;a + D_k?)/b,. We have introduced

D_= Drbz — le,« . (213)
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o is any arbitrary constant phase.

The linear stability of the homegeneus solution ( (2.12) with k& = 0 ) with respect
to long wavelength fluctuations divides the parameter space {c1,c2} in two regions: the
Benjamin-Feir (BF) stable and the BF unstable zone. This line is given by [173, 131]

D, =D,b, + D;b; =0, (2.14)

In the BF unstable region (D < 0) there are no stable TW solutions, while in the BF
stable region (D5 > 0) TW’s with a wavenumber k < kg are linearly stable. For k > kp,
TW’s become unstable through the long wavelength instability known as the Eckhaus
instability [61, 91]. The Eckhaus wavenumber kg is given by

E™ D.(3D, b, +2D b;)

(2.15)

Recent numerical work for ¢ > 0 and L large [165, 42, 43, 64] has identified regions
of the parameter space displaying different kinds of regular and spatio-temporal chaotic
behavior (obtained at long times from random initial conditions and periodic boundary
conditions), leading to a “phase diagram” for the CGLE. The five different regions, each
leading to a different asymptotic phase, are shown in Fig. 2.1 as a function of the param-
eters ¢y and ¢y (a > 0, L large). Two of these regions are in the BF stable zone and the
other three in the BF unstable one. One of the main distinctions between the different
asymptotic phases is in the behavior of the modulus of A at long times. In some regions
it never vanishes, whereas in others it vanishes from time to time at different points. A
more detailed description of the asymptotic behavior in the different regions is as follows:

1. Non-Chaotic region. The evolution here ends in one of the Eckhaus-stable TW
solutions for almost all the initial conditions.

2. Spatio-Temporal Intermittency region. Despite the fact that there exist stable TW,
the evolution from random initial conditions is not attracted by them but by a
chaotic attractor in which typical configurations of the field A consist of patches of
TW interrupted by turbulent bursts. The modulus of A in such bursts typically
touches zero quite often.

3. Defect Turbulence. This is a strongly disordered phase in which the modulus of A
has a finite density of space-time zeros. In addition the space and time correlation
functions have a quasi-exponential decay [165, 42].

4. Phase Turbulence. This is a weakly disordered phase in which |A(z, )| remains away
from zero. The temporal correlations decay slower than exponentially [165, 42].

5. Bi-Chaos region. Depending on the particular initial condition, the system ends on
attractors similar to the ones in regions 3, 4, or in a new attractor in which the
configurations of A consists of patches of phase and defect turbulence.
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Figure 2.1: Regions of the parameter [c; —c3]-space (a = 1) for the d = 1 CGLE display-
ing different kinds of regular and chaotic behavior. Two analytically obtained lines,the
Benjamin-Feir line (B-F line) and the D_ line, are also shown.

An approximate Lyapunov functional for the CGLE was calculated by Graham and
collaborators [57, 58, 56]. Earlier attempts to find a Lyapunov functional were based on
polynomial expansions[171, 71, 182, 183], while more recent and successful approaches
focussed in solving the Hamilton-Jacobi equation (2.7) with I' = 1 in different ways. This
was done first by a minimization procedure involving an action integral[74, 75, 76], and
more recently by a more direct expansion method [57, 58, 56]. This last method provides
also expressions in higher dimensions, but we will restrict here to the one-dimensional
case. In any case, the solution involves an uncontrolled gradient expansion around space-
independent solutions of the CGLE. Such expansion obviously limits the validity of the
result to regions in the phase diagram in which there are not strong gradients. This
excludes the regions in which zeros in the modulus of A are typical, since the phase
of A becomes singular there. In particular Spatio-temporal intermittency regimes, Bi-
chaos and Defect Turbulence are out of the range of validity of Graham’s expansion. The
meaningfulness of the potential in the other regions of parameter space remains still an
open question because of the uncontrolled small gradient approximations used to calculate
it, and calls for some numerical check.

In their solution of the Hamilton Jacobi equation, Graham and collaborators find
different branches of the Lyapunov functional with expressions valid for different values of
the parameters. In particular they identify the BF line (2.14) as separating two branches
of the solution to (2.7).
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The explicit expressions (obtained with I' = 1) are given in polar coordinates:
Az, t) = r(z, 1)@ (2.16)

In terms of the amplitude r, the phase ¢, and their spatial derivates (denoted as 7,
Yz, Pzz, etc.) the Lyapunov functional per unit of length ® = F//L was found[57, 58], for
a < 0:

D birt 1, 2D 13

b = br4—2 2 2{Dr TN -
/{ A TPy e} L TPy )

TePr + 2D,nr2<p§,}d:1: (2.17)

We note that even in this relatively simple case a < 0, the result for @ is only approximate
and its structure reveals a highly non-trivial dynamics.
For a > 0, in the BF stable region (D, > 0) the expression for ® results:

o = /{b,«r4 — 2ar?

+ [(AIT + BI/TZ)T;% + (A2T + BZ/T)Tx‘Px + 2(D7"7"2 - D—bia/ | b |2 br)@i]

D_Dyb; , ( D%*a D_ > 5  2D_D, , o 5 031,
—— - — —(D_ 2D;)1 (b7 — z
+ |:3b7' | b |2 ()01' 2()%7"2 b% ( /bT‘ + Z) n'l"—i- Cl ()01'1' + 3b% | b |2 (bl bT‘) r
2D_D;b; , N2 4DrbiD_< 1n(b,r2/a)> ]}
(b - 207) TR — L+ ——L2 N rpppes| rd 2.18
* 303 b2 (b r) 72 3b3r L. brr?/a Tapa v (2.18)
where

Ay = 2(D,+b;D_/3b2),

Ay = 2D_/b,,
2D_bia 2 2
Bl = 2 (2p2 — b
1 3b§ | b |2( T Z)7
2D_a
By, = b2 — b?
2 b,% | b |2( r z)?

(2.19)

Clearly, @ is ill-defined when r = 0.

By writing-out the Euler-Lagrange equations associated to the minimization of ® the
TW solutions (2.12) are identified as local extrema of ®. Since they occur in families
parametrized by the arbitrary phase (g, the minima associated to the TW of a given k are
not isolated points but lay on a one-dimensional closed manifold. The non-variational part
of the dynamics (N in (2.3)) can be explicitly written-down by substracting G = —%65%
with F' = L® to the right-hand-side of (2.1). It is seen to produce, when evaluated on
the manifold of minima of ® with a given k, constant motion along it. This produces the
periodic time dependence in (2.12) and identify the TW attractors as limit cycles.

The value of k for which the corresponding extrema change character from local minima
to saddle points is precisely the Eckhaus wavenumber kg. It is remarkable that, although
expression (2.18) was obtained in a gradient expansion around the homogeneous TW, their
minima identify exactly all the TW’s of equation (2.1), and their frequencies and points of
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instability are also exactly reproduced. This gives confidence on the validity of Graham’s
approximations. It should be stressed however that they are not exact and can lead to
unphysical consequences. For instance, the value of the potential ® evaluated on a TW of
wavenumber k (|k| < \/a/b,) is [76]

2D+a 2 IfZ
O =04k = —=5k |1 — — Dy 2.20
where ®,_g = —a?/b,. For a range of parameter values this expression gives mathematical

sense to the intuitive fact that the closer to zero is k& the more stable is the associated
TW (because its potential is lower). But for some parameter values the minimal potential
corresponds to large wavenumbers close to £y/a/b,. This is counterintuitive and calls
for some numerical test. The test will be described below and it will be shown that
the wavenumbers close to +/a/b, are out of the range of validity of the small gradient
approximations leading to (2.18).

We already mentioned in the previous section that the Lyapunov functional for the
CGLE is exactly known for special values of the parameters [76, 57, 154]. This happens
for D = D,b; — D;b, = 0, which lies in the BF-stable region as indicated in Fig. 2.1. In
this case it is clear that (2.1) can be written as

16Fg1]A]
2 oA

where F1[A] is (2.9) for complex A and with o = 2a, 8 = 2b,, and v = 2D,.. It is readily
shown that the term proportional to b; is orthogonal to the gradient part, so that Fy, is an
exact solution of (2.7) for these values of the parameters, and (2.21) is a relaxational non-
gradient flow (see classification in section 2.2). It is seen that the approximate expressions
(2.17) and (2.18) greatly simplify when D_ = 0 leading both to the same expression:

: D
A= +ib; (— | A |2 +b—’"v2> A, (2.21)
r

L — / {_QMZ + byrt + 2Dy + 2Dr7'2<pi}d:1: (2.22)

When expressed in terms of A and A* it reproduces Fgy, in (2.21). Thus the gradient
expansion turns out to be exact on the line D = 0.

In the Benjamin-Feir unstable region (¢ > 0, D, < 0) the gradient expansion for ®
becomes[58, 56]:

o = /{b,ﬂ“4 — 2ar® + [(Alr + B1 /)72 + (Agr + B /7)reps + 2D, (r? — ﬁ)(pi}

by
52
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+ |:br @x+<2a2r2< 4 + b% )(T br) 2br(4 + )n( a )+ br>(pm:1:
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bir ( biD_(1— kL) n(=,") ) Pata
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where, in addition to the previous definitions
~ 2ab;
Bl = —=2N(D,b; +2D;b,),
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~ 2a

By = —— (Db + D;b,),

(2.24)

It was noted before that this expression can be adequate, at most, for the Phase Turbulent
regime, since in the other BF unstable regimes |A| vanishes at some points and instants,
so that (2.23) is ill-defined.

The long time dynamics occurs in the attractor defined by the minima of ®. The
Euler-Lagrange equations associated to the minimization of (2.23) lead to a relationship
between amplitude and phase of A which implies the well known adiabatic following of the
amplitude to the phase dynamics commonly used to describe the phase turbulence regime
by a nonlinear phase equation. The explicit form of this relationship is

= — -0 - — 2
" 3, (VO T Vet g Ve T VeV
b; D? D.D;b; |D|?
2——" 2 - )2 2.2
+ a2 VpVVip + a2 b (V<) (2.25)

It defines the attractor characterizing the phase turbulent regime. Dynamics in this
attractor follows from the nonrelaxational part N in (2.3). When (2.25) is imposed in such
nonrelaxational part of the dynamics the generalized Kuramoto-Shivashinsky equation
containing terms up to fourth order in the gradients [157] is obtained [58, 56].

We finally note that in the phase turbulent regime the Lyapunov functional ® gives
the same value [58, 56] when evaluated for any configuration satisfying (2.25), at least
within the small gradient approximation. This corresponds to the evolution on a chaotic
attractor (associated to the Kuramoto-Sivashinsky dynamics coming from N) which is
itself embedded in a region of constant @ (the potential plateau [73]). This plateau consists
of the functional minima of ® (2.25). All the (unstable) TW are also contained in the
same plateau, since they satisfy (2.25).

2.4 Numerical studies of the Lyapunov functional in the
Benjamin-Feir stable regime

We numerically investigate the validity of ®[A] in (2.17), (2.18), and (2.23) as an approx-
imate Lyapunov functional for the CGLE. When evaluated on solutions A(x,t) of (2.1)
it should behave as a monotonously decreasing function of time, until A(x,t) reaches the
asymptotic attractor. After then, ® should maintain in time a constant value characteristic
of the particular attractor.

All the results reported here were obtained using a pseudo-spectral code with periodic
boundary conditions and second-order accuracy in time. Spatial resolution was typically
512 modes, with runs of up to 4096 modes to confirm the results. Time step was typically
At = .1 except when differently stated in the figure captions. Since very small effects
have been explored, care has been taken of confirming the invariance of the results with
decreasing time step and increasing number of modes. System size was always taken as
L = 512, and always D, = 1 and b; = —1, so that ¢; = D; and ¢; = —1/b,. When a
random noise of amplitude € is said to be used as or added to an initial condition it means
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2

that a set of uncorrelated Gaussian numbers of zero mean and variance e~ was generated,

one for each collocation point in the numerical lattice.

2.4.1 Negative a

The uniform state A = 0 is stable for a < 0. We start our numerical simulation with
a plane wave A = Age™*® of arbitrary wavenumber k = 0.295 and arbitrary amplitude
Ap =1 (note that the TW’s (2.12) do not exist for a < 0), and calculate ® for the evolving
configurations. In order to have relevant nonlinear effects during the relaxation towards
A = 0 we have chosen a small value for the coefficient of the linear term (a = —0.01).
The remaining parameters were D; = 1 and b, = 1.25 (¢; = 1, ¢ = —0.8). Despite the
presence of non-relaxational terms in (2.1), ® decreases monotonously (see Fig. 2.2) to the
final value ®(t = c0) = ®[A = 0] = 0 confirming its adequacy as a Lyapunov potential.
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Figure 2.2: Relaxation to the simple attractor for a < 0. The parameter values are
a=—0.01,¢; =1 and ¢y = —0.8 . The initial condition is a TW of arbitrary wavenumber
k = 0.295 and arbitrary amplitude Ay = 1.0 .

2.4.2 Positive a. Benjamin-Feir stable regime

We take in this section always ¢ = 1. Non-chaotic (TW) states and Spatio-Temporal
Intermittency are the two phases found below the BF line in Fig. 2.1. We first perform
several numerical experiments in the non-chaotic region:

A first important case is the one on the line D_ = 0, for which (2.22) is an exact
Lyapunov functional Fy,. We take D; = —1 and b, =1 (¢; = ¢ = —1), on the D_ =0
line, and compute the evolution of & = % along a solution of (2.1), taking as initial
condition for A a Gaussian noise of amplitude ¢ = 0.01. Despite of the strong phase
gradients present specially in the initial stages of the evolution, and of the presence of
non-relaxational terms, ® decays monotonously in time (Fig. 2.3). The system evolved
towards a TW attractor of wavenumber k = 0.0245. The value of ® in such state is, from
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Eq. (2.20), ®r—g.0245 = —0.998796. It is important to notice that our numerical solution
for A and numerical evaluation of the derivatives in ® reproduce this value within a 0.3%
in the last time showed in Fig. 2.3, and continues to approach the theoretical value for
the asymptotic attractor at longer times'.

We continue testing the Lyapunov functional for D; = 1, b, = 1.25 (¢; =1 ,co = —0.8.
This is still in the non-chaotic region but, since D # 0, ® is not expected to be exact, but
only a small gradient approximation. We check now the relaxation back to an stable state
after a small perturbation. As initial condition we slightly perturb a TW of Eckhaus-stable
wavenumber (k = 0.13 < kg) by adding random noise of amplitude ¢ = 0.09. ® decays
monotonously (Fig. 2.4 ) from its perturbed value to the value ®4_q13 = —0.796632 as
the perturbation is being washed out, as expected for a good Lyapunov functional.

A more demanding situation was investigated for D; = —1 and b, = 0.5 (again in the
non-chaotic region, ¢; = —1 and ¢o = —2, and D_ # 0). Two TW of different wavenum-
bers (k1 = 0.4, ks = 0.08, both Eckhaus-stable) were joined (at two points because of the
periodic boundary conditions) and the resulting state (see inset in Fig. 2.5 ) was used
as initial condition. The interfaces between the two TW'’s contain initially discontinuities
in the gradient of the phase which are washed out in a few integration steps. The two
interfaces move at constant velocity but one of them remains sharp, whereas the other
widens in time, progressively replacing the two initial waves. An important observation is
that during the whole process the modulus of A(z, ) never vanishes and then the winding
number, defined as

1 L
=— / Vodz (2.26)
21 Jo

remains constant (v = 20) (with periodic boundary conditions v is constant except at the
instants in which the phase becomes singular, that is when r = 0).

The state (limit cycle) finally reached is a TW of k¥ = 27v/L = 0.245. Despite of
the complicated and non-relaxational processes occurring ® behaves as a good Lyapunov
functional monotonously decreasing from the value ®(t = 0) = —1.825 corresponding to
the two-wave configuration to the value ® = —1.863 of the final attractor (Fig. 2.5 ).
The dynamics of the moving fronts is more complicated than in some relaxational models
[37]. For this particular set of parameters and initial wavenumbers, the center of the
diffuse front moves invading the region of longest wavenumber, while the sharp one moves
towards the small wavenumber region.

The good behavior of ® will be obviously lost if the field A(z,t) vanishes somewhere
during the evolution. As the next numerical experiment (for D; = 1 and b, = 1.25, that
is ¢; = 1, cg = —0.8) we used as initial condition a small (¢ = 0.01) random Gaussian
noise. The system was left to evolve towards its asymptotic state (a TW). Fig. 2.6
shows that after a transient ® monotonously decreases. During the initial transient it
widely fluctuates, increasing and decreasing and loosing then its validity as a Lyapunov
functional. This incorrect behavior occurs because during the initial stages A(z,t) is small
and often vanishes, changing v. When A (and then r) vanishes the phase and (2.18) are
ill-defined and out of the range of validity of a small gradient approximation. Note the
contrast with the case D = 0 in which the potential is exact and well behaved even

'If a smaller time step is used greater accuracy is obtained. For example, if the time step is reduced to
0.05 the value of @ is reproduced within 10~7%. But this takes quite a long computing time.



Chapter 2 53

-0.4

-0.6

]

30

Figure 2.3: Time evolution of ® on the D_ line. The parameter values are a = 1,¢; =
—1 and ¢y = —1. The initial condition is a a Gaussian noise of amplitude ¢ = 0.01. The
system evolved towards a TW attractor of wavenumber k& = 0.0245.
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Figure 2.4: Time evolution of ® in the non-chaotic region for ¢; = —1 and ¢ = —0.8
. The initial condition is an Eckhaus stable TW of wavenumber & = 0.13 perturbed by
random noise of small amplitude € = 0.09.
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Figure 2.5: Same as Fig. 2.4 but for ¢; = —1 and ¢z = —2 . The initial condition for A
consists of two Eckhaus stable TW of different wavenumbers (k1 = 0.4, k2 = 0.08) joined
together. The inset shows the real part of this initial configuration.

when v is strongly changing. The particular values of the maxima and minima during
the transient in which v is changing depend on the spatial and temporal discretization,
since it is clear from (2.18) that @ is ill-defined or divergent when r vanishes. Note
that this incorrect behavior of ® for D_ # 0 is not a problem for the existence of a
Lyapunov functional, but comes rather from the limited validity of the hypothesis used
for its approximate construction. Nevertheless, as soon as the strong gradients disappear
® relaxes monotonously to the value ® = —0.79997, corresponding to the final state, a
TW of wavenumber k£ = —0.0123.
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Figure 2.6: Same as Fig. 2.4 but for ¢y = 1 and ¢ = —0.8. The initial condition is a
random noise of amplitude ¢ = 0.01.

As another test in the non-chaotic region, for D; = —1 and b, = 0.5 (¢ = —1,
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cp = —2) we use as initial condition an Eckhaus-unstable TW (k = 0.54 > kg = 0.48)
slightly perturbed by noise. The system evolves to an Eckhaus-stable TW (k = 0.31) by
decreasing its winding number (initially v = 44 and finally v = 26). Fig. 2.7 shows the
evolution of ® from its initial value ®(0) = —1.485 the final one & = —1.77. Although
there is a monotonously decreasing baseline, sharp peaks are observed corresponding to
the vanishing of r associated with the changes in . When v finally stops changing, so
that A is close enough to the final TW, & relaxes monotonously as in Fig. 2.4.

It was explained in Sect. 2.3 that there are parameter ranges in which @ is smaller near
the boundaries for existence of TW, that is near £k = £4/a/b,, than for the homogeneous
TW: k = 0. This happens for example for D; = 1, b, = 1.25 (¢; = 1, ¢5 = —0.8). The
corresponding function @y is shown in Fig. 2.8.

If this prediction is true, and if ® is a correct Lyapunov functional, evolution starting
with one of these extreme and Eckhaus-unstable TW would not lead to any final TW,
since this would increase the value of the Lyapunov functional. This would imply the
existence for this value of the parameters of an attractor different from the TW’s perhaps
related to the Spatio-Temporal Intermittency phenomenon. We use as initial condition at
the parameter values of Fig. 2.8 an unstable TW of wavenumber k = 0.64 (® ~ —0.81),
slightly perturbed by noise. From Fig. 2.8, the system should evolve to a state with a
value of ® value even lower than that. What really happens can be seen in Fig. 2.9. The
system changes its winding number from the initial value v = 52, a process during which
® widely fluctuates and is not a correct Lyapunov functional, and ends-up in a state of
v =5, with a value of ® larger than the initial one. After this the system relaxes to the
associated stable TW of k = 2nv/L = 0.061 < kg = 0.23. As clearly stated by Graham
and coworkers, the expressions for the potential are only valid for small gradients. Since
k is a phase gradient, results such as Fig. 2.8 can only be trusted for £ small enough.

Finally, we show the behavior of ® in the Spatio-Temporal Intermittency regime. Since
v is constantly changing in this regime it is clear that (2.18) will not be a good Lyapunov
functional and this simulation is included only for completeness. We take D; = 0 and
b = 0.5 (¢ = 0, co = —2) and choose as initial condition a TW with k¥ = 0.44 >
kg = 0.30 (® = —1.89814), with a small amount of noise added. The TW decreases its
winding number and the system reaches soon the disordered regime called Spatio-Temporal
Intermittency.

Fig. 2.10 shows that the time evolution of ® is plagued with divergences, reflecting
the fact that v is constantly changing (see inset). It is interesting to observe however that
during the initial escape from the unstable TW & shows a decreasing tendency, and that
its average value in the chaotic regime, excluding the divergences, seems smaller than the
initial one.

2.5 Numerical studies of the Lyapunov functional in the
Phase Turbulence regime

The Phase Turbulence regime is characterized by the absence of phase singularities (thus
v is constant). This distinguishes it as the only chaotic regime for which ® would be well-
defined. Graham and co-workers[58, 56] derived especially for this region an expression
proposed as Lyapunov functional in the small gradient approximation (2.23).
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Figure 2.7: Same as Fig. 2.4 but for ¢; = —1 and ¢ = —2 . The initial condition is an
Eckhaus-unstable TW (k = 0.54 > kr = 0.48) slightly perturbed by noise.
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Figure 2.8: The function &, = ®[A;] as a function of k. The parameter values are
a = 1,cq = 1land ¢g = —0.8. The values of kg are indicated by dashed lines. The
diamond indicates the point ®;_g ¢4 taken as initial condition for the simulation in Fig.
2.9.
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Figure 2.9: Time evolution of ® for ¢; = 1 and ¢ = —0.8. The initial condition is an
Eckhaus-unstable TW (k = 0.64 > kg = 0.23) slightly perturbed by noise.

-

—4— —

WINDING NUMBER
40

L 10 i
L a0 i
-8 T =
L o i
L —-10 4

L o 200 400 |
—t0l .
o 100 200 300 400
t

Figure 2.10: Time evolution of ® in the STI region (¢; = 0.0 and ¢ = —2). The initial
condition is an Eckhaus-unstable TW (k = 0.45 > kr = 0.30) slightly perturbed by noise.
The winding number evolution is plotted in the inset.
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We recall that the calculations in [58, 56] predict that the phase turbulent attractor
lies on a potential plateau, consisting of all the complex functions satisfying (2.25), in
which all the unstable TW cycles are also embedded. The value of the potential on such
plateau can be easily calculated by substituting in (2.23) an arbitrary TW, and the result

18

a2

O, =——". (2.27)
b,

We note that this value does not depend on D; nor D, and then it is independent of ¢y,

the vertical position in the diagram of Fig. 2.1, within the phase turbulence region.

In this section we take also a = 1. We perform different simulations for D; = 1.75
and b, = 1.25 (¢; = 1.75, ¢ = —0.8). In the first one, we start the evolution with the
homogeneous oscillation solution (TW of £ = 0). This solution is linearly unstable, but
since no perturbation is added, the system does not escape from it. The potential value
predicted by (2.27) is ®,; = —0.8. This value is reproduced by the numerical simulation
up to the sixth significant figure for all times (Fig. 2.11, solid line). This agreement, and
the fact that the unstable TW is maintained, gives confidence in our numerical procedure.

In a second simulation, a smooth perturbation (of the form pe’® with ¢ = 0.049 and
= 0.09) is added to the unstable TW and the result used as initial condition. This choice
of perturbation was taken to remain as much as possible within the range of validity of
the small gradient hypothesis. After a transient the perturbation grows and the TW is
replaced by the phase turbulence state (the winding number remains fixed to 0). The
corresponding evolution of ® is shown in Fig. 2.11 (long-dashed line). The value of the
potential increases from ®,; to a higher value, and then irregularly oscillates around it.
Both the departure and the fluctuation are very small, of the order of 10™* times the
value of ®. Simulations with higher precisions confirm that these small discrepancies from
the theoretical predictions are not an artifact of our numerics, but should be attributed
to the terms with higher gradients which are not included in (2.23). As a conclusion,
the prediction that the phase turbulence dynamics, driven by non-relaxational terms,
maintains constant ® in a value equal to the one for TW is confirmed within a great
accuracy.

It is interesting however to study how systematic are the small deviations from the
theory. To this end we repeat the launching of the TW with a small perturbation for
several values of D; = c¢q, for the same value of b, as before. The prediction is that ®
should be independent of ¢;. The inset in Fig. 2.11 shows that the theoretical value
®,; = —0.8 is attained near the BF line, and that as c; is increased away from the BF line
there are very small but systematic discrepancies. The values shown for the potential are
time averages of its instantaneous values, and the error bars denote the standard deviation
of the fluctuations around the average.

Again for ¢ = 1.75, ¢g = —0.8, we perform another simulation (Fig. 2.11, dotted
line) consisting in starting the system in a random Gaussian noise configuration, of am-
plitude 0.01, and letting it to evolve towards the phase turbulence attractor. As in other
cases, there is a transient in which @ is ill-defined since the winding number is constantly
changing. After this ® decreases. This decreasing is not monotonous but presents small
fluctuations around a decreasing trend. The decreasing finally stops and ® remains oscil-
lating around approximately the same value as obtained from the perturbed TW initial
condition. The final state has v = —1, so that in fact the attractor reached is different
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Figure 2.11: Time evolution of ® in the Phase Turbulence region (¢; = 1.75 and ¢y =
—0.8). Solid line: evolution of a unperturbed unstable traveling wave. Dotted line: evo-
lution from noise. Dashed line: evolution from a slightly perturbed traveling wave. The
inset shows final average values of ® as a function of the ¢; parameter (c; = —0.8). The
symbol syze is approximately equal to the error bars indicate the standard deviation of
the fluctuations around the average value.

from the one in the previous runs (v = 0) but the difference is the smallest possible and
the difference in value of the associated potentials can not be distinguished within the fluc-
tuations of Fig. 2.11. These observations confirm the idea of a potential which decreases
as the system advances towards an attractor, and remains constant there, but at variance
with the cases in the non-chaotic region here the decreasing is not perfectly monotonous,
and the final value is only approximately constant.

Since the small discrepancies with the theory increase far from the BF line, and since it
is known that condition (2.25) can be obtained from an adiabatic-following of the modulus
to the phase that losses accuracy far from the BF line, one is lead to consider the role of
adiabatic following on the validity of ® as a potential. To this end we evaluated ® along
trajectories A(z,t) constructed with the phase obtained from solutions of (2.1), but with
modulus replaced by (2.25), so enforcing the adiabatic following of the modulus to the
phase. No significant improvement was obtained with respect to the cases in which the
adiabatic following was not enforced since that, in fact, adiabatic following was quite well
accomplished by the solution of (2.1). Then it is not the fact that the solutions of (2.1)
do not fulfill (2.25) exactly, but the absence of higher gradient terms in both (2.25) and
(2.23) the responsible for the small failures in the behavior of ®.

Finally, it is interesting to show that the Lyapunov potential ® can be used as a
diagnostic tool for detecting changes in behavior that would be difficult to monitor by
observing the complete state of the system. For example the time at which the phase
turbulence attractor is reached can be readily identified from the time-behavior of ® in
Fig. 2.11. More interestingly it can be used to detect the escape from metastable states.
For example, Fig. 2.12 shows ® for evolution from a Gaussian noise initial condition
(e =0.01). D; =2 and b, = 1.25 (¢; = 2, co = —0.8). The system reaches first a long
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lived state with v = 2 not too different from the usual phase turbulent state of v = 2.
After a long time however the system leaves this metastable state and approaches a more
ordered state that can be described [125, 123] as phase turbulent fluctuations around
quasiperiodic configurations related to those of [91]. More details about this state will
be described elsewhere [125, 123]. What is of interest here is that from Fig. 2.12 one
can easily identify the changes between the different dynamical regimes. In particular the
decrease in the fluctuations of ® near ¢ =~ 1000 identifies the jump from the first to the
second turbulence regimes.
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Figure 2.12: Same as Fig. 2.11 but for ¢; = 2 and ¢ = —0.8 . The initial condition
was random noise with an amplitude € = 0.01, time step 0.005. In this case 2048 Fourier
modes were taken into account. Note the transition occurring around ¢ = 1000 to a less
fluctuating state.

2.6 Conclusions and outlook

The validity of the expressions for the Lyapunov functional of the CGLE found by Graham
and coworkers has been numerically tested. The most important limitation is that they
were explicitly constructed in a approximation limited to small gradients of modulus and
phase. This precludes its use for evolution on attractors such that zeros of r and thus
phase singularities appear (defect turbulence, bi-chaos, spatio-temporal intermittency).
The same problem applies to transient states of evolution towards more regular attractors,
if phase singularities appear in this transient (for instance decay of an Eckhaus unstable
TW, evolution from random states close to A = 0, etc.). It would be interesting to have
the expansion of the Lyapunov potential for small gradients of the real and imaginary
components of A, instead of using polar coordinates. This would eliminate the problem of
the ill-definition of the phase, and clarify further the stability of the gradient expansion.
Apart from this, if changes in winding number are avoided, expressions (2.17), (2.18),
and (2.23) display the correct properties of a Lyapunov functional: minima on stable at-
tractors, where non-relaxational dynamics maintains it in a constant value, and decreasing
value during approach to the attractor. These properties are completely satisfied in the
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non-chaotic region of parameter space, even in complex situations such as TW competi-
tion, as long as large gradients do not appear. It is remarkable that, although the potential
is constructed trough an expansion around the £k = 0 TW, its minima identify exactly the
remaining TW, its stability, and the non-relaxational terms calculated by substracting the
potential terms to (2.1) give exactly their frequencies. In the phase turbulence regime,
however, there are small discrepancies with respect to the theoretical predictions: lack of
monotonicity in the approach to the attractor, small fluctuations around the asymptotic
value, and small discrepancy between the values of the potential of TW’s and of turbulent
configurations, that were predicted to be equal. All these deviations are very small but
systematic, and grow as we go deeper in the phase turbulence regime. They can be fixed
in principle by calculating more terms in the gradient expansion.

In addition in order to clarify the conceptual status of non-relaxational and non-
potential dynamical systems one can ask about the utility of having approximate expres-
sions for the Lyapunov functional of the CGLE. Several applications have been already
developed for the case in which (2.1) is perturbed with random noise. In particular the
stationary probability distribution is directly related to ®, and in addition barriers and
escape times from metastable TW have been calculated [76, 56]. In the absence of random
noise, ® should be still useful in stating the nonlinear stability of the different attractors.
In practice however there will be limitations in the validity of the predictions, since ®
has been constructed in an expansion which is safe only near one particular attractor (the
homogeneous TW).

Once known @, powerful statistical mechanics techniques (mean field, renormalization
group, etc. ) can in principle be applied to it to obtain information on the static properties
of the CGLE (the dynamical properties, as time-correlation functions, would depend also
on the non-relaxational terms N, as in critical dynamics [86]). Zero-temperature Monte
Carlo methods can also be applied to sample the phase turbulent attractors, as an alter-
native to following the dynamical evolution on it. All those promising developments will
have to face first with the complexity of Eqgs. (2.17), (2.18), and (2.23). Another use of
Lyapunov potentials (the one most used in equilibrium thermodynamics) is the identifica-
tion of attractors by minimization instead of by solving the dynamical equations. In the
case of the TW attractors, solving the Euler-Lagrange equations for the minimization of ®
is in fact more complex than solving directly the CGLE with a TW ansatz. But the limit
cycle character of the attractors, and their specific form, is derived, not guessed as when
substituting the TW ansatz. For the case of chaotic attractors (as in the phase turbulence
regime) minimization of potentials can provide a step towards the construction of inertial
manifolds. In this respect it should be useful considering the relationships between the
Lyapunov potential of Graham and coworkers and other objects based on functional norms
used also to characterize chaotic attractors [59, 22].
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Chapter 3

Wound-up phase turbulence

Turning and turning

Within the widening gyre

The falcon cannot hear the falconer
Things fall apart

The center cannot hold

And a blood dimmed tide

Is loosed upon the world ...

Joni Mitchell, Slouching toward Bethlehem

3.1 Introduction

3.1.1 The complex Ginzburg-Landau equation and its phase diagram

Spatio-temporal complex dynamics [51, 52, 55] is one of the present focus of research
in nonlinear phenomena. This subject lies at the intersection of two important lines of
thought: on the one hand the generalization of the ideas of dynamical systems theory to
high dimensional situations[32, 33, 63], and on the other the application of some concepts
and tools developed in the field of statistical mechanics, specially in the study of phase
transitions, to the analysis of complex nonequilibrium systems [165, 87].

Much effort has been devoted to the characterization of different dynamical states
and transitions among them for model equations such as the Complex Ginzburg-Landau
Equation (CGLE) [51, 63, 165, 125, 42, 43, 91, 179, 45, 64, 124]. The CGLE is an equation
for a complex field A(x,t):

HA=A+(1+ic))VZA—(1+ic) |APPA. (3.1)

A(x,t) represents the slowly varying, in space and time, complex amplitude of the Fourier
mode of zero wavenumber when it has become unstable through a Hopf bifurcation (the

First results of this Chapter appear in Winding number instability in the phase—turbulence regime
of the Complex Ginzburg-Landau equation. by R. Montagne, E. Herndndez-Garcia, and M. San Miguel,
Phys. Rev. Lett. 77 (1996), 267. The Chapter corresponds to Wound-up phase turbulence in the Complez
Ginzburg-Landau equation by R. Montagne, E. Herndndez-Garcia, A. Amengual, and M. San Miguel,
submitted for publication (1996).
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3.1) assume it to be supercritical). The CGLE is obtained universally when
dynamics sufficiently close to the bifurcation point. In one dimensional
1) or a coupled set of them with additional group velocity terms describe
ion of the amplitudes of Hopf-bifurcated traveling waves [51, 179, 17]. Binary
n [99], transversally extended lasers [50, 159], chemical turbulence[105, 104],

bluff body wal
have been des
ourselves in tl
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tes [114], the motion of bars in the bed of rivers [162], and many other systems
cribed by the CGLE in the appropriate parameter range. We will restrict
lis Chapter to the one-dimensional case, that is A = A(z,t), with = € [0, L].
mensional Eq(3.1) has traveling wave (TW) solutions

Ap = V1 = k2=t gy — 5 + (1 — )k (3.2)
with k& € [-1,
TW solutions
range display
kg, vanishes 4

1]. When 1+ ¢jep > 0 there is a range of wavenumbers [—kg, kg such that
with wavenumber in this range are linearly stable. Waves with £ outside this
h sideband instability (the Eckhaus instability [91]). The limit of this range,
s the quantity 14 cjco approaches zero, so that the range of stable traveling
waves vanishep by decreasing 1+ cjco. The line 1+ ¢jco = 0, is the Benjamin—Feir-Newell
line[173, 131]/labeled BFN in Fig.3.1. Above that line, where 1 4 ¢;c2 < 0, no traveling

wave is stable and different turbulent states exist. A major step towards the analysis of
phases and phase transitions in (3.1) was the numerical construction in [165, 42, 43] of

( gram shows which type of regular or chaotic behavior occurs in different
regionsye# hadfieter space [c,co]. Fig. 3.1 has been constructed from the data in
[165, 42, 43]. Above the BFN line, three types of turbulent behavior are found, namely
phase turbulence (PT), defect or amplitude turbulence (DT), and bichaos (BC).

Figure 3.1: Regions of the parameter space [c1, c2] for the CGLE displaying different kinds
of regular and chaotic behavior. Lines L, Ly were determined in[165, 42, 43]. See the text
for the explanation of the different points.

Phase turbulence is a state in which A(xz,t) = |A|e’¥ evolves irregularly but with its
modulus always far from |A| = 0. Since the modulus never vanishes, periodic boundary
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conditions enforce the winding number defined as
v=— [ Oypdzx (3.3)
0

to be a constant of motion, fixed by the initial condition. v is always an integer because of
periodic boundary conditions . The quantity k¥ = 27v/L can be thought of as an average
or global wavenumber. To the left of line Ly (region DT), in contrast, the modulus of A
becomes zero at some instants and places (called defects or phase slips). In such places
the phase ¢ becomes undefined, so allowing v to change its value during evolution. BC is
a region in which either PT, DT, or spatial coexistence of both can be observed depending
on initial conditions. It should be noted that chaotic states exist also below the BFN line:
To the left of the line Ly, a chaotic attractor called Spatio Temporal Intermittency (STI)
coexists with the stable traveling waves [42]. A diagram qualitatively similar to Fig. 3.1
has also been found for the two-dimensional CGLE [46, 119]. Despite the relevance of v in
the dynamics of the CGLE, most studies of the PT regime have only considered in detail
the case of v = 0. In fact the phase diagram in Fig. 3.1 was constructed [165, 42, 43] using
initial conditions that enforce v = 0. Apart from some limited observations[43, 91, 119],
systematic consideration of the v # 0 (wound) disordered phases has been started only
recently [125, 174, 175]. This is the subject of the present Chapter.

3.1.2 The PT-DT transition

Among the regimes described above, the transition between PT and DT has received
special attention [165, 64, 157, 125, 174]. The PT regime is robustly observed for the
large but finite sizes and for the long but finite observation times allowed by computer
simulation, with the transition to DT appearing at a quite well defined line (L; in Fig.
3.1) [45, 119], but it is unknown if the PT state would persist in the thermodynamic
limit . — o0o. One possible scenario is that in a system long enough, and after waiting
enough time, a defect would appear somewhere, making thus the conservation of v only
an approximate rule. In this scenario, PT state is a long lived unstable state. In the
alternative scenario, the one in which PT and the transition to DT persist even in the
thermodynamic limit, this transition would be a kind of ergodicity breaking transition
[141, 125] in which the system restricts its dynamics to the small portion of configuration
space characterized by a particular v. DT would correspond to a “disordered” phase and
different “ordered” phases in the PT region would be classified by its value of v. The idea
of using a quantity related to v as an order parameter [125] has also been independently
proposed in [174].

The question of which of the scenarios above is the appropriate one is not yet settled.
Recent investigations seem to slightly favor the first possibility [43, 45, 64, 119]. The most
powerful method in equilibrium statistical mechanics to distinguish true phase transitions
from sharp crossovers is the careful analysis of finite-size effects [21]. Such type of analysis
has been carried out in [45, 119] , giving some evidence (although not definitive) that the
PT state will not properly exist in an infinite system or, equivalently, that the L; line in
Fig. 3.1 approaches the BFN line as L. — oco. Here we present another finite-size scaling
analysis, preliminarily commented in [125], based in the quantity v as an order parameter.
Our result is inconclusive, perhaps slightly favoring the vanishing of PT at large system
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sizes. In any case, the PT regime is clearly observed in the largest systems considered and
its characterization is of relevance for experimental systems, that are always finite. In this
Chapter we characterize this PT regime as we now outline.

3.1.3 Outline of the Chapter

We show that in the PT regime there is an instability such that a conservation law for
the winding number occurs only for v within a finite range that depends on the point
in parameter space. PT states with too large |v| are only transients and decay to states
within a band of allowed winding numbers. Our results, presented in Section 3.2, allow
a characterization of the transition from PT to DT in terms of the range of conserved
v: as one moves in parameter space, within the PT regime and towards the DT regime,
this range becomes smaller. The transition is identified with the line in parameter space
at which such stable range vanishes. Analogies with known aspects of the Eckhaus and
the Benjamin-Feir instabilities are stressed. States with v # 0 found in the PT region
of parameters at late times are of several types, and Section 3.3 describes them in terms
of three [125] elementary wound states. Section 3.4 gives some insight into the states
numerically obtained by explaining them in terms of solutions of a phase equation. In
addition, theoretical predictions are made for such states. The Chapter is closed with
some final remarks.

3.2 The winding number instability

The dynamics of states with non-zero winding number and periodic boundary conditions
has been studied numerically in the PT region of parameters. In order to do so we have
performed numerical integrations of Eq. (3.1) in a number of points, shown in Fig. 3.1.
Points marked as <& correspond to parameter values where intensive statistics was per-
formed. The points overmarked with x correspond to places where finite-size scaling was
analyzed. Finally the symbol + correspond to runs made in order to determine accu-
rately the PT-DT transition line (L;) position. Our pseudospectral integration method
is described in the Appendix A. Unless otherwise stated, system size is L = 512 and the
spatial resolution is typically 512 modes, with some runs performed with up to 4096 modes
to confirm the results. The initial condition is a traveling wave, with a desired winding
number v;, slightly perturbed by a white Gaussian random field. Only results for v; > 0
are shown here. The behavior for v; < 0 is completely symmetrical.

The initial evolution of the state is well described by the linear stability analysis
around the traveling wave [179, 111, 91]. Typically, as seen from the evolution of the
power spectrum, the unstable sidebands initially grow. This growth stops when an in-
tense competition among modes close to the initial wave and to the broad sidebands is
established. Configurations during this early nonlinear regime are similar to the ones that
would be called riding turbulence and described in Section 3.3. At long times the system
approaches one of several possible dynamical states. In general, they can be understood
in terms of three of them, which are called basic states. In the next section these final
states are discussed. When the initial winding number is above a critical value v, which
depends on ¢ and cs, there is a transient period between the early competition and the
final state during which the winding number changes.



Chapter 3 67

In Fig. 3.2b the winding number has been plotted as a function of time. The winding
number changes from the initial value v = 20 to the final value v = 14. The discrete
jumps in v are due to the integer nature of this quantity, and they are smeared out when
averages over several realizations are performed. The resemblance with the dynamics of
the Eckhaus instability of regular waves is striking. In fact, since the changes in v occur on
top of a chaotic wave, the analogy is stronger with the Eckhaus instability in the presence
of stochastic fluctuations [83, 82].

Figure 3.2: a) Spatiotemporal evolution of the phase ¢(z,t) coded in grey levels with
time running upwards and z in the horizontal direction. The lighter grey correspond
¢o(z,t) = —m and darker to ¢(z,t) = w. The time interval shown in the picture goes from
t = 500 to 1000 time units of a total run of 10*. ¢; = 2.1, ¢ = —0.60, and the initial
condition was a TW with v; = 20 that decayed to vy = 14 . The arrow indicates the time
at which v begins to change. b) The complete time evolution of the winding number for
this initial condition.

In the latter case a local wavenumber independent of position cannot be defined because
of noise, while for phase turbulent waves the disorder is generated by the system dynamics.
Nevertheless configurations in both cases can be characterized by a global wavenumber
such as v or k. The analogy is also instructive since it can be shown [180, 82] that for
the one—dimensional relaxational dynamics considered in [83, 82, 180] (which is related to
Eq.(3.1) with ¢; = ¢3 = 0) there is no long range order in the system, so that there is no
proper phase transition in the thermodynamic L — oo limit. Despite this, for large but
finite sizes and long but finite times, sharp transitions are observed and critical exponents
and scaling functions can be consistently introduced [83]. This example should make clear
that even in the case that the PT-DT transition would not exist in the thermodynamic
limit, its characterization in large finite systems is justified. The development of phase
slips from PT waves of high enough v can be viewed as a kind of Eckhaus-like instability
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for turbulent gues, whereas the usual Eckhaus instability [91] appears for regular waves.

This similarity was one of the main motivations for the kind of analysis that follows. For
each point in parameter space and initial winding number considered, we averaged over 50
indepe ra) \@ﬂ ations of the white Gaussian perturbation added to the initial
wave. F3 3 8b%how the temporal evolution of this average 7(t) and its variance
o for ¢; = 2.1 and ¢ = —0.6. Four values of the initial winding number (v; = 10, 15, 20, 25)

are shown. Typically, the curve 7(t) decays from v; to a final winding number v;.

Figure 3.3: a) Temporal evolution of #(t) for four different initial winding numbers v; = 25
(solid), 20(dotted), 15 (dashed) 10 (dashed-dotted). ¢; = 2.1,co = —0.83 (PT regime). b)
Winding number standard deviation o.

The variance displays the behavior typical of a decay from a unstable state [19], namely
a pronounced maximum at the time of fastest variation of r(¢). The final value of o gives
the dispersion in the final values of the winding numbers. Although the behavior shown
in Fig. 3.3 is very similar to the observed in [83] for a stochastic relaxational case, the
scaling laws found there do not apply here. The main qualitative difference is that in a
range of v; the sign of the average final 7 is here opposite to the initial one. In addition
for some of the initial winding numbers (i.e. v; = 20 in Fig. 3.3) () is not monotonously
decaying, showing a small recovery after the fast decrease in v. These features are also
observed for other values of [c1, c2]. Figure 3.3 is typical for [c;, c2] in the PT region of Fig.
3.1. For comparison we show 7(t) and its variance in Fig. 3.4 for the point ¢; = 1.6 and
ce = —1.0, in the “bichaos” region. The main difference is in the fluctuations presented by
the curves. They are related to the characteristic dynamic of the bichaos regime: The final
configuration depends on the initial conditions and it can correspond to PT, DT or even
coexistence of both. In the 50 realizations performed all these possibilities were found.
When DT appears, there are big fluctuations of the winding number around v = 0 that
produce the wiggling on the averaged value. More than 50 realizations should be performed
to smooth out such big fluctuations. Returning to the PT parameter regime (Fig. 3.3) the
decay of the initial state is seen to take place during a characteristic time which depends
on v;. We quantify this time 7 as the time for which half of the jump in v is attained.
T increases as v; decreases, and there is a critical value of v;, v, such that no decay is
observed for v; < v.. Then 7 diverges (critical slowing down) when v; approaches v, from
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Figure 3.4: a) Temporal evolution of 7(¢) for an initial winding numbers of v; = 4 in the
bichaos regime. ¢; = 1.6,¢ = —1.0. b) Winding number standard deviation o.

above. This gives a sensible procedure to determine v.: Figs. 3.5a and 3.5b show 1/7 as a
function of ;. In Fig. 3.5a, ¢; is fixed and the different symbols correspond to different
values of ¢o. In Fig. 3.5b, ¢y is fixed and the symbols correspond to different values of ¢;.
The values of v, have been estimated by extrapolating to 1/7 = 0 a linear fit to the points
of smallest v; in each sequence. Motivated by [83] we have tried to fit the divergence of
7 with nontrivial critical exponents, but we have found no significant improvement over
the simpler linear fit. The values of v, so obtained are plotted in the insets of Figs. 3.5a
and 3.5b. The range of conserved winding numbers [—v,, v,] is analogous to the Eckhaus
range of stable wavenumbers when working below the BEN line. v, can also be obtained
by directly determining the value of v; below which v(¢) does not change in any of the
realizations. This method can only give integer values of v, whereas the method based
on 7 gives a real number which is preferable when looking for continuous dependences of
V. on system parameters. The two methods however give consistent results within the
discretization indeterminacy.

The insets of Fig. 3.5a and Fig. 3.5b indicate a clear decrease in v, as the values of ¢;
and ¢y approach the L; line. In fact we know that v, should be zero to the left of L, since
no wave maintains its winding number constant there. This lead us to a sensible method
for determining the position of line L; [125], alternative to the one based in the density of
defects used in [165]. It consist in extrapolating the behavior of v, to v, = 0. In this way
the line L; is determined as the line at which the range of conserved winding numbers
[V, V] shrinks to zero. The analogy with the Eckhaus instability of regular waves is
again remarkable: in the same way as the range of Eckhaus-stable wavenumbers shrinks
to zero when approaching the BFN line from below, the allowed v range shrinks to zero
when approaching the L; line from the right. The difference is that below the BFN line the
values of the wavenumber characterizes plane-wave attractors, whereas above that line, v
characterizes phase-turbulent waves. In this picture, the transition line PT-DT appears
as the BFN line associated to an Eckhaus-like instability for phase turbulent waves.

For the cases of Fig. 3.5a the PT-DT transition is located at ¢; = 2.1, co = —0.8940.02,
and ¢; = 2.60 +0.02, co = —0.83 for the case of Fig. 3.5b. The same method to determine
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Figure 3.5: a) Inverse of the characteristic time for winding number relaxation as a function
of the initial winding number. The value of ¢; is fixed (¢; = 2.1) and ¢, varies from near
the B-F line (ca ~ —0.48) to the L; line (¢ &~ —0.9). Different symbols correspond to
cg = —0.6 (+), a2 = —0.7 (%), cg = —=0.75 (<), c2 = —0.8 (A), ca = —0.83 (O). The
inset shows the critical winding number (v,) as a function of ¢y. b) Idem but the value of
¢y is fixed (¢; = —0.75) and ¢y varies from near the B-F line (¢; ~ —1.33) to ¢; = 2.5 .
Different symbols correspond to ¢; = 1.6 (4), ¢; = 1.8 (%), ¢ = 1.96 (<), ¢1 = 2.1 (A),
c1 = 2.3 (O)cy = 2.5 (x). The inset shows the critical winding number (v,) as a function
of C1

the line L1 has been independently introduced in [174, 175]. The coefficients of the linear
fit are not universal: they depend of the particular path by which the line L, is approached.
The agreement with the position of the line as determined by [165, 43], where system sizes
similar to ours are used, is good. For example for ¢; = 2.1 their value for L, is cg = —0.92.
The points marked as + in Fig. 3.1, correspond to runs used to determine the position of
the transition line L; directly as the line at which defects appear in a long run even with
v = 0. The agreement between all these ways of determining L; give consistent results.
Below the point P, v, goes to zero when the parameters approach the line L3, not Ly, thus
confirming the known behavior that below point P the line separating phase turbulence
from defect turbulence when coming from the PT side is actually Ls.

The use of a linear fit to locate the line L; is questionable and more complex fits have
been tested. However, the simplest linear fit has been found of enough quality for most
of the the situations checked, the inset in Fig 3.5b being one of the worst cases. Clearly
some theoretical guide is needed to suggest alternative functional forms for v.(c1,c2). We
notice that the analogous quantity below the BFN line, the Eckhaus wavenumber limit,
behaves as qp ~ +/€ for small €, being € the difference between either ¢; or ¢z and its value
at the BEFN line. From the insets in Figs. 3.5a or 3.5b, this functional form is clearly less
adequate than the linear fit used.

Another interesting point to study is the dependence of the final average winding
number 7y on the initial one v;. Fig. 3.6 shows an example using ¢; = 2.1 and ¢ = —0.8.
The behavior for other values of the parameters is qualitatively similar. 7y remains equal
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to the initial value |if v; < 5 during the whole simulation time, so that v, =~ 5, a value
consistent with the|one obtained from the divergence of 7 and plotted in in the inset of
Fig. 3.5a. For v; >}, the final winding number is always smaller than the initial one. By
increasing v; a minimum on v is always observed, and then 7; tends to a constant value.

L3

Figure 3.6: The final averaged winding number (7¢) as a function of the initial one ;.
The initial condition is a TW with winding number v; for ¢; = 2.1 and ¢ = —0.8. The
dashed line corresponds to the lowest of the two fastest Fourier modes of fastest growth
in the linear regime as a function of v;.

Figure 3.7: The critical winding number (v.) as a function of the length L of the
system is shown. Different symbols correspond to ¢; = 2.1 and ¢ = —0.8 (A) and
c1 = 1.96 and ¢y = —0.83 (<). The straight lines are linear fits to the two sets of data.

Figure 3.6 also shows the winding number associated with one of the two Fourier
modes of fastest growth obtained from the linear stability analysis of the initial traveling
wave. The one shown is the lowest, the other one starts at 7y = 28 and grows further up.
Obviously they do not determine the final state in a direct way. This is consistent with
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the observation mentioned above that the winding number instability does not develop
directly from the linear instability of the traveling wave, but from a later nonlinear com-
petition regime. As stated in the introduction, a powerful way of distinguishing true phase
transitions from effective ones is the analysis of finite-size scaling [21]. We have tried to
analyze size—effects from the point of view of v as an order parameter. In the DT state such
kind of analysis was performed in [62]. Egolf showed that the distribution of the values
taken by the ever-changing winding number is a Gaussian function of width proportional
to /L. This is exactly the expected behavior for order parameters in disordered phases.
In the thermodynamic limit the intensive version of the order parameter, v/ L, would tend
to zero so that the disordered DT phase in the thermodynamic limit is characterized by
a vanishing intensive order parameter. For the PT states to be true distinct phases, the
existence of a nonvanishing v, such that v is constant for |v| < v, is not enough. The
range of stable winding numbers should also grow at least linearly with L for this range
to have any macroscopic significance. The analysis of the growth of v, with system size
has been performed in points ¢; = 2.1,¢c2 = —0.8 and ¢; = 1.96, co = —0.83 of parameter
space. V., determined as explained before, is plotted in Fig. 3.7 for several system sizes
for which the statistical sample of 50 runs was collected for each v;.

There is a clear increasing, close to linear, of v, as a function of L, thus indicating
that for this range of system sizes the range of allowed winding numbers is an extensive
quantity and then each v is a good order parameter for classifying well defined PT phases.
It should be noted however that for the larger system size for which extensive statistics was
collected (L = 2048) data seem to show a tendency towards saturation. Thus our study
should be considered as not conclusive, and larger systems sizes need to be considered.

3.3 Different asymptotic states in the PT region

Typical configurations of the PT state of zero winding number consist of pulses in the
modulus |A|, acting as phase sinks, that travel and collide rather irregularly on top of
the k = 0 unstable background wave (that is, a uniform oscillation)[165, 43]. The phase
of these configurations strongly resembles solutions of the Kuramoto-Shivashinsky (KS)
equation. Quantitative agreement has been found between the phase of the v = 0 PT
states of the CGLE and solutions of the KS equation near the BFN line[64].

For states with v # 0 a typical state[43] is the one in which an average speed (in a
direction determined by the sign of v) is added to the irregular motion of the pulses. We
have found that in addition to these configurations there are other attractors in the PT
region of parameters. We have identified [125] three basic types of asymptotic states for
v # 0, which we describe bellow. Other states can be described in terms of these basic
ones. Except when explicitly stated, all the configurations described in this Section have
been obtained by running for long times Eq. (3.1) with the initial condition described
before, that is small random Gaussian noise added to a unstable traveling wave. The
winding number of these final states is constant and is reached after a transient period in
which the winding number might have changed.

Figs. 3.8, 3.9 and 3.11 show examples of the basic states that we call riding PT
(Fig. 3.8), quasiperiodic states (Fig. 3.9) and frozen turbulence (Fig. 3.11). For each
figure: Panel (a) corresponds to a grey scale space-time plot of d,¢(z,t). Panel (b) shows
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the value of this quantity and the modulus of the field (] A |) as a function of position
at the time indicated by an arrow in panels (a) and (d). Panel (¢) shows the spatial
power spectrum S(q,t) of A(z,t) for the same time. Finally, panel (d) shows the quantity
W = [ | 9:S(q,t) | dg, which is a global measure of the temporal change in the spatial
power spectrum.

Riding PT. This state (see Fig. 3.8) is the most familiar one [43]: wiggling pulses in the
gradient of the phase with a systematic drift in a direction determined by v. The modulus
of the field consist of a disordered spatial sequence of small pulses and shocks, with A(z,t)
always far from zero. The spatial power spectrum S(g) has a peak corresponding to
the global wave number (associated in this case with v = —1) and a broad background
associated with the turbulent motion “riding” on the traveling wave. The time evolution of
W shows a decay towards a fluctuating non-zero value, indicating that the power spectrum
is continuously changing in time as corresponds to the turbulent state reached by the
system.

Quasiperiodic states. These states (an example is shown in Fig. 3.9) can be described
as the motion of equidistant pulses in the gradient of the phase that travel at constant
speed on top of the background wave. The fact that the periodicity of the pulses and
that of the supporting wave are not the same justify the name of quasiperiodic. We show
later that these states correspond to the ones described in Ref. [91]. In Fig. 3.9a, the
modulus | A | and the gradient of the phase clearly exhibit uniformly traveling pulses. The
spatial power spectrum S(q) (Fig. 3.9¢), clearly shows the quasiperiodic nature of this
state: A central peak, corresponding to the dominant plane wave, with equally spaced
peaks surrounding it, showing the periodicity of the pulses. The peaks are not sharp
because this configuration has been obtained from a random perturbation. The decrease
of W in Fig. 3.9d, indicates that the peaks are narrowing. Its asymptotic approach to
zero indicates that the amplitudes of the main modes will reach a steady value and S(q)
becomes time independent. This quasiperiodic configuration is one of the attractors of the
dynamics.

More perfect quasiperiodic configurations can be obtained from initial configurations
that are already quasiperiodic. Figure 3.10 shows the quantity W for a state generated
with v = 18 for ¢; = 2.1 and ¢o = —0.6 from an initial traveling wave with a sinusoidal
perturbation. The initial traveling wave had »; = 18 and the winding number of the
sinusoidal perturbation was v = 22. The spatial power spectrum (shown in the inset at
the time indicated by an arrow in the main picture) shows the typical characteristics of a
quasiperiodic state.

Frozen turbulence. This state (see Fig. 3.11) was first described in [125]. It consists
of pulses in 0,¢ traveling at constant speed on a traveling wave background, as in the
quasiperiodic case, but now the pulses are not equidistant from each other (see Fig. 3.11b).
The power spectrum at a given time is quite different from the one of a quasiperiodic state.
Instead, it is similar to the power spectrum obtained in the riding PT state: S(q) is a
broad spectrum in the sense that the inverse of the width, which gives a measure of the
correlation length, is small compared with the system size. Here however W relaxes to
zero, so that the power spectrum finally stops changing (thereby the name frozen).

This behavior is an indicator of the fact [125], obvious from Fig. 3.11, that the pattern
approaches a state of rigid motion for the modulation in modulus and gradient of the
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Figure 3.8: a) Spatiotemporal evolution of d,¢(z,t). The lighter grey correspond to the
maximum value of 9,¢(z,t) and darker to the minimum. Last 2000 time units of a run 10*
time units long for a riding PT state at ¢; = 2.1 , and ¢ = —0.83. The initial condition
was a TW with v; = 20 that decayed to vy = —1 after a short time. b) A snapshot of
| A(z,t) | and Oz¢(z,t) as a function of = for ¢ = 8900 which is indicated by an arrow in
a) and d). ¢) Spatial power spectrum S(q) as a function of wavenumber at the same time
t = 8900. d)The time evolution of the quantity W defined in the text. The dashed line
indicates the time at which the picture a) starts.
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Figure 3.9: Same as in Fig. 3.8 but for last 10? time units of a run 10° time units long
for a quasiperiodic state. The initial condition is random noise with an amplitude of 0.05.
c1=2.0,and co = —0.8. a) and c¢) correspond to a time ¢ = 8 x 10%.



10000

76 Wound-up phase turbulence

Figure 3.10: a)The time evolution of W for a quasiperiodic state. The initial condition is
a TW sinusoidally perturbed for ¢; = 2.1 and ¢; = —0.6 . In the inset the spatial power
spectrum S(g) as a function of wavenumber at the time ¢ = 8900 indicated by an arrow
in the main picture.

phase of the unstable background plane wave. That is, the field A(x,t) is of the form:
A(z, t) = g(z — vt)e'kr—wrt+al®) (3.4)

where ¢ is a uniformly translating complex modulation factor. It is easy to see that
configurations of the form (3.4) have a time-independent spatial power spectrum. Torcini
[174] noticed in addition the function «(t) is linear in ¢ so that the solutions are in fact of
the form

A(z,t) = f(z — vt)e'Fo—eD (3.5)

where again f(z—wvt) is a complex valued function and w can differ from wy. The envelopes
gz — vt) or f(x — vt) turn out to be rather irregular functions in the present frozen
turbulence case, whereas they are periodic in the quasiperiodic configurations discussed
above.

After presenting the basic states, we continue addressing some interesting mixed states
that can be described in terms of them. Most of the configurations ending up in the frozen
turbulence or in the quasiperiodic states have long time transients of the riding turbulence
type. Only at long times a decay to rigid propagation occurs. There are cases in which a
different type of decay happens. For example Fig. 3.12 shows a case in which the system
jumps from a very strong riding turbulence regime to another state, also of the riding
turbulence type, but much more regular. The quantity W, shown in Fig. 3.12b, turns
out to be a valuable tool in distinguishing the different regimes: a superficial look at Fig.
3.12a could be easily misunderstood as indicating the approach of the system towards a
frozen turbulence state, but the lack of decay towards zero of W identifies the final state
as a riding turbulence one. The arrows indicate the jump to the second state.
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Figure 3.11: Same as in Fig. 3.9 but for last 2500 time units of a run 10* time units long
for a frozen turbulence state. The initial condition is a TW of v; = 12 that decays to
vy = 6 after a short time. ¢; = 1.75 , and ¢ = —0.8. The time of b) and c) is ¢ = 8900,
indicated by an arrow as in previous figures.
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Figure 3.12: a) Spatiotemporal evolution of d,¢(z,t) for a riding turbulence state that
decays onto another one. ¢; = 2.5, co = —0.75. The initial condition is a TW of v; = 20
that decays to vy = —2 in a short time. b) Time evolution of W. The dashed lines indicate
the time interval shown in a) (from #; = 2500 to t3 = 6500 of a run 10° time units long).
The arrow indicates the transition from one of the riding turbulence regimes to the other
one.

Figure 3.13: a) Spatiotemporal evolution of d,¢(z, t) showing intermittency between riding
turbulence states. ¢; = 2.1, ¢ = —0.83. The initial condition is a TW of v; = 1 that did
not change. b)Time evolution of W. The dashed lines indicate the time interval shown in
a) (from ¢; = 1000 to to = 8500 of a run 10* time units long). The arrows indicate the
end of a riding turbulence regime and the beginning of another one.
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Figure 3.14: a) Spatiotemporal evolution of d;¢(x,t). The time interval corresponds to
5500 to 7500 time units of a run 10* time units long for a riding PT state at ¢; = 2.1
and ¢y = —0.83. The initial condition was a TW with »; = 0 that did not change. b)
Snapshots of ¢(z,t) and 0,¢(z,t) as a function of z at the time ¢ = 6980 indicated by an
arrow in a) and d). The dashed lines in the graph of ¢(z,t) indicate average slopes, that
is “local” wavenumbers. c) Spatial power spectrum S(q) as a function of wavenumber at
the same time ¢ = 6980. d)Time evolution of W. Dashed lines indicate the time interval
of picture a).

Fig. 3.13 displays a state characterized by a recurrence between two different riding
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turbulence states, showing a kind of temporal intermittency. Fig. 3.14 shows a riding
turbulence state with zero winding number. This is not however a typical configuration,
since usually for v = 0 there is no preferred direction for the pulses to drift, whereas the
figure shows that in fact there is a local drift at some places of the system. It turns out
that this state can be understood as composed by two domains of different local winding
number: ¥ = 1 and v = —1, so that globally v = 0. The pulses travel either in one
direction or in the other depending of the region of the system in which they are. In
Fig. 3.14b a snapshot of the gradient of the phase 0,¢(x,t) and the phase itself p(z,t) is
shown. Lines showing the average trend in the phase are plotted over the phase, clearly
identifying the two regions in the system. This coexistence of the different basic states at
different places of space, or at different times as in Fig. 3.13, was mentioned in [42] where
it was argued to give rise to a kind of spatio-temporal intermittent behavior.

Given the large variety of configurations that are observed, and the very long transients
before a jump from one state to another occurs, it would be difficult to conclude from
numerical evidence alone that the three kinds of states considered as basic above are
true asymptotic states. Some analytical insight would be desirable to be sure that these
three states are attractors of the dynamics. The next Section is devoted to provide such
analytical justification.

3.4 Asymptotic states in terms of the phase dynamics

The question on whether it is possible or not to describe the PT regime of the CGLE from a
closed equation for the phase alone has been posed by several authors[158, 77, 64, 45, 119].
A phase equation is obtained by considering a long wavelength perturbation of a plane-
wave solution in the CGLE (3.1). It is clear that this phase equation will only describe
phase dynamics close to the homogeneous plane-wave (that is the one with v = 0) if
the perturbation is made around the spatially-homogeneous solution. In order to get a
description of PT at v # 0 the expansion should be done for a perturbation on a traveling
wave solution with wavenumber (k) different from zero,

A= (V1-k +a(z,t)ekete@D) (3.6)

Here k is taken as k = QT”V. If A satisfies periodic boundary conditions the same

conditions apply to ¢ because any global phase winding is included in & (the total phase
is ¢ = kx + ¢). From general symmetry arguments the general phase equation for k # 0
should read, up to fourth order in gradients:

Ohd = Qo —vy0:¢ — Da02¢ + D11(0p¢)* + D302¢p + D12(0:6)(92¢)
—  Dy0tp 4 D13(0:0)(92¢) + Doy (@%QS)Q + D112(9:9)%(92¢) + ... . (3.7)

When vy = D3 = Dig = D13 = Dy = D112 = 0, Eq. (3.7) reduces to the Kuramoto—
Sivashinsky (KS) equation [101, 166] that is the lowest order nonlinear phase equation
for the case k = 0. For k # 0, Eq. (3.7) was systematically derived up to third order in
gradients in [111]. An easy way of obtaining the values of all the coefficients in (3.7) was
presented in [103]: First, g is related to the frequency of the plane-wave solutions:

QO = W = —Cy — (01 — CQ)kZ (3.8)
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Second, the linear terms can be obtained from the eigenvalue A(k, ¢) corresponding to the
phase-like branch in the linear stability analysis of the wave of wavenumber &k with respect
to perturbations of wavenumber ¢[179, 111, 91]:

Ak, q) = —ivgq + D2q® — iD3q* — Dag* + O(q°) (3.9)
with
vg = 2k(c1 —c2) (3.10)
2k2(1 + c3)
D2 = —(1+0102)+ 1_71{:2 (3].].)
2k(1 4+ ¢3) [— 2¢9)k?
Dy — k(14 ¢3) | cl+(g1+ c2)k? (3.12)
(1 —k?)
_ 1 2 2 2 2\ (.2
D4 = m {Cl(l + 02) — 2k (1 + 02)(01 + 60102)
+ K [4 + (14 c2)(c? + 12¢1c0) + c3(24 + 2005)] } . (3.13)

Third, the nonlinear terms can be obtained from the following consistency relationship:
If (V1— k2 + a(z,t)ei*br+é@h) js an exact solution of the CGLE, then ¢(z,t) satis-
fies the phase equation with coefficients depending on k. In addition if (/1 — k2 +
ay(z,t))e!Fre+o1(mh) is another exact solution of the CGLE, then ¢ (z,t) satisfies a sim-
ilar phase equation but with coefficients depending on k; instead of k. But this solution
can be written as (y/1 — k2 4 ay (x, t))elkrHE1=k)z+01(@.0)) g that (k| —k)z + ¢y (x, t) is also
solution of the phase equation with coefficients depending on k (with different boundary
conditions). By combining the two equations satisfied by ¢; and expanding the coeffi-
cients depending on k; as a power series around k (assuming k; — k small) the following
relationships between linear and nonlinear terms are obtained:

1 v 0Dy 0D3 19D,
11 2 ak_ ) 12 ak ) 13 ak ) 112 2 8k2 ( )
So that
Dy = c—c (3.15)
4k(1 +c3
D, — _ 3k ? (3.16)
(1-k?)
21+ a3) 2 4
D13 = m [—Cl + 602k + (202 + Cl)k ] (3]‘7)
2(14+c3)(3k> + 1
Diy = — (1+)(3 3+ ) (3.18)
(1 —k2)

The coefficient Dy is only obtained following the method to higher order in (k; — k).
The coefficients up to third order in gradients can be found also in [111] and approximate
expressions for them are given in [91].

The traveling wave of wavenumber k£ becomes unstable when the coefficient Dy becomes
positive. One expects that the first terms in the gradient expansion (3.7) give a good
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description of the phase dynamics in the weakly nonlinear regime, that is Do positive but
small (note that for & # 0 this includes part of the region below the BFN line in Fig.
3.1). The arguments presented in [103] imply that for Dy small the relative importance
of the different terms in a multiple scale expansion can be established by considering
¢h~ Oy ~ D;/ 2. Then the dominant terms close to the instability of wave k are the ones
containing €y and vy. After them, the terms with coefficients D3 and D;; are the most
relevant. Up to this order Eq. (3.7 ) is a Korteweg-de Vries equation (KdV). The terms
with Dy, D4 and D19 appear at the next order. The importance of the terms in Dy and
D, for a qualitatively correct description of phase dynamics is obvious since they control
the stability properties of the wave of wavenumber k. The importance of the term with
coefficient D19 was stressed in [91, 20]: if it is large enough it can change the character of
the bifurcation from supercritical to subcritical.

The detailed comparison of the reduced dynamics (3.7) with the complete CGLE phase
dynamics is beyond the scope of the present paper. The aim of this Section is to use
Eq.(3.7) just to get some understanding of the asymptotic states presented in Section 3.3.
To this end we will use the detailed results available from the work of Chang et al. [40].
These results are obtained for the so-called Kawahara equation [92, 93, 20, 40, 94] which is
Eq.(3.7) with D19 = D13 = D9y = D112 = 0. The term D15, which according to Kuramoto
estimations [103] is of the same order for small Dy as the terms in Dy and Dy, will thus
be neglected. It would be certainly necessary to consider the modifications introduced
by the term Djs into the results of [40]. This will be briefly discussed at the end of this
section. At this point it is interesting to note that, to our knowledge, the only quantitative
comparison of the phase dynamics with &£ # 0 obtained from a phase equation and from
CGLE is [174, 175]. But the phase equation used in these references is the one presented
in [158], in which the nonlinear terms considered are only those with coefficients D;; and
Dq3. In addition Diy, D13, and the coefficients of the linear terms are considered only
up to first order in k. Despite the absence of the D, term, the phase equation is found
to reproduce well the phase dynamics of the CGLE, an agreement that degrades when
the term in Dy3 is suppressed [2]. Clearly further work is needed to establish firmly the
relevance of the different terms in (3.7)[3]. Our study will be restricted to the situation
of [40] (that is D19 = D9y = D13 = D19 = 0) since no study of comparable detail for a
more complete equation is available in the literature.

The situation of interest here is the one in which the plane waves are unstable, so that
Dy, Dy > 0. Making the following changes of variables in (3.7) with D1y = D9y = D13 =
D112 =0:

Dy
X = D—4($—Ugt),
D3
= 224
T D,
1/2
D1 D
U(XaT) = _73/4281'¢((L‘at)' (319)
2D}

the Kawahara Equation[92, 93, 20, 40, 94] is obtained

Orautt = —6)2(u — 4udyu — 58§u — aiu , (3.20)
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with D
§=——2 (3.21)
vV DsDy
Since ¢ is periodic in z, u(x,t) is periodic in x. In addition fOLu(X, 7)dx = 0. To have
some intuition on the meaning of the parameter ¢, its expansion at small k reads

5~ 22k i 1t8 L op 3.92
~ Slgn(cl) |1+0102|+ ( ) ( )

It should be noted that ¢ does not diverge at the BFN line, as the expansion (3.22) seems
to suggest, but below it. From Eq. (3.21) it is clear that § diverges where Dy vanishes
indicating that the corresponding traveling wave of wavenumber k has become Eckhaus
unstable.

The Kawahara equation (3.20) has been considered in the context of surface waves on
fluid films falling down an inclined or vertical plane [39], and also as a simple generalization
of the KS or the KdV equations [92, 93]. It has also been considered in the context of
growth shapes [48]. It reduces to KS for 6 = 0 (or equivalently for k¥ = 0) when written in
the original variable (.

The equation (3.20) has periodic, soliton-like, spatially-irregular, and spatio-temporally
chaotic solutions. [92, 93, 94]. In fact, all of these solutions have been analytically shown
to exist [40]. All of them except the isolated soliton-like solution [41] are stable in some
parameter regimes [40]. These kinds of solutions should manifest themselves (provided
the approximate phase description holds) in the time evolution of the phase gradient 9,
(= k+ 0¢) of the solutions of the CGLE (3.1) in the PT regime. The analytical results in
[40] thus provide a firm basis for true existence of the numerically observed states described
in Section 3.3.

The detailed bifurcation analysis in [40] also gives detailed predictions for the wound
states of the CGLE, within the range of validity of the phase description. We will reproduce
here some of the results in [40] and reinterpret them in terms of the gradient of the
phase of CGLE solutions. Our interest is centered in the rigidly moving train of pulses (
frozen turbulence and quasiperiodic states) observed in several of the numerical simulations
reported in Section 3.3. They are of the form (3.5) and because of (3.19), we have

u(x,7) = H(E) , (3.23)

with £ = x — v7, being v the velocity of the train of pulses we want to describe in units
of x and 7. The partial differential equation (3.20) is reduced to an ordinary differential
equation (ODE) for H (¢):

H® +6H" + H" + 4HH' —vH' =0 . (3.24)
The primes denote differentiation with respect to . After an integration:
H" +H" + H —vH +2H* =Q . (3.25)

Q@ is fixed in a nontrivial way by the condition [ Hd¢ = 0 which follows from our periodic
boundary conditions. This third order ODE can be rewritten as a three-dimensional
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dynamical system:

ul = U9
wy = u3
uy = cuy — uy — ouz — 2(ug)? (3.26)
with
v 2 Q
w©) = HO) - I+

c = /8Q+v?. (3.27)

Different qualitative behaviors in phase space of the solutions of the dynamical system
(3.26) are related to the shape of the solutions of (3.24) [152]. This is illustrated in Fig.
3.15.

We stress that all the solutions of (3.24) represent uniformly translating solutions of
(3.20). No information is given on more complicated solutions of (3.20). The left column
of Fig. 3.15 shows the possible trajectories of the dynamical system (3.26) while the right
column shows the corresponding solution of (3.25), or equivalently u(x,7) = H(§ = x—vT)
in equation (3.20). For a fixed point in (3.26) (Fig. 3.15al) we get a homogeneous solution
in (3.20) (Fig. 3.15a2) and (via (3.19)) a traveling wave solution in the CGLE (3.1). For a
periodic trajectory in (3.26) (Fig. 3.15b1) we get a train of periodic pulses in the solution of
(3.20) (Fig. 3.15b2) and a quasiperiodic solution in CGLE (3.1). An homoclinic trajectory
in (3.26) (Fig. 3.15cl) corresponds to a single pulse solution in (3.20) (Fig. 3.15¢2). Finally
for a chaotic trajectory in (3.26) (Fig. 3.15d1) we have an irregular solution H(¢) that
corresponds to a rigidly traveling spatially irregular solution of (3.20) (Fig. 3.15d2). The
chaotic solutions of (3.26) are of the Shil’nikov type [40]. This means that the disordered
configurations H(¢) (and thus u and 0,¢) consist on nearly identical pulses irregularly
spaced. This corresponds to the state named frozen turbulence for solutions of the CGLE.

The detailed analysis of [40] is done on the one hand by following the sequence of
bifurcations of the state in which H is a constant and of the state in which H is close to the
KdV soliton (with adequate rescaling Eq. (3.20) reduces to the KAV in the limit § — 00).
On the other hand the powerful global theorems of Shil’'nikov and their generalizations
[186, 129, 107, 4] are used to establish the structure of the solutions of (3.26). The results
of [40] relevant to our purposes can be summarized as follows (they can be read-off from
figure 3 of Ref. [40] ):

1. Periodic solutions of (3.26) exist for all values of ¢ provided | ¢ |[>| 0 |. They
are organized in a variety of branches. Solutions in the same branch differ by their
periodicity, and each branch ends in a different kind of solitary-wave solution (infinite
spatial period). The shape of the different solitary wave solutions characterizes the
different branches.

2. For | 6 | 2 1.1 only one of the branches of periodic solutions (the main branch)
remains.

3. Chaotic solutions to (3.26) exist only for | 6 | S0.84.
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Figure 3.15: Schematic relationship between trajectories of the dynamical system (3.26)
in phase space (left column) and solutions u(y,7) = H(¢ = x — v7) of equation (3.20)
(right column). al) Fixed point of (3.26), a2) uniform solution of (3.20) (traveling wave in
the CGLE (3.1)). bl)Periodic solution (limit cycle) of (3.20), b2) periodic train solution
of (3.20) (quasiperiodic solution of the CGLE (3.1)). cl) Homoclinic trajectory of (3.26),

c2) single pulse of (3.20). d1) Chaotic trajectory of (3.26), d2) spatially irregular solution
of (3.20) (frozen turbulence in the CGLE).
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In addition Chang et al. [40] obtained results also for the full equation (3.20), without
the restriction to rigidly traveling waves. Their numerical and analytical results can be
summarized as

4. Periodic solutions in the main branch with its wavenumber within a given range
are linearly stable for all §. A more precise determination of the range of stable
wavenumbers for large 6 was performed in [20].

5. In addition to the periodic solutions there are also spatio—temporal chaotic attractors
for all 0.

6. If | 6 |> 1.1 only two of these strange attractors remain. For | 6 |> 3 their basin of
attraction seems to be much smaller than the one of the periodic solutions.

Expression (3.21) with (3.10)-(3.18) gives the relation between § and the parameters of
the CGLE. | § |= oo corresponds in Fig. 3.1 to the line at which the wave of wavenumber
k becomes Eckhaus unstable. It is approximately parallel and below the BFN line. The
other lines of constant ¢, for fixed k, are also approximately parallel to the BEN line, and
decreasing | § | corresponds to entering into the PT region and going deep into it. All
these lines concentrate onto the BEN line as k approaches zero: for k = 0, 6 = 0 except on
the BFN line 1 4 ¢jcg = 0 where ¢ is undefined. We now rephrase the conclusions above
in terms of the three basic asymptotic states of the CGLE in the PT regime. They will
be valid as long as the phase description (3.20) remains accurate.

1. There are PT solutions of the quasiperiodic type for all values of the parameters
(as long as the phase description remains valid). Bounds on their velocity can be in
principle obtained, but this is nontrivial since () is only known in an implicit way.

2. Increasing | ¢ | by approaching the Eckhaus instability for a given k& (D2 = 0), or by
increasing the winding number reduces the variety of quasiperiodic solutions.

3. Frozen turbulence solutions exist only for | d | <0.84, that is far enough from the
line Dy = 0 or for small enough winding number.

4. There are linearly stable solutions in the main quasiperiodic branch for all values of
the parameters.

5. There are also riding turbulence attractors for all values of parameters.

6. For | § |> 3, that is at high winding number or close enough to the line Dy = 0 the
quasiperiodic solutions have a basin of attraction larger than the riding turbulence
ones.

A general feature of these conclusions is that the important quantity is Do, that is the
distance in parameter space from the line at which the k-wave became Eckhaus unstable.
This line is below the BFN line for k£ # 0. Thus not only traveling waves, but also
quasiperiodic, frozen turbulence, and riding turbulence attractors should exist below the
BFN line for k£ # 0. In practice it is relatively easy to find quasiperiodic states below but
close the BEFN line, but we have been unable so far to find the other two states so far. The
difficulty in finding riding turbulence states can be a consequence of the small range of
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winding numbers for which they are stable (|v| = L|k|/(27) < 1) so that the observability
condition | ¢ |< 3 immediately brings us above the BFN line. Another possibility is that
the instability of the v = 0 plane-wave attractor at the BFN line has consequences of a
global character beyond the validity of the phase description.

If the predictions above are true, the more promising zone for obtaining quasiperiodic
solutions starting from random perturbations on a traveling wave of given winding number
is for parameter values close and above Dy = 0, or for high winding number (| § |> 3). In
any case no frozen turbulence should be observed in that zone.

Some qualitative aspects of the conclusions above have been shown to be correct.
In particular Torcini and collaborators [174, 175] have shown that the average maximal
Lyapunov exponent, quantifying the proportion of initial conditions that fall into the
spatio—temporal chaotic strange attractors, is a decreasing function of v.

Our numerical solutions also agree with the prediction that quasiperiodic solutions
show up more easily for small Dy. However, their basin of attraction appears to be much
smaller than the implied by the conclusions of the phase description since it is reached
with very low probability from our initial conditions. This is specially true above the BFN
line. The reason for this is probably the effect of the neglected term D;5, which is known
to reduce the range of stable periodic solutions [20] and even to eliminate it by making
the bifurcation subcritical [91]. Above the BFN line the attractor that we observe more
frequently at high winding number from our initial conditions is the frozen turbulent state.

A more detailed checking of the predictions above would be desirable. This is however
beyond the scope of the present paper since a detailed theoretical analysis of the global
properties of the phase space for the equation containing the term D9 would be probably
needed beforehand. A promising alternative can be the study of the exact equation for
f(z —wt) in (3.5) obtained in [175].

3.5 Final Remarks

One-dimensional wound-up phase turbulence has been shown to be much richer than ex-
pected. The main results reported here, that is the existence of winding number instability
for phase-turbulent waves, the identification of the transition PT-DT with the vanishing of
the range of stable winding numbers, and the coexistence of different kinds of PT attrac-
tors should in principle be observed in systems for which PT and DT regimes above a Hopf
bifurcation are known to exist [114]. To our knowledge, there are so far no observations of
the ordered PT states described above. There are however experimental observations of
what seems to be an Eckhaus-like instability for non-regular waves in the printer instabil-
ity system [142]. This suggests that the concept of a turbulent Eckhaus instability can be
of interest beyond the range of situations described by the CGLE. A point about which
our study is inconclusive is the question on the existence of PT in the thermodynamic
limit. The identification of v as an order parameter identifies the continuation of Fig. 3.7
towards larger system sizes as a way of resolving the question. It should be noted however
that although a linear scaling of the order parameter with system size is usual in common
phase transitions, broken ergodicity phase transitions, as the present one, generate usually
a number of ordered phases growing exponentially with L, not just linearly [141, 122]. We
notice however that the results of Section 3.3 show that the states of a given v are not
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pure phases, but different attractors are possible for given v. An order parameter more
refined than v should be able to distinguish between the different attractors and, since
some of them are disordered, the result of an exponentially large number of phases at large
L would be probably recovered. The results presented in Section 3.4 give a justification
for the existence of the several wound states observed. Further work is needed however to
clarify the importance of the different terms in (3.7) and the validity of a phase description.



Chapter 4

Nonlinear Diffusion Control of
Spatio-Temporal Chaos

No hearts of gold

No nerves of steel

No blame for what we can
and cannot feel

No nerves of steel

No hearts of gold

No blame for what we can and
can’t control

Joni Mitchell, Good friends

4.1 Introduction

Under nonequilibrium conditions, a spatially extended system often undergoes a transition
from a uniform state to a state with spatial variation, usually referred as pattern. Their
formation is generally associated with nonlinear effects, which lead to qualitatively new
phenomena such as the Spatiotemporal Chaos[52] (STC). Loosely, the term spatiotemporal
chaos is commonly accepted to refer to a deterministic system that has irregular variation
and is unpredictable in detail, both in space and in time. There are known examples of
experimental systems, well characterized and precisely controlled[55, 52] that show such
a behavior. In most cases STC can be described within the context of weakly nonlinear
theories since these states arise in the proximity of threshold. These theories are well
developed in the form of so—called complex Ginzburg-Landau equations (CGLE)[51]. The
CGLE is a prototypical equation for a complex field A that exhibit STC. It accounts for
the slow modulations, in space and time of the oscillatory state in a physical system which
undergoes a Hopf bifurcation[179]. The CGLE has different types of STC[43] which have
been profusely studied[165, 42, 64, 124, 125].

The control of the chaotic behavior of dynamical systems with few degrees of freedom
has been successively tested in a number of systems[164]. The idea behind the control of

3This Chapter corresponds to Nonlinear Diffusion Control of Spatio- Temporal Chaos by R. Montagne,
P. Colet. Submitted for publication (1996).
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chaos is to modify the dynamics of the system in such a way that a previously unstable state
is now stable. Ideally only the stability is modified, not the state itself (i.e. if that state
was a fix point or periodic orbit of the original system is still a fix point or periodic orbit of
the modified system). The control of spatiotemporal chaos is a more complicated problem,
and so, there is a wide variety of methods intended to control such chaotic behavior. There
heve been several attempts to achieve such control in the CGLE. For example, Aranson
et. al.[18] stabilize an unstable topological defect, whose analytical expression is known,
by adding an extra term in the CGLE. The defect acts as a source of traveling waves
which sweep all the other fluctuations to the system boundary. Stabilization of a plane
wave extended through all the system has been achieved by adding time-delayed feedback
terms to the CGLE. The feedback can be either local[29] (at each spatial point, the field
at the same point at previous times is feeded back) or global[121, 24] (at each spatial
point a term proportional to the integral of the field over the spatial variable is feeded
back). In both cases, the added terms vanish for the stabilized plane wave solution, so it
is possible to stabilize precisely the same plane waves which are unstable in the original
CGLE. However, the added global feedback terms do not preserve the phase invariance of
the original CGLE.

Feedback is the most used approach for chaos control in spatially extended systems.
It has been applied to a nonlinear drift-wave equation driven by a sinusoidal wave [67]
and, in conjunction with a spatial filter it has also been applied to stabilize rolls and
hexagonal structures in a model for a transversally extended three level laser[118] and
to control filamentation in a model for wide aperture semiconductor lasers based on the
Swift-Hohenberg equation[85]

In this work we explore a different way to stabilize unstable periodic solution based not
in feedback terms but in nonlinear diffusion effects. Specifically, we show that stabilization
of unstable plane wave solutions of the CGLE in the region of STC can be achieved adding
a nonlinear diffusion (or diffraction) term. The added term preserves the intrinsic phase
invariance of the CGLE equation and it vanishes when the stabilizing effect is achieved so
the modified equation has as solution the same plane wave as the original one. Nonlinear
diffraction effects are present in optical systems where the Fresnel number is intensity
dependent. It appears naturally, for instance as a higher order term in the Kerr effect.

In section 4.2 we briefly describe the parameter regions for which different chaotic
behaviors have been found for the CGLE and we introduce the modified equation. Section
4.3 is devoted to the linear stability analysis of the plane wave solutions. We calculate for
which parameters the added term is able to stabilize plane waves in the STC regions of
the CGLE. In section 4.4 the analytical prediction of the linear stability analysis is verified
by numerical simulations of the equations. Finally we give some concluding remarks in
section 4.5.

4.2 Model

The one dimensional CGLE[51, 179, 178, 134] for a complex field A(z,t), describes the
slow dynamics of spatially extended systems close to a Hopf bifurcation,

HA=A+ (14ic))P?A— (14ic)|AI?A. (4.1)
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We will assume periodic boundary conditions through all the work. This equation admits
plane wave solutions of the form

Apw(,t) = QeF ) (4.2)

with amplitude Q = v/1 — k2, |k| < 1 and frequency w = ¢z + (c1 — c2)k>.

For 1+ ¢1co > 0 plane wave solution are linearly stable for wave numbers smaller than
a limit value |k| < kg. For |k| > kg, plane waves are unstable to phase perturbations
(Eckhaus instability [61]). The limit value kg is given by

1+ C1Co

kp=—"—"—.
E 3+ cieo + 263

(4.3)
The stability range vanishes at 1 + c¢;co = 0 (the Benjamin-Feir-Newell (BFN) line), and
no stable plane wave solution exist for 1 + cico < 0.

Numerical work for L (length of the system) large [43, 165, 42, 64, 124, 125, 174] has
identified regions of the parameter space displaying different kinds of regular and spatio-
temporal chaotic behavior, leading to a “phase diagram” for the CGLE in the plane ¢;—cs.
The five different regions, each leading to a different asymptotic phase, are shown in Fig.
4.1 as a function of the parameters ¢; and cs.

Two of these regions are in the BFN stable zone and the other three in the BFN
unstable one. The NO CHAOS region, in the BFN stable zone, is a large region where
the evolution ends in a plane wave with a wave number |g| < gg for almost all the initial
conditions. Also in the BFN stable zone there is the Spatio-Temporal Intermittency (STT)
region[42]. Despite the fact that there exist stable plane waves, the evolution from random
initial conditions is not attracted to them but to a chaotic attractor in which typical
configurations of the field A consist of patches of plane waves interrupted by turbulent
bursts. The modulus of A in such bursts typically touches zero quite often. On the other
hand, above BFN line, the evolution ends in a spatiotemporal chaos for almost every initial
condition. The Defect Turbulence (DF) region is a strongly disordered region in which
the modulus of A has a finite density of space-time zeros [165, 42]. The Phase Turbulence
(PT)[165, 43, 46, 45, 119, 64] region is a weakly disordered one in which |A(z,t)| remains
away from zero. Nevertheless, under a particular type of initial condition it is possible to
end in a ordered state[125, 174]. Finally, the Bi-Chaos region is such that, depending on
the particular initial condition, the system ends on attractors similar to the ones in regions
of PT DT, or in a new attractor in which the configurations of A consists of patches of
phase and defect turbulence. A detailed description could be found in [43].

We consider a modification of CGLE in such a way that the plane wave stability
region is increased. We will show that this can be achieved be replacing the coefficient ¢;
by c14+7(|A?/|Apw|*> —1) where 7 is a constant and | Ay, | is the modulus of the plane wave
to be stabilized. Notice that as the added term e(|A|?/|Apw|? — 1) vanishes identically for
A = A,,, any plane wave A, that is a solution of (4.1) is also a solution of the modified
equation. We are not changing the solution but we will change its stability. The modified
CGLE is explicitly given by,

WA = A+ 1 +ici +iv(|AP/|Apw|* — D]OZA — (1 +ico)|A]PA. (4.4)

It is also important to note that this modification introduced above, preserves the
phase invariance A — Ae'™, with 1 being an arbitrary phase.
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Figure 4.1: Regions of the parameter space c¢; —co for which the d = 1 CGLE display-
ing different kinds of regular and chaotic behavior. The analytically obtained line, the
Benjamin-Feir-Newell line (BFN line) is also shown.

From another point of view, eq. (4.4) can be rewritten as
NA = A+ [l +i¢, +icnp|A2)0%A — (1 +icy)|A]2A, (4.5)

with ¢ = ¢; —v and ey, = v/|Apw|?. In this way, the stabilizing added term can be seen
as a nonlinear diffusive term in the CGLE.

4.3 Stability analysis

We study the stability of the plane wave solutions (4.2) of eq. (4.4) by a standard lin-
earization procedure. Consider the time evolution of small perturbations in the amplitude
and phase,

Az, t) = (Q + er(z, t))eke—wited(@t) (4.6)

where r(z,t) and ¢(z,t) are real perturbations in the amplitude and phase respectively
and € is a formal parameter to keep track of small numbers.

Substituting (4.6) in (4.4) yields to a polynomial in € up to order €>. The terms of
order €” vanish identically. The first order terms yield the linearized equations for the
perturbations

or = 20Q%* —2Qk0yp — 2c1k0yr — c1 Q%P + 02r, (4.7)
k2 k
¢ = —202Q7“+2767“ — 201k8x¢+2§8x7“+8§¢+ %8:%7“. (4.8)

We consider solutions of (4.7) and (4.8) proportional to €779 where for periodic bound-
ary conditions ¢ is real whereas 7 is in general a complex quantity. By substituting in
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(4.7) and (4.8) we obtain the dispersion relation

N+ 2Q?% + ¢ + 2iciqk 2igk — c1¢®
2 2 . 2 2 . = 0 (49)
c1q° + 2c2Q° — 2igk + 2vk*  n 4+ q° + 2ic1qk
The solutions of (4.9) are
n=—(Q*+ ¢* + 2iciqk) £ Vu +iv, (4.10)
where u and v are polynomials
uw = Q'+ 4¢%k?* — 2¢160Q%¢* — c?q4 — 2ve1 %k, (4.11)
= dqgk(c1g® + c2Q* + vk?) . (4.12)
The real part of n indicates the growth rate,
2 =2
Re(n) = —Q? — g2 + (| LTV £ (4.13)

2

We have two different branches [111, 91, 179] which are usually called “amplitude” and
“phase modes” due to the fact that for a real Ginzburg-Landau equation, the eigenvalues
are related specifically to amplitude and phase perturbations. Although this is not the
case for the CGLE, the names are still used.

The “amplitude modes” correspond to the negative sign of the square root in (4.13).
For any value of c¢1, ¢co and k, Re(n) as function of the perturbation wavelength ¢ is always
negative and takes the value Re(n) = —2Q? at ¢ = 0. The added ~y term modifies only
slightly the position of the branch but it never changes the negative character of Re(n).

The “phase modes” are associated with the positive sign square root in (4.13). This
branch vanishes identically at ¢ = 0 for any value of the parameters c;, ¢y or plane wave
wavelength £, so all the plane wave solutions are marginally stable. The origin of this
neutral stability is the phase invariance A — Ae®’ of the solutions of eq. (4.1) and
(4.4). For q very large, this branch is negative and behaves as —q?, so short wavelength
perturbations are always damped. However, in general, long wavelength perturbations
can be unstable, to see this we expand (4.13) for small q.

Re(n) = Dg* + O(q") (4.14)
where ) ) ) )
k Clk CQk k

If this coefficient is positive, there is a range of unstable perturbation wavelengths. For
the unperturbed CGLE, v = 0, the requirement D < 0 leads to the standard Eckhaus
instability limit: |k| < kg with kg given by (4.3).

For v # 0 the coefficient D depends on even powers of k up to the 6th power, so one
has to solve a cubic equation to find explicitly the limits of the range of values of k for
which plane waves are stable. In Figs. 4.2 - 4.4 we plotted this range as a function of
the parameter ¢ for several values of v and ¢o. Fig. 4.2 shows the stability region for
co = —0.3 and different values of v as indicated in the figure caption. The first thing to
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notice is that the added term does not affect to the stability of the homogeneous solution
k = 0, this is in fact the general case for any value of parameters ¢; and co as can be
seen from equations (4.10), (4.11) and (4.12) where v only appears in terms with powers
of k. For plane waves with k£ # 0 the stability range clearly changes with the value of ~
as displayed in Fig 4.2 b)-d). For small v (Fig. 4.2 b) the stability range is increased for
large values of ¢; and slightly reduced for ¢; <0.5, therefore, the added stabilizing term
has the opposite effect for small ¢;. For the values of ¢; displayed on the figure, the last
plane wave in losing stability is still the homogeneous solution as it was in the case v = 0.

a) ‘ ‘ " p)

[e]

|
_- N W ORI MmO o= N W RO

Q

1.0-1.0

Figure 4.2: Stability region for the plane wave (4.2) for ¢ = —0.3 for a) vy = 0, b) v = 0.5,
c) v = 0.7, d) v = 2. For comparison, the boundary of the stability region for v = 0 is
shown in figs. b)-d) as a dashed line.

For v > 0.6 the shape of the stability range is strongly changed as can be seen in Fig.
4.2c-d for v = 0.7 and 7 = 2. Now there are plane waves with k£ # 0 which are stable
for values of ¢; well above the stability limit of the homogeneus solution, in the region of
phase turbulence of the original CGLE (see Fig. 4.1).

Figs. 4.3 and 4.4 show the stability region for co = —0.9 and c; = —2.1 and several
values of v. As « is increased the stability region changes its shape in a similar way as
before but at larger values of v. For co = —0.9 it is possible to stabilize plane waves in
the region of phase turbulence taking v > 2, and for co = —2.1 stabilization in the region
of defect turbulence is possible for v > 4.
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Figure 4.3: Stability region for the plane wave (4.2) for ¢ = —0.9 for a) vy =0, b) v =1,
c) v = 2,d) vy =3. For comparison, the boundary of the stability region for v = 0 is

shown in figs. b)-d) as a dashed line.

Fig. 4.4c) for ¢co = —2.1 and y = 4 shows an interesting intermediate shape. There
are three stability regions so plane waves can exist below the BFN line and well above it,
in defect turbulence, but not for values of ¢; just above the BFN line. Also there is no
wavevector g for which plane waves are both stable below and above the BEN line. As
is increased the three regions coalesce and become a single one, as seen for v = 6. This
general behavior is observed also for other values of c¢2 for intermediate values of v which

are not shown in Figs. 4.2 and 4.3.

c, lr

Figure 4.4: Stability region for the plane wave (4.2) for ¢ = —2.1 for a) y =0, b) v =2,
c) ¥ =4, d) vy =6. For comparison, the boundary of the stability region for v = 0 is

shown in figs. b)-d) as a dashed line.

The overall picture is as follows (see Fig. 4.5, which is, in fact, a view of an extended
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area in the k—c; plane of the results plotted in Fig. 4.3b)). For v = 0 and a fixed ¢y the
stability region in the k—c¢; plane is limited by a branch of eq. (4.3) (dashed line) whose
vertex corresponds to the BFN point. Keeping co fixed and decreasing the value of ¢; the
width of the stability region |k| < kg increases and for ¢; — —oo, kg — 1. For any small
v > 0 there are three stability regions in the k—c; plane. From eq. (4.15) one can show
that for ¢; = —oo the limits of the first region (labeled R1 on fig. 4.5) approach the two
vertical asymptotes k4t = ++/c2/(ca — 0) (dotted lines).

On the other hand two new stability regions (D < 0) appear symmetrically at very
large values of ¢; and for values of |k| between the vertical asymptotes and 1 (regions R2
and R3). The existence of these new regions, which for ¢; — oo broaden and cover the
intervals k € [-1,ka_] and k € [kay, 1], implies that for any nonvanishing y there will be
always stable plane waves for any value of co well above the BF line. However, if v is very
small these regions are located at very large, and quite unrealistic, values of ¢;. As § is
increased the regions R2 and R3 extend to lower values of ¢; until they coalesce with the
region R1.

10 T
R2 R3

Cy

_
o

Figure 4.5: Stability region for the plane wave (4.2) for ¢, = —0.9 for y = 1. The dashed
line shows the Eckhaus stability limit for the unmodified CGLE. The vertical dotted lines
show the asymptotic lines k = k£ (see text).

4.4 Numerical simulations

We have performed numerical simulations of eq. (4.1) and (4.4) using a pseudospectral
code with periodic boundary conditions and second-order accuracy in time. Spatial resolu-
tion was typically 1024 modes. Time step was typically At = .001 except when differently
stated in the figure captions. Since very small effects have been explored, care has been
taken of confirming the invariance of the results with decreasing time step and increasing
number of modes. System size was always taken as L = 512. The details of the numerical
method can be seen elsewhere[123]. We start for an initial condition which corresponds
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to a plane wave plus a small perturbation
A(z,t =0) = V1 — k2e™™ 4 o¢(x) (4.16)

where () is a complex gaussian random perturbation of zero mean and variance (£(x){*(z')) =
26(x — ).

We have performed numerical simulations in different regions of the phase diagram
(4.1) to verify the results obtained from the linear stability analysis when finite size per-
turbations are applied. We have found a very good agreement between the prediction of
the linear stability analysis and the numerical simulations. As characteristic examples we
show the following results.

Fig. 4.6 shows the results of numerical simulations for ¢; = 2, co = —0.3. We start
with an Eckhaus unstable plane wave with k; = 0.5 > kp which is perturbed adding
noise as it was explained above (x point in Fig. 4.2a)). For v = 0 the system evolves
from the initial plane wave to a stable wave with k =~ 0.3 < kg, although the transients
can be very long. Fig. 4.6c) shows the amplitudes and phase gradient of the final plane
wave at t = 19000. For v = 0.5, as predicted by the linear stability analysis (x point in
Fig. 4.2b)), the initial plane wave is stable, so the random perturbation dyes out and the
system settles down to a pure plane wave with the initial wavelength k; (Fig. 4.6d)).

Fig. 4.7 shows a case where the added term unstabilizes a plane wave. For ¢; = —1.5,
¢y = —0.9 a plane wave with k£ = 0.55 is stable in the unmodified (y = 0) CGLE (X point
in Fig. 4.3a)) but the same plane wave becomes unstable in the modified CGLE for v = 3
(x point in Fig. 4.3d)). For this case, it can be seen how the system evolves to another
plane wave with wave number k£ ~ 0.32 within the stability range. As in the previous case,
the transients can last for quite a long time.

Fig. 4.8 shows stabilization of plane waves at the parameter values ¢; = 1.5 and
co = —0.9. This point corresponds to the phase turbulence regime (see fig. phasediagram),
where no plane waves are stable for the unmodified CGLE. As predicted by the linear
stability analysis (square points in Fig. 4.3a) and d)) a perturbed plane wave with k = 0.5
can easily be stabilized with v = 3, while for v = 0 the same initial condition decays in
time ¢t = 80 (approx.) to phase turbulence.

Fig. 4.9 shows a case of stabilization of plane waves for ¢ = 0 and ¢ = —2.1, in
the region of spatio-temporal intermittency. In this region there are stable plane waves
with |k| small enough, but if |k| > kg the initial perturbed plane wave evolves to an
spatio temporal intermittent behavior[42]. However, the modification introduced allows
to completely suppress the typical defects and other localized objects of STI regime, leading
the system to a well behaved plane wave. The initial condition in this case was a plane
wave with & = 0.55 (x points in Fig. 4.4a) and c)).

Finally Fig. 4.10 obtained for parameter values ¢; = 1.5 and ¢s = —2.1 shows stabi-
lization of plane waves in the region of defect turbulence, where in the unperturbed case
there are no stable plane waves and the field A shows the presence of defects. Again as
predicted by the linear stability analysis a perturbed plane wave with £ = 0.55 (square
point in Fig. 4.4a) and d)) can be stabilized with v = 6 washing out all the defects.
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Figure 4.6: Spatiotemporal evolution of the CGLE (4.4) for ¢; = 2, ¢co = —0.3 starting
from a perturbed plane wave (4.16) with k¥ = 0.5 and ¢ = 0.01. Figs. a) and b) show |A4]
with time running upwards from ¢t = 0 to ¢ = 20000, and z in the horizontal direction for
7 = 0 and v = 0.5 respectively. The value of the modulus |A(z,?)| and phase gradient
O d(x,t) at ¢ = 19000 are displayed in ¢) and d) for vy = 0 and v = 0.5 respectively.
Integration performed with a time step At = 0.01.



Chapter 4 99

a) b)
|Al 15F 150
1.0 1.0E
0.5 0.5
0.0 0.0
0, ¢
08F 0.6[
0.6 04l
0.4r
0.2F
0.2
0.0 0.0
0 100 200 300 400 500 (4] 100 200 300 400 500
X X
c) d)

Figure 4.7: Spatiotemporal evolution of the CGLE (4.4) for ¢; = —1.5, co = —0.9 starting
from a perturbed plane wave (4.16) with £ = 0.55 and o = 0.01. Figs. a) and b) show
|A| with time running upwards from ¢ = 0 to ¢ = 20000, and z in the horizontal direction
for v = 0 and v = 3 respectively. The value of the modulus |A(z, )| and phase gradient
Orp(x,t) at t = 19200 are displayed in ¢) and d) for v = 0 and v = 3 respectively.
Integration performed with a time step At = 0.01.
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Figure 4.8: Spatiotemporal evolution of the CGLE (4.4) for ¢; = 1.5, ¢5 = —0.9 starting
from a perturbed plane wave (4.16) with k¥ = 0.5 and o = 0.01. Figs. a) and b) show |A4]
with time running upwards from ¢y to £ = 1000 and x in the horizontal direction for v =0
and v = 3 respectively. The value of the modulus |A(z,t)| and phase gradient d,¢(z,1)
at t = 950 are displayed in c¢) and d) for v = 0 and y = 3 respectively.
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Figure 4.9: Spatiotemporal evolution of the CGLE

with time running upwards from %y to ¢ = 1000 and x in the horizontal direction for v =0
and vy = 4 respectively. The value of the modulus |A(z,t)| and phase gradient d,¢(z,1)

at t = 950 are displayed in c¢) and d) for v = 0 and y = 4 respectively.
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Figure 4.10: Spatiotemporal evolution of the CGLE (4.4) for ¢; = 1.5, ¢o = —2.1 starting
from a perturbed plane wave (4.16) with k¥ = 0.5 and ¢ = 0.01. Figs. a) and b) show |A4]
with time running upwards from ¢y to £ = 1000 and x in the horizontal direction for v =0
and v = 6 respectively. The value of the modulus |A(z,t)| and phase gradient d,¢(z,1)
at t = 950 are displayed in c¢) and d) for v = 0 and y = 6 respectively.
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4.5 Concluding Remarks

We have stabilized unstable plane wave solutions in different parameter regions of the
CGLE where spatiotemporal chaos exist. This have been done by adding a term to the
CGLE which vanish for the stabilized plane wave, so that the stabilized plane waves are
exacly the same unstable solutions of the original CGLE. The added term can be seen
as a nonlinear diffusive term and preserves the intrinsic phase invariance of the original
equation. Although our method does not change the stability of the homogeneous solution
k = 0, it is quite effective in stabilizing plane waves with non zero wavevector. We
have calculated analytically the parameter regions where plane waves can be stabilized
including regions of phase turbulence, spatiotemporal intermittency, bichaos and defect
turbulence. We have shown that the numerical integration of the modified CGLE is in
excellent agreement with the linear stability analysis predictions. Our analysis also shows
that in general, in systems where nonlinear contributions to the diffusion or diffraction
are not negligible, these terms can change significantly the regions in parameter space for
which plane waves are stable.
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Chapter 5

Synchronization of Spatiotemporal
Chaos

There is chaos to the order

Random things you can’t prevent

There could be trouble around the corner
There could be beauty down the street
Synchronized —like magic

Good friends you and me.

Joni Mitchell, Good friends

5.1 Introduction

Two issues of high current interest in the general field of nonlinear dynamics are the
quantitative characterization of different regimes of spatiotemporal complex dynamics in
extended systems [52, 55] and the synchronization of chaotic oscillators [143, 47]. The
characterization of low dimensional chaos is now a mature subject with well established
techniques, including techniques of chaos control. In this context, the demonstration
that the familiar phenomenon of synchronization of two regular oscillators [89, 185] by
a weak coupling can also be displayed by chaotic oscillators is an important new idea.
This conceptual development has opened a new avenue of research with interesting prac-
tical implications. Chaos in extended systems is a much less mature subject and many
investigations are still at the level of classifying different types of behavior. Concepts and
methods of Statistical Mechanics are commonly invoked in terms of “phase diagrams”
and transitions among different “phases” of behavior[165, 42, 36]. Still, the possibility
of a synchronized behavior of spatially extended systems in a spatiotemporal disordered
phase is an appealing idea that we address in this Letter. More specifically we will con-
sider an extended one-dimensional system in a chaotic regime known as Spatiotemporal
Intermittency (STI)[42] and we will characterize a coupled STI regime.

4This Chapter corresponds to Synchronization of Spatiotemporal Chaos: The regime of coupled Spa-
tiotemporal Intermittency by A. Amengual, E. Herndndez-Garcia, R. Montagne and M. San Miguel, sub-
mitted for publication (1996).
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By synchronization of two chaotic oscillators O; and Os it is meant in a strict sense
that plotting the time series O1(t;) vs Oy(¢;) one obtains a straight line of unit slope. For
many practical applications, synchronization of chaotic oscillations calls for an expanded
framework and the concept of “generalized synchronization” has been introduced [156, 97]
as the appearance of a functional dependence between the two time series. In this context
we understand here by synchronization the situation in which O;(#;) becomes a given
known function of Os(t;), while for independent chaotic oscillators O1 (¢;) and Oo(t;) are
independent variables. Transferring these concepts to spatially extended systems, we
search for correlations between the space(x;)-time(t;) series of two variables Oy (z;,t;) and
Oz (i, tj). The synchronization of O; and Oz occurs when these two space-time series
become functionally dependent. This idea is different from the one much studied in the
context of coupled map models in which the coupling and emerging correlations are among
the local oscillators of which the spatially extended system is composed. Here we search
for correlations of two variables at the same space-time point.

5.2 STI in the Coupled CGLE

Our study has been carried out in the context of Complex Ginzburg Landau Equations
(CGLE) which give a prototype example of chaotic behavior in extended systems[51, 179].
Our results show that the coupling between two complex amplitudes A; and Ag (O; = | A44]
and Oy = |Az|) in a STI regime described below, establishes spatiotemporal correlations
which preserve spatiotemporal chaos but lead to a synchronized behavior: Starting from
the independent STT dynamics of A1 and As, coupling between them leads to a STI regime
dominated by the synchronized chaotic motion of localized structures in space and time
for A; and As. An additional effect observed in our model is that the coupled STT regime
is destroyed for coupling larger than a given threshold, so that the two variables remain
strongly correlated but each of them shows regular dynamics. At this threshold maximal
mutual information and anticorrelation of |A;| and |Ay| are approached.

The CGLE is the amplitude equation for a Hopf bifurcation for which the system
starts to oscillate with frequency w. in a spatially homogenous mode. When, in addi-
tion, the Hopf bifurcation breaks the spatial translation symmetry it identifies a preferred
wavenumber K.. In one-dimensional systems the amplitudes A; and A5 of the two counter-
propagating traveling waves with frequency w. and wavenumbers £ K. becoming unstable
satisfy coupled CGLE of the form

O A1y = pAig+(1+ ia)agAl,Q
—(1+i8) (|41 +71421%) Ar2. (5.1)

Eq. (5.1) is written here in the limit of negligible group velocity. In particular, this limit
is of interest to describe the coupled motion of the two complex components of a Vector
CGLE. In this context, (5.1) is used to describe vectorial transverse pattern formation
in nonlinear optical systems. In this case, A2 stand for the two independent circularly
polarized components of a vectorial electric field amplitude [159, 17]. The parameter p
measures the distance to threshold and « is the coupling parameter, taken to be a real
number. Homogeneous solutions of Eq. (5.1) are of the form

Al,g((L‘,t) = Q1’2eiw1,2t . (5.2)
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Figure 5.1: Space-time plot ot the modulus |A;| (left) and |As| (right) for four values of the
coupling parameter : From top to bottom, v = 0.1,0.5,0.95 and 1.05. The horizontal axis
represents space and the vertical axis time (2000 time units for y = 0.95, 100 for v = 1.05
and 200 in the other two plots). The gray levels change linearly from the minimum (black)
to the maximum (white) of the modulus. The parameters are p = 1, « = 0.2 and 8 = —2.0.
For v = 0.1, the structures appearing in |A;| and |As| are almost independent. However,

for v = 0.5, the defects in |A;| (black and white structures) becomes slightly synchronized
with the defects in |As| and, for v = 0.9, the synchronization is almost complete.
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where: wip = —B(QF 5 +7Q3,). For v =0, Q5 = p, and the two amplitudes satisfy
independent CGLE whose phase diagram has been studied in much detail in terms of the
parameters « and 3 [43, 125]. For v = 0, solutions of the type (5.2), and other plane waves
of different periodicities, are known to be linearly stable below the Benjamin-Feir (BF)
line (1+ af > 0). Above this line regimes of phase and defect chaos occur. However, for a
range of parameters below the BF line there is an additional attractor coexisting with the
one of plane waves in which the system displays a form of spatiotemporal chaos known as
STI. In this attractor the solution is intermittent in space and time. Space-time plots of
|A1| or |As] in the STI regime for v = 0 are qualitatively similar to the ones shown in Fig.
5.1a.

The question we address here is how the STT regimes of A; and As change when the
coupling v is introduced. We first recall that for a weak coupling situation (y < 1) the
solution (5.2) with Q7 , = 41/(1+~) is linearly stable below the same BF-line 1+ af > 0
[159] whereas the additional solutions with ()1 = 0 or Q2 = 0 are unstable. For large
coupling v > 1 the competition between the two amplitudes is such that only one of them
survives. Linearly stable solutions are either Q1 = /i1, Q2 = 0, or Q2 = /i1, Q1 = 0. For
the marginal coupling v = 1, Q? + Q3 = u and the phase y = arctan(Q1/Q>) is arbitrary.
In addition to these ordered states we also find a STI attractor for coupled CGLE and
values of o and B which are in the STI region of a single CGLE. Changes of such STI
behavior with varying -y are shown in Fig. 5.1 [5].

For small coupling (7 << 1) we observe that |A;| and |As| follow nearly independent
dynamics with the flat grey regions in the space-time plot being laminar regions sepa-
rated by localized structures that appear, travel and annihilate. In the laminar regions
configurations close to (5.2) with @1 = Q2 occur. Disorder occurs via the contamination
by localized structures. These structures have a rather irregular behavior and, in a first
approach they can be classified of either of two types, hole-like or pulse-like[179]. In Fig.
5.1 these hole-like and pulse-like structures are associated to black and white localized
structures respectively. It is argued that the domain of parameters in which STT exists
in the limit v — 0 is determined by the condition of stability for those localized struc-
tures [149]. As vy increases we observe two facts: First, both |A;| and |A2| continue to
display STI dynamics although in larger and slower space-time scales. Second, and more
interesting, is that the dynamics of |A;| and |As| become increasingly correlated. This is
easily recognized by focusing in the localized structures: A black traveling structure in the
space-time plot of |A;| has its corresponding white traveling structure in the space-time
plot of |As| and vice versa. In the vicinity of the localized structures, and emerging from
them, there appear travelling wave solutions of (5.1) but with different wavenumber for
|A;| and |Ag| so that |A;| # |A2|. This results in laminar states occurring in the same
region of space-time for |4;| and |Ay|. The coupled STI dynamical regime is dominated by
localized structures in which maxima of |A;| occur allways togheter with minima of | As]
and vice versa. Eventually (going beyond the marginal coupling v = 1 ) the STI dynamics
is destroyed and |A;| and |A2| display only laminar regions in which either |A;| or |As]
vanish separated by domain walls. In the optical interpretation of (5.1) the laminar gray
regions in Fig. 5.1 (JAi| = |A2]) corresponds to transverse domains of linearly polarized
light, although with a random direction of linear polarization. The localized structures are
essentially circularly polarized objects since one of the two amplitudes dominates over the
other. Around these structures the plane wave solutions with |A;| # |As| have different
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frequencies, so that they correspond to depolarized solutions of (5.1) [159]. As vy > 1,
localized traveling structures dissapear and one is left with circularly polarized domains
separated by polarization walls. It is usually argued that for v > 1 the dynamics of the
coupled CGLE (5.1) is well represented by a single CGLE since only one of the two waves
survives. This is certainly not true in the STI domain of parameters considered here since
a single CGLE would give rise to STI dynamics whereas the coupled set (5.1) does not
for v > 1. In general a description in terms of a single CGLE would not be reliable for
parameter values at which the single amplitude dynamics produces amplitude values close
to zero.

5.3 Characterization of the STI

We next show that the correlations observed for increasing < in Fig. 5.1 are in fact a
kind of spatiotemporal synchronization, in the generalized sense defined in [156, 97]. To
this end a characterization of the synchronizing process can be given by analyzing the
joint distribution of the two variables. This distribution and values of |A;| versus |As| are
plotted in Fig.5.2. The cloud of points correspond to the different space—time points of
Fig. 5.1.

Figure 5.2: Comparison of the states reached at long times starting from noise for (from
left to right, and from top to bottom) v = 0.1,0.5,0.95 and 1.05. The joint probability
distribution p(|Asz|,|A1|) is shown as a 3D surface. The vertical scale is arbitrary, the
same in the first three plots and three times larger for v = 1.05. On top of each surface,
|Aj(z,t)] vs |A2(z,t)| are shown in the form of a dotted plot obtained from the values of
|A1| and |A2| at space-time points during a time interval of 50 units.
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For v << 1 we obtain a diffuse cloud of points indicating essentially independent
dynamics. The concentration of points around |A;|> = |A3|> = u/(1 + ) corresponds
to the laminar regions, but excursions away from that solution are independent. As
the coupling is increased with v < 1 the cloud of points approaches the curve given by
|A1)? 4+ |A2|? = p. This indicates synchronization of the dynamics of structures departing
from the laminar regions. The points with larger values of |A;| and smaller values of
|As| (and vice versa) correspond to the localized traveling structures. Intermediate points
among these ones and those around |A;| = |Asg| correspond to the regular solutions of
non-zero wavenumber that surround the localized structures. The special case of marginal
coupling is discussed below, but as we enter into the strong coupling situation (y > 1) the
cloud of points concentrates in the regions |A1]? = p, |As] = 0 and |A3]? = p, |A1] = 0,
while intermediate points correspond to the domain walls separating these ordered regions.
It should be pointed out that we are considering just the modulus of the complex fields
Ay12. The coupled phase dynamics does not show synchronization, at least not in an
obvious manner, so that we are in a case of partial synchronization as considered in [155].

A quantitative measure of the synchronizing process can be given in terms of informa-
tion measures [120]. The entropy H(X) = — >, p(z) Inp(z), where p(x) is the probability
that X takes the value z, measures the randomness of a discrete random variable X. For
two random discrete variables, X and Y, with a joint probability distribution p(z,y), the
mutual information I(X,Y) = -3, p(2,y) In[p(z)p(y)/p(z,y)] gives a measure of the
statistical dependence between both variables, the mutual information being 0 if and only
if X and Y are independent. Considering the discretized values of |A;| and |A2| at space
time points as random variables X = |A;|, Y = |Az|, their mutual information is a measure
of their synchronization. In Fig. 5.3(left) we have plotted the mutual information and the
entropy of |A;| and |As| as a function of y [6]. This graph shows that the entropy of |A;]
and |As| remains constant for increasing values of vy, so that increasing v does not reduce
the uncertainty associated with the single-point distributions of A . This indicates that
synchronization is not here the result of reduced randomness due to the increase of time
and length scales observed in Fig. 5.1. However, the larger is v the larger becomes the
mutual information, approaching its maximum possible value (I = H(|A1|) = H(|A2])) as
v — 1. An additional quantitative measurement of synchronization is given by the linear
correlation coefficient p = ((| A1 || A |) — (| A1 |)(| A2 |))(var(| Ay |)var(] Ay |))~"/2, with
var(xz) the variance of x. This coefficient, plotted as a function of  in Fig. 5.3 (right),
is negative indicating that when |A;| increases, |A2| decreases, and vice versa. Our quan-
titative indicators of synchronization, I and p, approach their maximum absolute values
as 7 — 1. We also observe that the regime of coupled STI disappears for v > 1. In fact,
the generalized synchronization observed, manifested by the tendency of the space-time
signals towards the functional relation |A;|? + |A3|> = p, is probably related to the fact
that for v = 1 this is an attracting manifold for homogeneous states: Writing (5.1) in
terms of R? = |A1|? +|A2|? and x = arctan(|A;|/|Az2]), it is immediate to see that homo-
geneous solutions for v = 1 are R? = p and y arbitrary. To understand the preferences
for these solutions it is instructive to look at the transient dynamics starting from random
initial conditions (see Fig. 5.4). R(z,t) has a very fast evolution towards R = ,/p with
no regime of STT existing at any time. During this fast evolution, the phase x(z,t) covers
almost completely the range of its possible values. The late stages of the dynamics are
characterized by a spatial diffusion of the phase x(x, t) until it reaches a space-independent
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arbitrary value x(z,%) = xo. In a |A;| vs |A2| dotted plot as the ones in Fig. 5.2 this is vi-
sualized by a cloud of points quickly approaching R? = 1 and then collapsing into a single
point. Runs with different random initial conditions lead to different y,. An underlying
reason for the special dynamical behavior at v = 1 is the separation of time scales for R
and x. For v # 1, the zero wavenumber components of R and x have a nonzero driving
force and they compete dynamically but, at v = 1, x(k = 0) is a marginal variable, while
R(k = 0) is strongly driven. As a consequence, R relaxes quickly towards R? = p. Once R
becomes space-homogeneous, the different wavenumber components of A; » are decoupled
and the zero wavenumber solution wins by diffusion of x (see Fig. 5.5).

0.2
0.0k

Q’ —02F '~

Figure 5.3: Left: Entropy of |4;| (d) and |A2| (A) and their mutual information I (o) as
a function of . Right: Correlation coefficient p of |A4;| vs |A2| as a function of ~.
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are: 4 = 1, a = 0.2 and f = —2.0. The system quickly evolves into a state with
| A |2 + | Ag |>= p, later on it will eventually finish in an homogeneous state.
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In some of our simulations the STI has been observed to disappear for a coupling
smaller than v = 1, but this seems to be a consequence of finite-size effects: The size of
the laminar portions of Fig.(5.1) increases with the coupling v. When this size becomes
similar to system size, one of the stable plane waves can occupy the whole system, thus
preventing any further appearance of defects and STI. For a given initial condition, with
parameters a = 0.2 and f = —1.4, and a system size L = 512 the STI regime was seen to
disappear at v = 0.85. As soon as the system size was doubled the STI regime reappeared
again. By reducing system size to L = 256 the STI regime disappeared for smaller y. The
conclusion from this an other numerical experiments is that STI exists for all v < 1 in
the same range of parameters as it exists in the single CGLE, with time and length scales
diverging as v approaches 1, where STI disappears.
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Figure 5.5: Comparison of the states reached by the system at large time starting from
noise for v = 0.95,1.00 and 1.05. (Model parameters: p =1, « = 0.2 and § = —2.0.)
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5.4 Conclusions

In summary we have described a regime of synchronized STI dominated by the space-
time synchronization of localized structures. Synchronization is measured by a mutual
information and a correlation parameter that take their absolute maximum value at the
boundary between weak and strong coupling v = 1. Beyond this boundary (v > 1) STI
disappears but the strong, coupled system dynamics cannot be described in terms of a
single dominant amplitude.
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Chapter 6

Conclusions

When I look at the granite markers
Those tribute to finality - to eternity
And then I looked at myself here
Chicken scratching for my immortality.
Joni Mitchell, Hejira

In this thesis we have addressed different questions in the general context of the anal-
ysis of Spatio—temporal complex dynamics. The example chosen to study, the Complex
Ginzburg-Landau Equation (CGLE) is a paradigm of complex behaviour. Questions ad-
dressed include the feasibility of a description in terms of a nonequilibrium potential,
characterization of a phase transition between different states of Spatio-Temporal Chaos
(STC), control and stabilization of ordered states within a STC phase and synchronization
of STC in an extended system.

The first thing settled down in this thesis is that the complex dynamics present by this
equation is not due to the lack of a Lyapunov potential. After an extensive discussion on
the different types of dynamics the term, generally loosely used, non—potential dynamics
has been discussed. The approximate Lyapunov functional introduced by Graham and
co—workers for the CGLE has been numerically tested. Our results provide evidence that
the existence of complex spatiotemporal dynamics is not necessarily associated with the
nonexistence of a Lyapunov functional. Complex dynamics can occur within the attractors
defined by the functional. This opens the possibility to use methods of Statistical Me-
chanics based on free energy functionals. However, so far, the knowledge of the Lyapunov
potential has been of little help in characterizing phases of STC in the CGLE.

A different approach has been followed to give a description of the Phase Turbulence
regime of the CGLE. The description of the PT regime had been previously restricted
in most cases to configurations of zero winding number. We have found a much richer
behaviour considering states with non-zero winding number (wound states). This study
has allowed us to give a novel statistical characterization of the transition between Phase
Turbulence and Defect Turbulence. We have identified the PT-DT transition with the
vanishing of the range of stable winding numbers v of turbulent states. The PT-DT
transition can then be interpreted as an ergodicity—breaking transition. Our results also
suggest that the concept of a turbulent Eckhaus instability can be of interest beyond
the range of situations described by the CGLE. However, a point about which our study
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is inconclusive is the question on the existence of PT in the thermodynamic limit. The
identification of v as an order parameter leads to future investigation towards larger system
sizes as a way of resolving the question. In addition of characterizing the PT-DT transition
our numerical results reveal the coexistence of different PT attractors that, in principle
should be observed in systems for which PT and DT regimes above a Hopf bifurcation
are known to exist. These attractors have been explained in term of three basic states:
riding turbulence, frozen turbulence and quasiperiodic states. These basic states have
been justified through an analytical study on the phase equation associated to the CGLE.
Still, further work is needed to clarify the importance of the different terms in the phase
equation and the validity of a phase description.

We have also analyzed the issue of control of STC in the CGLE. The usual way to
stabilize unstable solutions in extended systems is adding feedback terms to the original
equation. Here, we show how the addition of a nonlinear complex diffusion is an appropri-
ate means to obtain stabilization. This has been demonstrated analytically and checked
numerically. In particular we have shown how traveling waves of finite wave number can
be stabilized deep in the regions of DT, PT and Spatio Temporal Intermittency (STT).

Finally we have addressed the question of synchronization of STC. For this purpose,
we have studied two coupled CGLE. We show that this model exhibits a regime of coupled
STI which disappears when crossing from weak to strong coupling regime. Synchronized
STC is observed within the weak coupling regime. This dynamical regime is dominated
by coupled localized structures with a chaotic evolution in space-time. The degree of
synchronization as a function of coupling has been characterized by mutual information
measures and correlation coefficients.

As a final remark it should be said that still a full statistical characterization of the
different regimes of the CGLE and the transition among them is lacking. In particular the
role of the localized coherent structures in the dynamics of the disordered regimes is still
an open field that deserves further study. .



Appendix A

Numerical Integration of the
CGLE

The time evolution of the complex field A(z,t) subjected to periodic boundary conditions
is obtained numerically from the integration of the CGLE in Fourier space. The method is
pseudospectral and second order accurate in time. Each Fourier mode A, evolves according
to:

O Ag(t) = —agAg(t) + By (1) (A1)

where o is (1 +ic1)g?> — 1, and @, is the amplitude of mode ¢ of the non-linear term in
the CGLE. At any time, the amplitudes ®, are calculated by taking the inverse Fourier
transform A(z,t) of Ay, computing the non-linear term in real space and then calculating
the direct Fourier transform of this term. A standard FFT subroutine is used for this
purpose [151].

Eq. (A.1) is integrated numerically in time by using a method similar to the so called
two-step method [150]. For convenience in the notation, the time step is defined here so
as the time is increased by 20t at each iteration.

When a large number of modes k is used, the linear time scales o, can take a wide
range of values. A way of circumvent this stiffness problem is to treat exactly the linear
terms by using the formal solution:

t
A, () = et <Aq(t0)e°‘qt° + @q(s)eo‘qsds> . (A2)
0
From here the following relationship is found:
Ag(t+0t) Ayt —8t) _ o / brot
t

e—0qt e0q bt st

D, (s)e*’ds . (A.3)

The Taylor expansion of of ®,(s) around s = t for small §¢ gives an expression for the
r.hs. of Eq. (A.3):
eQal0t _ o—agit
B, (t) ———— + O(6t%). (A.4)
Qq
Substituting this result in (A.3) we get:

1 — e—20aq0t

Agfn+1)=e 2%%4 (n—1) + ®,(n) + O(5t%) . (A.5)

Qg
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where expressions of the form f(n) are shortcuts for f(¢ = ndt). Expression (A.5) is the
so called ”slaved leap frog” of Frisch et al.[66]. To use this scheme the values of the field
at the first two time steps are required. Nevertheless, this scheme alone is unstable for the
CGLE. This is not explicitly stated in the literature and probably a corrective algorithm
is also applied. To obtain such correction it is straightforward, by following steps similar
to the ones before, to derive the auxiliary expression

1 — e~ Qqlt

Ay(n) = e %A (n — 1) + ®,(n—1) +O(5t%), (A.6)

Qg
The numerical method we use, which we will refer to as the two—step method, provides
the time evolution of the field from a given initial condition by using Egs. (A.5) and (A.6)
as follows:

1. ®4(n —1) is calculated from A,(n — 1) by going to real space.

2. Eq. (A.6) is used to obtain an approximation to Ag(n).

3. The non-linear term ®,(n) is now calculated from this A,(n) by going to real space.
4. The field at step n + 1 is calculated A.5 by using A,(n — 1) and ®4(n).

At each iteration, we get A,(n+1) from A,(n—1), and the time advances by 26t. Note that
the total error is O(6t3), despite the error in intermediate value obtained with Eq. (A.6) is
O(6t?). The method can be easily made exact for plane waves (3.2) of wavenumber k (and
then more precise for solutions close to this plane wave) simply by replacing the nonlinear
term @, in (A.1) by &, + (1 +ic2)(1 — k?)A,, and taking away the corresponding term
from «,;. We have not implemented this improvement because we were mostly interested
in solutions changing its winding number, so that they are not close to the same plane
wave all the time.

The number of Fourier modes depends on the space discretization. We have used
dr = 1 and usually N = 512. The numerical method has been checked by integrating
plane-wave solutions. The amplitude and frequency of the field obtained numerically will
differ slightly from the exact amplitude and frequency, not only due to round-off errors,
but also due to the fact that the method is approximate. The method has been tested
by using a stationary unstable plane wave of wave number k as initial condition. The
numerical round-off errors will eventually move the solution away from the plane—wave
unstable state. To be precise, in a typical run with ¢; = —1.0 and ¢ = 2.4, with dt = 0.01
and kg = 0.123, the amplitude was kept constant to the fifth decimal digit during ~ 8000
iterations. In comparison, when a gaussian noise with an amplitude as small as 1077 is
added to the plane wave, the modulus is maintained equal to its steady value (up to the
fifth decimal) during 1500 iterations. The frequency w, determined numerically by using
dt = 0.01 fits the exact value up to the fourth decimal digit.

The integration method introduced here has also been used in the case of the Vectorial
CGLEI17, 16].



Appendix B

Analytical solutions of the CCGLE

A systematic derivation of solutions of the CGLE has not been achieved yet. Only a
partial success was obtained (see section 1.3.3) deriving a particular set of solutions as
the Bekki-Nozaki family solutions with the Painlevé method[49]. This method (or the
Hirota’s method used by Bekki and Nozaki themselves) proves to be of little help when
applied to a simple generalization of the CGLE such as two coupled CGLE (CCGLE).

In this appendix I will show how it is possible to construct localized solutions for the
CCGLE using as a starting point the solutions of the CGLE. The algebra is very simple
and I will show only the main steps for the derivation of the results.

The starting point is the CCGLE presented in chater 5,

QA2 = A1s+ 02412 — i (| Aig 2 +v| As |2) Ao, (B.1)
where ag = (1 +ia) and ay = (1 + i) . We look for solutions of the form:
Ai(z,t) = @) Ay (z, 1) (B.2)

Substituting (B.2) in equation (B.1) I reduce the two original coupled p.d.e. to another set
of equation for ¢ and As. This set of p.d.e. corresponds to the conditions that ¢ and A,
have to fulfill in order to have a solution of the form (B.2). The condition is

{op — aoliode - (99)*] }As = 2icn 0,00, A (B.3)
OhAs = As+apdiAs —ar (1+7) | Az |* Ay, (B.4)

It should be noted that the condition for A (B.4) is the usual CGLE,
8tA2 = A2 + bagAg —C | A2 |2 A2 ; (B5)

where b =1 + i and ¢ = (1 +7) +i(1 +7)8 .

This means that the solutions of this CGLE (B.5) are solutions of the original equation
(B.1) with Ay of the form given by (B.2) and ¢ any real solution of (B.3).

Now we search for simple particular cases of the equation (B.3). The first simple case
is assumming that ¢ only depends on time ¢(z,t) = ¢(t). For this simple case, it is
straightforward to demonstrated that the only possible solution of this form is ¢(t) = ¢ =
constant.
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Although being a simple case, it is an important case. The result is that any solution
As of the CGLE (B.5) is also solution of the CCGLE (B.1) with A; = ¢/¥ A5 and ¢ a real
constant. Thus all the localized solution,moving fronts, pulses, B-N solutions, found for
the CGLE (displayed in 1.3.3) are also solution of the CCGLE.

More complicated cases could be analized. Preliminary work indicates that there are
no other simple cases that fulfill all the conditions[7].
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plates where the temperatures are maintained constant. His boundary conditions
were that the vertical velocity component w and the temperature disturbance 6
had to vanish at the top and bottom plates. In modern terminology that means
that both boundaries were considered free surfaces and perfect thermal conductors.
However, by choosing a free boundary condition Rayleigh had, unknowingly, lost
connection with Bénard’s experiment because they were affected, in a crucial way,
by surface tractions originating from surface tension gradients. Also Rayleigh’s work
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Simply stated Shil’'nikov theory establishes that in a three dimensional dynami-
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