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Determination of Phase Noise Spectra
in Optoelectronic Microwave Oscillators:

a Langevin Approach
Yanne Kouomou Chembo, Kirill Volyanskiy, Laurent Larger, Enrico Rubiola and Pere Colet

Abstract— We introduce a stochastic model for the determi-
nation of phase noise in optoelectronic oscillators. After a short
overview of the main results for the phase diffusion approach
in autonomous oscillators, an extension is proposed for the case
of optoelectronic oscillators where the microwave is a limit-cycle
originated from a bifurcation induced by nonlinearity and time-
delay. This Langevin approach based on stochastic calculus is
also successfully confronted with experimental measurements.

Index Terms— Optoelectronic oscillators, phase noise, mi-
crowaves, semiconductor lasers, stochastic analysis.

I. INTRODUCTION

O PTOELECTRONIC oscillators (OEOs) combine a non-
linear modulation of laser light with optical storage to

generate ultra-pure microwaves for lightwave telecommunica-
tion and radar applications [1], [2]. Their principal specificity
is their extremely low phase noise, which can be as low as
−160 dBrad2/Hz at 10 kHz from a 10 GHz carrier. Despite
some interesting preliminary investigations, the theoretical
determination of phase noise in OEOs is still a partially
unsolved problem. The qualitative features of this phase noise
spectrum can be recovered using some heuristical guidelines
or rough approximations, but however, a rigorous theoretical
background is still lacking.

There are several reasons which can explain that absence of
theoretical background. A first reason is that before refs. [3],
there was no time domain model to describe such systems,
so that stochastic analysis could not be used to perform the
phase noise study. Moreover, unlike most of oscillators, the
OEO is a delay-line oscillator, and very few had been done
to study the effect phase noise on time-delay induced limit-
cycles. Finally, the OEO is subjected to multiple noise sources,
which are sometimes non-white, like the flicker (also referred
to as “1/f”) noise which is predominant around the microwave
carrier.

The objective of this work is to propose a theoretical study
where all these features are taken into account. The plan of
the article is the following. In Section II, we present the
phase diffusion approach in autonomous systems. It is a brief
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review where the fundamental concepts of phase diffusion are
recalled, and where some important earlier contributions are
highlighted. Then, we derive in Section III a stochastic delay-
differential equation for the phase noise study. We show that
for our purpose, the global interaction of noise with the system
can be decomposed into two contributions, namely an additive
and a multiplicative noise contribution. Section IV is devoted
to the study of the noise spectrum below threshold. It will
appear that the spectrum below threshold will not only be
important to validate the stochastic model, but also that it
enables an accurate calibration of additive noise. In Section
V, we address the problem of phase noise when there is a
microwave output using Fourier analysis, and we show that
it is possible to have an accurate image of the phase noise
spectrum in all frequency ranges. The last section concludes
the article.

II. THE PHASE DIFFUSION APPROACH IN AUTONOMOUS
OSCILLATORS

A. Fundamental concepts

For an ideal (noise-free) oscillator, the Fourier spectrum
is a collection of Dirac peaks, standing for the fundamental
frequency and its harmonics. The effect of amplitude white
noise is to add a flat background, while the peaks do keep
their zero linewidth; it is the effect of phase noise to widen
the linewidth of these peaks.

Some pioneering papers on the topic of phase noise in
autonomous oscillators using stochastic calculus had been
published forty years ago [4]. In particular, it was demon-
strated that a general framework to study the problem of
phase noise in a self-sustained oscillator could be built using
some minimalist assumptions. The first point is that a strong
nonlinearity is an essential necessity in oscillators, in the
sense that nonlinearity can not be regarded as small because
it controls the operating level of the oscillator. The second
important point is that the phase is only neutrally stable, so
that quasilinear methods which assume that fluctuations from
some operating point are small (linearization techniques) can
not be applied directly.

The phase is neutrally stable as a consequence of the phase-
invariance of autonomous oscillators. In other words, limit-
cycles are stable against amplitude perturbations, while there
is no mechanism able to stabilize the phase to a given value:
hence, phase perturbations are undamped, but they do not
diverge exponentially, though. In a noise free oscillator, the
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Fig. 1. Experimental set-up.

“stroboscopic” state point on the limit-cycle is immobile, but
in the presence of noise, it moves randomly along the limit-
cycle: in other words, the phase of the oscillator undergoes
a diffusion process, in all points similar to a one-dimensional
Brownian motion. In the most simple case, the random fluctu-
ations of the phase are referred to as a Wiener process, obeying
an equation of the kind ϕ̇ = ξ(t), where ξ is a Gaussian white
noise with autocorrelation 〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′), while
D is a parameter referred to as the diffusion constant. It can
be demonstrated that the phase variance diverges linearly as〈
ϕ2(t)

〉
= 2Dt, and the single-side band phase noise spectrum

(in dBc/Hz) explicitly reads L(ω) = 2D/[D2 + ω2], so that
D is the unique parameter characterizing all the statistical and
spectral features of phase fluctuations.

B. The unifying theory of Demir, Mehrota and Roychowdhury

On the base of earlier works by Lax [4] and Kärtner
[5], Demir, Mehrota and Roychowdhury have proposed few
years ago a unifying theory of phase noise in self-sustained
oscillators subjected to white noise sources [6]. Their ap-
proach, which had later been extended by Demir to the case
colored noise sources [7], relies on stochastic calculus. The
principal point of their contribution was the introduction of
a decomposition of phase and amplitude noise through a
projection onto the periodic time-varying eigenvectors (the so
called Floquet eigenvectors; also see ref. [8]), and they proved
that it provides the correct solution to the problem.

Demir et al have shown that if the sources of noise are
Gaussian and white, the phase noise around the fundamental
peak (and its harmonics) has a Lorentzian lineshape, and there-
fore is fully determined by an “effective” diffusion constant
Deff which is the unique parameter needed for the phase
noise determination. However, if the Demir et al theory has the
great and essential advantage of mathematical rigorousness, its
principal drawback is that exactitude is obtained at the expense
of simplicity: the calculation of Deff is very complex, as
it requires an accurate determination of all the time-varying
eigenvectors related to the autonomous flow. In general this
task can only be performed numerically using quite compli-
cated algorithms, and this lack of flexibility explains why this
method is scarcely used in the phase noise studies available
in the literature. The key challenge for the study of phase
noise in OEO would be provide an accurate description of
the phase noise spectrum, while avoiding the determination of

Floquet eigenvectors, which is an extremely complicated task
in delayed system.

III. APPLICATION OF THE PHASE DIFFUSION APPROACH TO
OEOS: STOCHASTIC DELAY-DIFFERENTIAL EQUATIONS

The OEO under study is organized in a single-loop archi-
tecture as depicted in Fig. 1. The oscillation loop consists
of: (i) A wideband integrated optics LiNbO3 Mach-Zehnder
(MZ) modulator, seeded by a continuous-wave semiconductor
laser of optical power P ; the modulator is characterized by a
half-wave voltage Vπ = 4 V. (ii) A thermalized 4 km fiber
performing a time delay of T = 20 µ on the microwave
signal carried by the optical beam; the corresponding free
spectral range is ΩT /2π = 1/T = 50 kHz. (iii) A fast
photodiode with a conversion factor S. (iv) A narrow band
microwave radio-frequency (RF) filter, of central frequency
F0 = Ω0/2π = 10 GHz, and −3 dB bandwidth of ∆F =
∆Ω/2π = 50 MHz; (v) A microwave amplifier with gain G.
(vi) A variable attenuator, in order to scan the gain. (vii) All
optical and electrical losses are gathered in a single attenuation
factor κ.

The dynamics of the microwave oscillation can therefore
be described in terms of the dimensionless variable x(t) =
πV (t)/2Vπ whose dynamics obeys [3]

x+ τ
dx

dt
+

1
θ

∫ t

t0

x(s)ds = β cos2[x(t− T ) + φ] , (1)

where β = πκSGP/2Vπ is the normalized loop gain, φ =
πVB/2Vπ is the Mach-Zehnder offset phase, while τ = 1/∆Ω
and θ = ∆Ω/Ω2

0 are the characteristic timescale parameters
of the bandpass filter. Since we are interested by single-
mode microwave oscillations, the solution of Eq. (1) can be
expressed under the form

x(t) =
1
2
A(t) eiΩ0t +

1
2
A∗(t) e−iΩ0t , (2)

where A(t) = A(t) exp[iψ(t)] is the slowly varying amplitude
of the microwave x(t). We can significantly simplify the right-
hand side term of Eq. (1) because the cosine of a sinusoidal
function of frequency Ω0 can be Fourier-expanded in har-
monics of Ω0. In other words, since x(t) is nearly sinusoidal
around Ω0, then the Fourier spectrum of cos2[x(t − T ) + φ]
will be sharply distributed around the harmonics of Ω0 using
the relationship cos2 z = [1 + cos 2z]/2 and the Jacobi-Anger
expansion

eiz cosα =
+∞∑

n=−∞
inJn(z)einα , (3)

where Jn is the n-th order Bessel function of the first kind.
Hence, since the filter of the feedback loop is narrowly
resonant around Ω0, it can be demonstrated that discarding all
the spectral components of the signal except the fundamental
is an excellent approximation, so that Eq. (1) can be rewritten
as

x+
1

∆Ω
dx

dt
+

Ω2
0

∆Ω

∫ t

t0

x(s)ds = −β sin 2φ

×J1[2|A(t− T )|] cos[Ω0(t− T ) + ψ(t− T )] . (4)
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In order to include noise effects in this equation, we will
consider two main noise contributions in this system.

The first contribution is an additive noise, corresponding
to random environmental and internal fluctuations which are
uncorrelated from the eventual existence of a microwave
signal. The effect of this noise can be accounted for by addition
as a Langevin forcing term, to be added in the right-hand side
of Eq. (4). This additive noise can be assumed to be spectrally
white, and since we are interested by its intensity around the
carrier frequency Ω0, it can be explicitly written as

ξa(t) =
1
2
ζa(t)eiΩ0t +

1
2
ζ∗a(t)e−iΩ0t , (5)

where ζa(t) is a complex Gaussian white noise, whose correla-
tion is 〈ζa(t)ζ∗a(t′)〉 = 4Daδ(t− t′), so that the corresponding
power density spectrum is |ξ̃a(ω)|2 = 2Da.

The second contribution is a multiplicative noise due to a
noisy loop gain. Effectively, the normalized gain parameter
explicitly reads

γ = β sin 2φ =
π

2
κSGP

VπRF

sin
[
π

VB
VπDC

]
. (6)

If all the parameters of the system are noisy (i.e., we replace
κ by κ+ δκ(t), S by S+ δS(t), etc.), then the gain γ may be
replaced in Eq. (4) by γ+δγ(t), where the δγ(t) is the overall
gain fluctuation. We therefore introduce the dimensionless
multiplicative noise

ηm(t) =
δγ(t)
γ

, (7)

which is in fact the relative gain fluctuation. In the OEO
configuration, we have ηm(t) � 1. This noise is in general
spectrally complex, as it is the sum of noise contributions
which are very different (noise from the photodetector, from
the amplifier, etc.). In agreement with the usual noise spectrum
of amplifiers and photodetectors, we will here consider that
this multiplicative noise is flicker (i.e., varies as 1/f ) near the
carrier, and white above a certain knee-value. We therefore
assume the following empirical noise power density

|η̃m(ω)|2 = 2Dm

[
1 +

ΩH
ω + ΩL

]
, (8)

where ΩL is the low corner frequency of the flicker noise,
while ΩH is the high corner frequency. More precisely,
we consider that the noise is white below ΩL and above
ΩH , while it remains flicker in between. Typically, we may
consider ΩL/2π < 1 Hz and ΩH/2π > 10 kHz, so that the
flicker noise is extended over a frequency span of more than
4 orders of magnitude.

To avoid the integral term of Eq. (4) which is complicated
to manage analytically, it is mathematically convenient to use
the intermediate integral variable

u(t) =
∫ t

t0

x(s) ds =
1
2
B(t) eiΩ0t +

1
2
B∗(t) e−iΩ0t , (9)

which is also nearly sinusoidal with a zero mean value. Using
Eqs. (4), (5) and (7), it can be shown that the slowly-varying

amplitude B(t) obeys the stochastic equation

{B̈ + (∆Ω + 2iΩ0)Ḃ + iΩ0 ∆ΩB}eiΩ0t + c.c.

= −2∆Ωγ [1 + ηm(t)]
[

1
2
eiΩ0(t−T )eiψT + c.c.

]
×J1[2|ḂT + iΩ0BT |] + 2∆Ω

[
1
2
ζa(t)eiΩ0t + c.c.

]
,

(10)

where c.c. stands for the complex conjugate of the preceding
term. We can assume |B̈| � ∆Ω|Ḃ| and |Ḃ| � Ω0|B|; the
relationship x(t) = u̇(t) therefore gives A ' iΩ0B, so that
we can finally derive from Eq. (10) the following stochastic
equation for the slowly varying envelope A(t)

Ȧ = −µeiϑA+ 2γµeiϑ [1 + ηm(t)] Jc1[2|AT |]AT
+µeiϑζa(t) , (11)

where Jc1(x) = J1(x)/x is the first order Bessel cardinal
function of the first kind. The phase condition has been set to
e−iΩ0T = −1, so that the dynamics of interest is restricted to
the case γ ≥ 0. The key parameters of this equation are

µ =
∆Ω/2√

1 + (1/2Q)2
and ϑ = arctan

[
1

2Q

]
, (12)

where Q = Ω0/∆Ω = 200 is the quality factor of the RF
filter. Since Q� 1, we may simply consider that µ ' ∆Ω/2
and ϑ ' 1/2Q. The complex term µeiϑ is a kind of “filter
operator”, which can be simply equated to the half-bandwidth
∆Ω/2 when the Q-factor of the filter is sufficiently high,
as it was done in ref. [3]. It is also noteworthy that in the
complex amplitude equation (11), the initial multiplicative
noise remains a real variable, while the additive noise becomes
complex.

We had recently shown, in agreement with the experiment,
that the OEO has three fundamental regimes [3]. For γ < 1,
the system does not oscillate and the trivial fixed point is
stable; for 1 ≤ γ < 2.31, the system sustains a pure microwave
oscillation, with a constant amplitude and frequency; and at
last, for γ ≥ 2.31, the system enters into a regime where
the amplitude of the microwave is unstable, and turns to be
nonlinearly modulated. We can consider that this phenomenol-
ogy is still correct as long as Q � 1. With the aid of
the stochastic delay-differential equation ruling the dynamics
of A, we may now derive analytically the power spectrum
density of the oscillator, below and above threshold. However,
it should be stressed that in all cases, stochastic variables
should be manipulated with respect to the rules of stochastic
calculus when an integral/differential transformation is applied
to them.

IV. NOISE POWER DENSITY SPECTRUM BELOW
THRESHOLD (γ < 1)

In general, no interest is paid to the study of the noise
power density spectrum below threshold in OEOs. This lack of
interest can be explained by the fact that there is no oscillation
in this regime, and the system randomly fluctuates around the
trivial equilibrium. However, as we will further see, this regime
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is particularly interesting because it enables to understand how
the noise interacts with the system.

From the stability theory of delay-differential equations with
complex coefficients, the deterministic solution of Eq. (11)
below threshold is the trivial fixed point A = 0. After
linearization around this solution, Eq. (11) can simply be
rewritten as

Ȧ = −µeiϑA+ γµeiϑAT + µeiϑζa(t) , (13)

where we have used Jc1(0) = 1/2. This equation indicates
that the multiplicative noise has no significative influence
below threshold, because the product ηmAT is a second-order
term. Therefore, the noise power below threshold is essentially
determined by additive noise.

Equation (13) is linear with constant coefficients: hence, the
power density spectrum can directly be obtained as

|Ã(ω)|2 =
4µ2Da

|iωe−iϑ + µ(1− γe−iωT )|2
. (14)

One can determine the total output power below threshold
due to the white noise fluctuations in the system through the
formula

Pγ =
(

2Vπ
π

)2 〈|A(t)|2
〉

2R
, (15)

where R is the output impedance (in our case, R = 50 Ω).
The dimensionless power

〈
|A(t)|2

〉
can not be calculated

analytically for γ 6= 0: it can nevertheless be determined either
by numerical simulation of Eq. (13), or through a numerical
computation of the integral 1

2π

∫ +∞
−∞ |Ã(ω)|2 dω, where Ã(ω)

is given by Eq. (14).
However, in the open-loop configuration (γ = 0), the noisy

output power can be analytically determined as

P0 =
4V 2

π

πR
∆F Da , (16)

through the use the Fourier integral, or using fundamental re-
sults from stochastic calculus since Eq. (13) degenerates to the
well-known Orstein-Uhlenbeck equation. Therefore, knowing
the bandwidth ∆F of the RF filter and the half-wave voltage
Vπ of the MZ interferometer, an open-loop measurement of
the output power can directly give an experimental a value for
the white noise power density Da through Eq. (16).

In our system, we have experimentally measured P0 =
20.0 nW (or −47 dBm), which corresponds to Da = 9.8 ×
10−16 rad2/Hz. This value for the power can also be obtained
by other means [see Appendix A]. The curve displaying
the power variation as a function of the normalized gain
under threshold is shown in Fig. 2, and there is an excellent
agreement between the experimental data and our analytical
formula of Eq. (15). It may be interesting to note that the noise
power apparently diverges at γ = 1. In fact, one should not
forget that this result is obtained using Eq. (13), which is only
valid for |A| � 1. When γ → 1, the amplitude of A increases
and the higher order terms of the Bessel cardinal function are
not negligible anymore, so that the Eqs. (13) and (14) are no
more valid. Hence, divergence of the noise power is prevented
by the nonlinear terms of Eq. (11) which become predominant

Fig. 2. Variation of the RF noise output power Pγ as a function of the
normalized gain, under threshold. The solid line is the theoretical prediction
of Eq. (15) with Da = 9.8× 10−16 rad2/Hz, and the symbols represent the
experimentally measured data. The gain was varied through attenuation in the
electric branch of the loop.

in a very narrow range just below the threshold. A noteworthy
study on this topic of noisy oscillators near threshold is ref.
[10].

It is also noteworthy that for γ = 0, the noise spectrum
follows the spectral shape of the RF filter. However, when γ
is increased (still below threshold), a first qualitative difference
emerges, since the spectrum still follows the spectral shape of
the filter, but its fine structure is composed by a collection of
peaks which are the signature of microwave ring-cavity modes,
as it can be seen in Figs. 3 and 4.

V. PHASE NOISE SPECTRUM ABOVE THRESHOLD (γ > 1)

Above threshold, the amplitude of the microwave obeys the
nonlinear algebraic equation Jc1[2|A0|] = 1/(2γ). Linearizing
Eq. (11) around this solution yields the following equation

Ȧ = −µeiϑA+ µeiϑ [1 + ηm(t)] AT + µeiϑζa(t) . (17)

We should now look for an equation for the phase ψ in order
to find its power density spectrum |Ψ(ω)|2.

Using the Itô rules of stochastic calculus [see Appendix B],
we derive the following time-domain equation for the phase
dynamics

ψ̇ = −µ(ψ − ψT ) +
µ

2Q
ηm(t) +

µ

|A0|
ξa,ψ(t) , (18)

where ξa,ψ(t) is a real Gaussian white noise of correlation
〈ξa,ψ(t)ξa,ψ(t′)〉 = 2Daδ(t− t′) (same variance as ξa(t)). We
can use Eq. (18) to obtain the Fourier spectrum Ψ(ω) of the
phase ψ(t), and then its power density spectrum following

|Ψ(ω)|2 =

∣∣∣∣∣µ (2Q)−1 η̃m(ω) + |A0|−1 ξ̃a,ψ(ω)
iω + µ[1− e−iωT ]

∣∣∣∣∣
2

. (19)

Note that here, the influence of gain on phase noise spectrum is
not explicit anymore: it is implicitly contained in |A0|. Figure
5 displays the phase noise spectrum explicitly expressed by
Eq. (19), and we can now analyze how the spectrum behaves
according to the various frequency ranges.
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Fig. 3. Theoretical power density spectrum |Ã(f)|2 of the microwave noise
signal below threshold, with Da = 9.8×10−16 rad2/Hz and γ = 0.8, using
Eq. (14). The semi-logarithmic scale is adopted because it enables to see at
the same time the fine structure of regularly spaced ring-cavity peaks, and the
global variation shaped by the RF filter bandwidth. This spectrum is divided
into two areas: a quasi-flat area within bandwidth, and a −20 dB/dec decrease
outside the bandwidth.

A. Phase noise close to the carrier (ω < ΩH )

Here, we consider the spectrum for frequencies which are
relatively close to the carrier (with ω > ΩL, however).
Qualitatively, this corresponds to the frequencies that are much
smaller than the high corner value ΩH of the multiplicative
flicker noise. In this region, flicker noise is stronger than white
noise, so that |η̃m(ω)|/2Q � |ξ̃a,ψ(ω)|. On the other hand,
we can also consider that 1−e−iωT ' iωT . Therefore, taking
into account the fact that µT � 1, Eq. (19) can be simplified
into

|Ψclose(ω)|2 ∼ |η̃m(ω)|2

4Q2T 2

1
ω2
' ΩHDm

2Q2T 2

1
ω3

. (20)

Some remarks can be made at this stage. First, The Lesson
effect is here very explicit: the phase noise spectrum decreases
as f−3 due to the f−1 flicker noise [9]. Secondly, The phase
noise is inversely proportional to Q2. Thirdly, the phase noise
is practically independent of the microwave amplitude |A0|, as
long as multiplicative noise is stronger than additive noise near
the carrier. Finally, the phase noise decreases as T−2, therefore
justifying the need for very long delay-lines to reduce phase
noise close to the carrier. This dependence was also recovered
analytically by Yao and Maleki, using another theoretical
approach [1]. Hence, in first approximation there are three
ways to reduce phase noise close to the carrier: reduce the
power Dm of the flicker noise, increase the delay T or increase
the Q factor of the RF filter.

B. Phase noise in the spurious peaks range (ΩH < ω � µ)

The frequencies of concern are here those which are well
within the bandwidth, but not too close from the carrier.
This range typically lies between 50 kHz and few MHz, and
contains the parasite ring-cavity peaks. It is also an area where
the multiplicative and additive noises are both white [in the
sense that in that range, |η̃m(ω)|2 and |ξ̃a,ψ(ω)|2 are both
constant].

The local minima of the spectrum in that area are obtained
for e−iωT = −1, so that the floor of the phase noise after the

Fig. 4. An experimental power density spectra of the microwave noise
below threshold. The spectrum has been scaled to its maximum (reference
at ∼ 0 dB). (a) Spectrum in a 200 MHz window, showing how the noisy
power density is profiled by the RF filter. (b) Zoom-in with near the 10 GHz
central frequency in a 500 kHz window, showing the noisy ring-cavity peaks.

flicker decrease is

|Ψfloor|2 '
1
4

[√
2Dm

2Q
+
√

2Da

|A0|

]2

∼ 1
2
Da

|A0|2
(21)

when Q is sufficiently high. This level is 6 dB below the
additive white noise power density scaled to the power of the
microwave. The recipe for a low phase noise floor is then quite
simple, and also quite conventional: low additive noise Da,
and high power |A0|2 for the microwave signal. The bandwidth
does not play any role in this case, as long as the multiplicative
noise is not too strong.

The spurious peaks are localized around integer multiples
of the round-trip frequency ΩT /2π = 1/T = 50 kHz. More
precisely, a fourth order Taylor expansion of the denominator
of Eq. (19) shows that around these resonance frequencies, the
phase noise can be expressed as

|Ψ(nΩT + δω)|2 = (22)

µ2
∣∣∣(2Q)−1 η̃m(ω) + |A0|−1 ξ̃a,ψ(ω)

∣∣∣2
(nΩT + µTδω)2 − 1

3nΩTµT 3δω3 − 1
12µ

2T 4δω4
.

By finding the minima of this Taylor-expanded denominator,
it can be shown that the spurious peaks are in fact frequency-
shifted according to

fn =
n

T
− 1
π

n

∆F T 2
= n× 50 kHz− n× 16 Hz . (23)

Then, their height relatively to the phase noise floor can also
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Fig. 5. A theoretical phase noise spectrum above threshold in a 500 MHz
window, with Da = 9.8 × 10−16 rad2/Hz, Dm = 5 × 10−11 rad2/Hz,
ΩH = 100 kHz and ΩL = 1 Hz. The dimensionless amplitude of the
microwave oscillation is |A0| = 0.41, corresponding to a power of 10.5 dBm.

be calculated as

∆|Ψn|2dB = 10 log
[

∆F T
n

]4

= 120 dB− 40 log n . (24)

It appears that the level of the spurious peaks increases with
the RF bandwidth and with the delay: therefore, a large delay
may lead to a lower phase noise near the carrier [see Eq. (20)],
but it also leads to a higher level for the spurious peaks, so that
an optimal trade-off has to be found. It is also noteworthy that
this level is independent of the power densities Da or Dm. In
our case, the height of the first spurious peak relatively to the
floor is theoretically equal to 120 dB, in excellent agreement
with the experimental results of Fig. 6, where a height of
119.5 dB has been measured. It can also be shown from
Eq. (22) that the -3 dB bandwidth of the spurious peaks is

∆fn =
2
π

n2

∆F 2T 3
= n2 × 32 mHz , (25)

an extremely small value which is experimentally confirmed
with the results of Fig. 6b. In comparison, these spurious peaks
typically have a linewidth higher than 1 kHz below threshold
(see Fig. 3), but their linewidths sharply narrow as γ → 1.

C. Phase noise outside the bandwidth (ω > µ)

Here, the term µ[1 − e−iωT ] progressively becomes negli-
gible as ω is increasing, so that the ring-cavity peaks excited
by white noise become strongly damped (for being outside the
RF bandwidth). In this case, the phase noise decays as

|Ψout(ω)|2 ' 2Daµ
2

|A0|2
1
ω2
' ∆F 2Da

2|A0|2
1
ω2

. (26)

However, the phase noise does not decrease monotonically as
f−2 up to infinity: in fact, for ω � µ, there is a second phase
noise floor induced by the coupling between phase fluctuations
and amplitude fluctuations (second-order effect, see ref. [4]).

VI. CONCLUSION

This article has presented a theoretical study of phase noise
in OEOs. Our approach has consisted in a Langevin formalism,
that is, in adding noise sources to a core deterministic model

Fig. 6. a) Experimental phase noise spectrum in a 100 kHz window,
showing a noise floor around −145 dBrad2/Hz for a microwave power of
P = 10.5 dBm. b) Enlargement of the spectrum around the first spurious
peak at the frequency f1 = 50594.35 kHz. The maximum of this spurious
peak is at −25.5 dBrad2/Hz [height of the peak: −119.5 dB], and its −3 dB
bandwidth is around 40 mHz. All these experimental data are in excellent
agreement with the theory. Note that the height of the peak in Fig. a) is not
indicative because of insufficient resolution. Also note that the peak at 50 Hz
is a parasite peak originating from the electric mains supply.

for the microwave dynamics. We have found a excellent
agreement between the main predictions of the model and the
experimental results. There is also an good agreement between
this theory and the results that are known from the literature,
or from our earlier works.

The main advantage of this approach is that it enables within
the same framework to understand the behavior of the system
under and above threshold, as the same model continuously
accounts for all the observed features independently of the
value of the gain. However, we have not taken into account
in this first model the noise generated by the filter (noisy µ
and ϑ), and the delay time (noisy T ). Fluctuations associated
to these parameters may induce interesting stochastic features,
that will be adressed in future work. Another line of investi-
gation is to achieve a better spectral and statistical fitting of
the multiplicative noise ηm(t), which is an essential variable
for the determination of phase noise spectra. Future work
will also emphasize on phase noise reduction methods, such
as optical filtering, multiple-loop architectures, or quadratic
crossed nonlinearities [11].

APPENDIX

A. Determination of the output noise power for γ = 0

In the open-loop configuration, the total output power can
also be obtained using some quantum electronics formulas.
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Effectively, the output power can be explicitly expressed as

P0 =
1
2

[FkT0 + 2eIphReq]G∆F , (27)

where G is the total gain of our two cascaded amplifiers (22.5
and 22.3 dB at 10 GHz), F = 6 dB is the noise figure of the
first amplifier, T0 = 295 K is the room temperature, k is the
Boltzmann constant, e is the electron charge, Iph = 1.2 mA
is the photodiode current, Req = 25 Ω is the equivalent
load impedance for the photodiode, and ∆F = 50 MHz
is the bandwidth of the RF filter. The formula gives P0 =
19.6 nW, while we have measured 20.0 nW. The combination
of Eqs. (16) and (27) also gives a method to determine Da

directly from the specifications of the various optoelectronic
components used in the oscillation loop.

B. Derivation of the stochastic phase equation

We use Itô chain rules to derive the stochastic differential
equation for the phase. We first rewrite Eq. (17) under the
differential form

dA = −µeiϑAdt+ µeiϑ[1 + ηm(t)]AT dt+ µeiϑ dWa , (28)

where dWa(t) = dWa,r(t)+idWa,i(t) is a differential Wiener
process. Note that 〈dWa,r〉 = 〈dWa,i〉 = 0 and

〈
(dWa,r)2

〉
=〈

(dWa,i)2
〉

= 2Dadt . The fact that dW ∼ O(
√
dt) explains

why the differential terms of second order should be taken
into account in stochastic calculus, so that usual differentiation
and chain rules do not generally apply. When considering
the second order one may consider (dWa)2 ≈

〈
(dWa)2

〉
=

2Dadt, and discard higher order terms since
〈
(dWa)k+2

〉
≈

O[(dt)k]� dt for k > 0.
We set A(t) =

√
P(t) eiψ(t) = eρ(t)+iψ(t), where ρ =

1
2 lnP is an auxiliary variable. At order dt, we have

dρ+ idψ = d lnA =
dA
A
− 1

2

[
dA
A

]2

= −µeiϑ dt+ µeiϑ[1 + ηm(t)]
AT
A

dt

+
µeiϑ

A
dWa , (29)

where we have considered (dWa)2 ≈
〈
(dWa)2

〉
= 0.

Assuming second order fluctuations for the amplitude (that
is, |AT | ' |A|), we are led to

dψ = −µ sinϑ dt+ µ[1 + ηm(t)] sin[ϑ+ ψT − ψ] dt

+
µ

|A0|
dWa,ψ , (30)

where dWa,ψ = dWa,r sinϑ+ dWa,i cosϑ is a real Gaussian
white noise with zero mean and variance

〈
(dWa,ψ)2

〉
=

2Dadt. Since |ψ−ψT | � ϑ� 1, we have sin[ϑ+ψT −ψ] '
ϑ− (ψ − ψT ) so that finally,

ψ̇ = −µ(ψ − ψT ) +
µ

2Q
ηm(t) +

µ

|A0|
ξa,ψ(t) . (31)

This result is also the one we may have recovered through the
usual rules of differential calculus (however, note that it is not
so for the equation ruling the power variable P). Also note
that this equation is valid only as long as the approximation
of neglecting B̈ in Eq. (10) is valid.

Fig. 7. Oscillator phase noise transfer function (with s ≡ jf ).

C. An alternative paradigm for phase noise analysis

It is possible to gain a different physical insight into the
phase noise problem in OEOs, using an alternative methodol-
ogy related to the conventional theory of feedback oscillators.
We hereafter briefly sketch the main lines of this heuristical
approach.

The oscillator consists of an amplifier of gain A (constant)
and of a feedback path of transfer function β(jf) in closed
loop. The function β(jf) selects the oscillation frequency,
while the gain A compensates for the feedback loss. This
general model is independent of the nature of the amplifier
and of the frequency selector. We assume that the Barkhausen
condition |Aβ(jf)| = 1 for stationary oscillation is verified at
the carrier frequency f0 by through a gain-control mechanism.
Under this hypothesis, the phase noise is modeled by the
scheme shown in Fig. 7, in which all signals are the phases
of the oscillator loop [9]. The main reason for describing
the oscillator in this way is that we get rid of the non-
linearity, pushing it in the loop-gain stabilization. The ideal
amplifier ”repeats” the phase of the input, for it has a gain
of 1 (exact) in the phase-noise model. The real amplifier
introduces the random phase ψ(t) ↔ Ψ(jf) in the loop. In
this representation, the phase noise is always additive noise,
regardless of the physical mechanism involved. This eliminates
the mathematical difficulty inherent in the parametric nature of
flicker noise and of the noise originated from the environment
fluctuations.

The feedback path is described by the transfer function
B(jf) of the phase perturbation. In the case of the delay-
line oscillator, the feedback path is a delay line of delay T
followed by a selector filter. The latter is necessary, otherwise
the oscillator would oscillate at any frequency multiple of 1/T ,
with no preference. Implementing the selector as a bandpass
filter (a resonator) of group delay Tg , the phase-perturbation
response of the feedback path is

B(jf) =
exp(−j2πfT )
1 + j2πfTg

. (32)

We assume that all the phase perturbations in the loop are
collected in the random function ψ(t) ↔ Ψ(jf), regardless
of the physical origin (amplifier, photodetector, optical fiber,
etc.). Denoting with ϕ(t)↔ Φ(jf) the oscillator output phase,
the oscillator is described by the phase-perturbation transfer
function H(jf) = Φ(jf)/Ψ(jf). By inspection on Fig. 7, and
using the basic equations of feedback, the oscillator transfer
function reads

H(jf) =
1

1− B(jf)
, (33)
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and the oscillator phase noise spectrum would be given by
Sϕ(f) = |H(jf)|2Sψ(f).
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