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Chapter 1

Introduction

1.1 Complexity and social sciences

The concept of complex systems has evolved from Chaos, Statistical Physics
and other disciplines, and it has become a new paradigm for the search of
mechanisms and a unified interpretation of the processes of emergence of
structures, organization and functionality in a variety of natural and arti-
ficial phenomena in different contexts [1, 2, 3, |4, 5, |6]. The study of complex
systems has become a problem of enormous common interest for scientists
and professionals from various fields, including human sciences, leading to
an intense process of interdisciplinary and unusual collaborations that extend
and overlap the frontiers of traditional Science [7, 8, 9]. The use of concepts
and techniques emerging from the study of complex systems and Statistical
Physics has proven capable of contributing to the understanding of problems
beyond the traditional boundaries of Physics.

Phenomena such as the spontaneous formation of structures, self-organiza-
tion, spatial patterns, synchronization and collective oscillations, spiral waves,
segregation and differentiation, formation and growth of domains, consensus
phenomena [1, 2, 4, 5,16, 10, (11}, [12], are examples of emerging processes that
occur in various contexts such as physical, chemical, biological, social and eco-
nomic systems, etc. These effects are the result of interactions and synergetic
cooperation among the elements of a system. The general concept of com-
plex system has been applied to these sets of elements capable of generating
global structures or functions that are absent at the local level. Understand-
ing the complex collective behavior of many particles systems, in terms of
macroscopic descriptions based in local interactions rules of evolution leading
to the emergence of global phenomena, is a topic well established in Statisti-
cal Physics and it is relevant in the field of social science. An example of this
micro-macro paradigm that show a close relationship between both sciences,
Statistical physics and the Social Science, is Schelling’s model of residential
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segregation, that is mathematically equivalent to the zero-temperature spin-
exchange Kinetic Ising model with vacancies [14].

The typical social system is composed of a high number of individuals
that interact between them, showing nontrivial collective behaviors, such as
nonequilibrium order-disorder transitions, emergence of collective phenom-
ena, etc. This type of phenomena are the key for a qualitative and quantita-
tive study from the point of view of Statistical Physics and complex systems
[16]. In particular, the paradigm of complex systems in the context of so-
cial systems means that collective social structures emerge from the dynamic
properties and interactions between individuals or elements in the system. In
other words, we assume that many social phenomena are collective processes
similar to those taking place in many nonequilibrium many body dynamical
systems. In this regard, a variety of models have been proposed to explain the
formation of structures from the interactions between agents of social sys-
tems. Most of these models have assumed that the local interaction rules can
involve the simple imitation of a neighbor or an alignment to local majority
(Ising-type). The main question concerns in all cases the possibility of the
appearance of a global consensus, defined by the fact that all elements of the
system have the same state or that a polarized states in which several coexis-
tence states or opinions survive can be obtained. The parameters of the model
drive transition between consensus and polarization.

Within this framework of the applications of the concepts of complex sys-
tems to social systems, there are a large number of physicists, economists,
sociologists and experts in computer science who are studying social systems
and characterizing mechanism involved in the processes of formation of opin-
ion, cultural dissemination, spread of disease, formation of social networks of
interaction. This has led to the establishment of links between various disci-
plines and to an increasing interdisciplinary collaboration between different
areas of knowledge [8,19, (17, (18], 21}, 22, 23| 24 25, 26, 27, 28, (29| 30, 311

It may seem nonconventional that physicists are making dynamical mod-
els of social systems within the current context of complex systems. How-
ever, the attempt to try to explain social phenomena as any other physical
phenomenon is not new. These ideas, somehow, were anticipated by several
social thinkers of the nineteenth century. Auguste Comte, considered as the
father of Sociology, was heavily influenced by Newtonian and Galilean Me-
chanics. He thought that Physics could apply to all natural phenomena, in-
cluding the social phenomena. In his famous classification of sciences, Comte
assumed that all scientific disciplines are eventually some kind of applica-
tions or branches of Physics. In this work, Comte distinguishes differences in
Physics applications, separating them into two main areas: Inorganic Physics
and Organic Physics. This separation also contains a list of different disci-
plines, such as, Celestial Physical (Astronomy), Terrestrial Physics (Geology);



1.1 Complexity and social sciences 3

Physiological Physics (Biology), etc.. In this scheme, there was room for Social
Physics, which would be devoted to studying positively the social phenomena.
Comte proposed to develop this science in his famous treaty Cours de Philoso-
phie Positive [15]

The study of the interrelations among this interactive elements have re-
vealed the existence of underlying networks of connections common in these
systems [32, 33, 34, [30]. Thus, it has been found that systems as diverse as
the World Wide Web, Internet, telecommunication networks, the spread of
epidemics and computer viruses, dynamical social groups, economic corpora-
tions, insect colonies, metabolic flows in cells, neurons in the brain, physical
systems, etc., show common network structures and share similar properties
of self-organization. This topological structure in the interaction networks
can be consider as the body of a complex system and are found in different
context of the nature, from biological to social system. In this regard, the
interaction in complex networks is a recent paradigm in statistical physics.
[351].

This approach of statistical physics in the study of the network in social in-
teraction have revealed the ubiquity of various striking characteristics, such
as the small-world effect: although each node has a number of neighbors
which remains small with respect to the total number of agents, only a small
number of hops suffices to go from any agent to any other on the network. This
has prompted the investigation of the effect of various interaction topologies
on the behavior of agents connected according to these topologies, highlight-
ing the relevance of small-world and heterogeneous structures [36, 37, [38].
More recently, the focus has shifted to take into account the fact that many
networks, and in particular social networks interaction, are dynamical. In
this case the links that connect a pair of elements in a system can be move or
appear and disappear continuously in time, on many timescales. Moreover,
such modifications of the networks topology do not occur independently from
the nodes states but as a feedback effect: the topology determines the evolu-
tion of the agents opinions, which in its turn determines how the topology can
be modified [19, 20} [21),130, 40, 41]; the network becomes adaptive. In general,
the network theory applied to complex social network and the macro-micro
paradigm make possible an analysis of the effect of the topology of the net-
work on a non-equlibrium dynamics as propose in order to understand the
collective phenomena in a social system.

The addition of a global interaction to a locally coupled system is known
to be able to induce phenomena not present in that system, such as chaotic
synchronization and new spatial patterns[61, (62]. The classification and de-
scription of generic effects produced by external fields or global coupling in
a nonequilibrium system of locally interacting units is still an open general
question. The common wisdom for equilibrium systems is that under a strong



4 Introduction

external field, local interactions become negligible, and the system orders fol-
lowing the external field. For nonequilibrium, nonpotential dynamics [13]]
this is not necessarily the case, and nontrivial effects might arise depending
on the dynamical rules. This problem is, in particular, relevant for recent
studies of social phenomena in the general framework of complex systems.
In this work we address this problem in the context of mass media effects in
cultural dynamics.

Several mathematical models, many of them based on discrete-time and
discrete-space dynamical systems, have been proposed to describe a variety
of phenomena occurring in social dynamics [23} 24} 25| 26, 27, 28, [29), (30, 311].
Specially interesting is the lattice model introduced by Axelrod [42] to in-
vestigate the dissemination of culture among interacting agents in a society
[46, 43, 31, 47, 51), 49| 52, 48]]. The state of an agent in this model is de-
scribed by a set of individual cultural features. The local interaction between
neighboring agents depends on the cultural similarities that they share and
similarity is enhanced as a result of the interaction. From the point of view of
statistical physics, this model is appealing because it exhibits a nontrivial out
of equilibrium transition between an ordered phase (a homogeneous culture)
and a disordered (multicultural) one, as in other well studied lattice systems
with phase ordering properties [39]. The additional effect of global coupling in
this system has been considered as a model of influence of mass media [43]. It
has also been shown that the addition of external influences, such as random
perturbations [49] or a fixed field [53], can induce new order-disorder nonequi-
librium transitions in the collective behavior of Axelrod’s model. However, a
global picture of the results of the competition between the local interaction
among the agents and the interaction through a global coupling field or an ex-
ternal field is missing. Here we consider this general question in the specific
context of Axelrod’s model.

We deal with states of the elements of the system and interacting fields
described by vectors whose components can take discrete values. The interac-
tion dynamics of the elements among themselves and with the fields is based
on the similarity between state vectors, defined as the fraction of components
that these vectors have in common. We consider interaction fields that orig-
inate either externally (an external forcing) or from the contribution of a set
of elements in the system (an autonomous dynamics) such as global or par-
tial coupling functions. Our study allows to compare the effects that driving
fields or autonomous fields of interaction have on the collective properties of
systems with this type of nonequilibrium dynamics. In the context of social
phenomena, our scheme can be considered as a model for a social system in-
teracting with global or local mass media that represent endogenous cultural
influences or information feedback, as well as a model for a social system sub-
ject to an external cultural influence.



1.2 Outline 5

1.2 OQOutline

The outline of this work is as follows: In Chapter 2 we introduce Axelrod’s
model describing cultural dissemination [42]. We present the formal defini-
tion, general properties and the most important previous results on the model.
In Chapter 3, we study the effects of mass media modeled as applied fields on
a social system based on Axelrod’s model. We define different types of fields:
a constant external field, a global field and a local field. These fields represent
influences of different types of mass media. The effects of these fields will
be analyzed in both the order and disorder phases of the system. In Chapter
4, we study another mechanism of interaction with mass media fields, intro-
duced by Shibanai et al. [43]. Indirect mass media influence is defined, as a
global field acting like a filter of the influence of the existing network of in-
teractions of each agent. In Chapter 5 we present our conclusion and point to
directions for future research.



Introduction




Chapter 2

Axelrod’s model for the
dissemination of culture

In an seminal paper, Robert Axelrod [42] addressed the question:

“if people tend to become more alike in their beliefs, attitudes, and behavior
when they interact, why do not all differences eventually disappear ¢ ”

To investigate this problem, Axelrod introduced an agent-based model to
explore mechanisms of competition between the tendency towards globaliza-
tion and the persistence of cultural diversity. These mechanism seeks to
sketch in broad outline how cultures and customs are disseminated in the
society. Culture in this model is defined as a set of individual attributes sub-
ject to social influence. Thus, the model assumes that an individual’s culture
can be described in terms of his or her attributes such as language, religion,
technology, style of dress and so forth. This definition describes a culture as
list of features or culture dimension. For each feature there is a set of traits,
which are the alternative values the feature may have. For example, one
feature of a culture could be the religious belief, and the traits represents of
different choices for this feature, such as Buddhism, Atheism or Christianity.
It is important to indicate that the emphasis of this work is not on the con-
tent of a specific culture, but rather on the way in which a culture is likely to
emerge and spread.

Within this framework, the local interaction between neighboring agents
follows two basic social principles that are believed to be fundamental in the
understanding of the dynamics of cultural assimilation (and diversity): social
influence and homophily. The first is the tendency of individuals to be more
similar when they interact. The second is the tendency of likes to attract each
other, so that they interact more frequently. In other words, these principles
mean that the probability that two individuals interact is proportional to the
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cultural overlap between the agents, that is, to the amount of cultural similar-
ities (number of features) that they share and the similarity is enhanced when
interaction occurs. With these two ingredients Axelrod show that the system
can freeze in a multicultural state with coexisting spatial domains with dif-
ferent cultures, illustrating how a simple mechanism of local convergence can
lead to global polarization.

2.1 Presentation of the model

The Axelrod model consists of a set of V agents located at the nodes of an
interaction network. The state of an agent i is given by an F'-component vector
Cif (f=1,2,...,F). In this model, the ' components of vector Cif correspond
to the culture features (language, religion, etc.) describing the F-dimensional
culture of agent i. Each component of the cultural vector of i can take any
of the ¢ values in the set {0,1,...,¢ — 1} (called cultural traits in Axerlrod’s
model). As an initial condition, each agent ¢ is randomly and independently
assigned on of the ¢’ possible state vectors with uniform probability. In the
model, all ¢ possible states are equivalent.

Starting from a random initial condintion, the discrete-time dynamics of
the system is defined by interacting the following steps:

1. Select at random a pair of sites of the network connected by a bond (3, j).

2. Calculate the overlap (number of shared features) [(i, j) = Z]‘ll Ot o -

3. If 0 < I(4,5) < F, the bond is said to be active and sites i and j interact
with probability (i, j)/F. In case of interaction, choose g randomly such
that Cf # CY and set C7 = C7 .

After N such update events, time is increased by 1.
From view point of statistical physicists, the Axelrod model is a simple
and natural vector generalization of models of opinion dynamics that gives



2.2 Summary of previous results 9

rise to a very rich and nontrivial phenomenology, with some genuinely novel
behavior that has attracted a lot of interest from physicist.

In the next section, we will summarize the most important results of this
model.

2.2 Summary of previous results

In the last years, systematic studies of Axelrod’s model have identified a
globalization-polarization transition depending on the value of ¢ for a fixed
F [46, 31, 148, 149]. These works have shown that the system reaches an sta-
tionary configuration in any finite network, where for any pair of neighbors
i and j, I(i,j) = 0 or I(i,j) = F. Homogeneous or ordered states (globaliza-
tion) correspond to [(i,j) = F, Vi, j, this means that all the sites have the
same value of cultural trait for each feature. Obviously there are ¢/ possible
configurations of this state. Inhomogeneous or disordered states (global po-
larization) consist of the coexistence of several domains, where a domain is
defined as a set of connected nodes with the same cultural vector state. The
number of domain is taken as measure of cultural diversity.

For the visualization of state of the system to each cultural state is as-
signed a color (see figure [2.1), thus we can identify a cultural domain with a
given color. Figure shows a example of a typical simulation of Axelrod’s
model in a two-dimensional network in ¢ = 0 and in the asymptotic cultural
configurations (t = o), for /' = 10 and two values of ¢ (¢ = 5 and ¢ = 60) as
initial condition (see reference [65]). For small value of ¢ (¢ = 5) the system
reaches a globalization state (see top right of figure where all nodes form
a single domain (blue color), indicating that all individuals same time, have
the same cultural state, while for ¢ = 60, the system freeze in an absorbing
multicultural state where different cultural domains coexist, illustrating how
the local convergence can induce a global polarization.

In order to characterized the ordering properties of this system, the nor-
malized average size of largest domain (S,,.,)/N formed in the system, is de-
fined as order parameter. For any finite networks the dynamics displays a
critical point ¢. that separates two phases: an ordered phase or monocultural
state ((Saz)/N ~ 1) for ¢ < ¢., and an disordered phase or multicultural state
((Spas) /N < 1) for q > ¢, [46, 50, 51| 49, 52, 48| 53, 54, B5].

In two-dimensions, the kind of the transition depends on the value of F
(46, 51, 48, 53]. When I’ > 2 the transition is of first order, with the size of
the largest domain having a finite discontinuity as shown the figure 2.3| In
this figure we plot the order parameter (S,,,.)/N as function of ¢ for a two-
dimensional network and /' = 10. Here we identify a threshold ¢ = ¢. ~ 55
where occurs the order-disorder transition. When ¢ < ¢. the order parameter
(Smaz)/N =~ 1 (see top right of figure 2.2), while for ¢ > ¢, (Spa)/N ~< 1
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Figure 2.2: State of the system in ¢ = 0 (left) and ¢t = oo (right), F' = 10, ¢ = 5 (top), F' = 10,
q = 60 (bottom). System size N = 64 [65].

(see bottom right of figure [2.2). This figure also shows that the transition
at the critical point (¢ = ¢.) becomes sharper as the system size increases,
so that in the thermodynamics limit the transition is well defined (see figure
[2.3). However, the situation for /' = 2 is different, in this case the order
parameter (S,,..)/N vanishes continuously as ¢ — ¢~ ( see reference [46]).
In one-dimension, the nature of the transition change, the dynamic displays
a second order transition [48].

Analytical approaches have also been considered for this model. A mean
field approach of this model have been treated by Castellano et al. and
F. Vazquez & Redner [50]. This approach consists in writing down rate equa-
tions for the densities P,, of bonds of type m. These are bonds between inter-
action partners that have m common features. The natural order parameter
in this case is the density of active links n, = >."_ P,,, where a link is ac-
tive if 0 < m < F' — 1. This order parameter is zero in the disordered phase,
while it is finite larger that zero in the ordered phase. This approach gives a
discontinuous transition for any F'. In the particular case of /' = 2 the mean
field equations can be studied analytically in detail by Vazquez and Redner
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Figure 2.3: Average size of the largest cultural domain (Smaz)/N vs g for F' = 10 features
and system sizes N = 900 (circles), N = 1600 (squares) and N = 2500 (diamonds). The
transition at the critical point ¢. ~ 55 becomes sharper as the system size increases.

[50], providing insight into the non-monotonic dynamic behavior for ¢ < ¢.
and showing that the approach to the steady state is governed by a time scale
diverging as | ¢ — ¢, |7'/2.

A number of works have addressed the issue of the role of social network of
interaction. The Axelrod model has been studied on small-world (SW)(Klemm
et al., [51]]) and scale-free networks Barabasi-Albert (AB)(Klemm et al., [51])
In the first case, the transition between consensus and a disordered multicul-
tural phase is still observed, for values of the control parameter ¢. that grow
as a function of the rewiring parameter p. Therefore, this work shows that
the non-local connectivity favors cultural globalization as described by the or-
dered state, as shown in figure where the order parameter (S,,..)/N is
plotted as function of ¢ for different values of p. Since the SW network for
p = 11is a random network this is consistent with the observation of the tran-
sition also in the mean field approaches made by Castellano et al. 2000 [46]
and Vazquez and Redner 2007 [50]. In the second case, for the scale-free net-
work, the behavior of the systems dramatically changes the picture. For a
given network size N, the system also displays a transition order-disorder for
an effective value of ¢ = ¢q.. However the critical point where occurs the transi-
tion grows with NV as ¢. ~ N%% (see figure [2.5)), so that in the thermodynamic
limit the transition disappears and only ordered states are possible.

Recently, Axelrod’s model also has been studied in a co-evolution network
[9, 56]. This model combines the traditional mechanisms of homophily and
social influence with a third mechanism of network homophily, in which net-
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Figure 2.4: Average size of the fraction of the largest cultural domain (Smaz)/N vs q for
three different values of the small-world parameter p. System sizes N = 5002 (squares) and
N = 10002 (diamonds); number of features F' = 10. From ([51])

work structure co-evolves with cultural interaction. Here, the individuals
cut their ties with incompatible partners and form new ties with other like-
minded individuals. In this model the structure of the network changes over
time as response of the state of nodes and vice versa. This system displays
two transitions that depends of value of ¢ for a fixed /. The first one is an
order-disorder transition at ¢ = ¢. between two frozen phases, associated with
the fragmentation of the network. The dynamics leads to the formation of
network components, where component is defined here as a set of connected
nodes. In a frozen configuration agents that belong to the same component
have the same state. For ¢ < ¢. (order phase), the system reaches a configura-
tion composed by a giant component of the order of the system size, and a set
of small components, while for ¢ > ¢. (disorder phase) the large component dis-
integrates in many small disconnected components. The second transition, is
related with network recombination and occurs at ¢ = ¢* between the disorder
phase and an active phase, where the system reaches a dynamic configuration
with links that are permanently rewired. In this active phase, there are a only
one component where different cultural states coexist. In these works it also
shown that the fragmentation is a consequence of the competition between
two coupled mechanism, network dynamics and the state formation, that are
governed by two internal time associated with the evolution of the network
interaction and the dynamics of states, which are not controlled by external
parameter, but that emerge from the dynamics of the system [56].

Apart from of the study of the topology of interactions, other extensions
of this model have been investigated. Some of them already suggested in
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Figure 2.5: Top: The average order parameter (S,,,.)/N in scale free networks for F = 10.
Different curves are for different system size: 1000 (circles), 2000 (squares), 5000 (diamonds)
and 10,000 (triangles). Bottom: Rescale plot of the data shown in top of this figure for differ-
ent system size. From ([51]])

Axelrod’ssuch as is the study of cultural drift. In references [49, 52], the cul-
tural drift is modeled as spontaneous change in a trait of a one of the fea-
tures of a node. These changes can be interpreted as a type of noise acting
on the system. The perturbation consist in randomly choosing i € {1,..., N},
fe{l,...,F}and s € {1, ...,q} and setting Cif = s. This rule is implemented by
including a fourth step in the interacted loop of the Axelrod’s model.

4. With probability r, perform a single perturbation.

In these works, it is demostrated that noise (cultural drift) induces an
order-disorder transition independently of value of ¢, as shown in figure
In this figure, the effective noise rate ' = r(1 — 1/q), is considered as control
parameter. We observe that all curves collapse into a single curve, showing
that independently of the values of the parameter ¢, the system displays the
same behavior. This curve identifies, for a fixed size of the system, a contin-
uous order-disorder transition controlled by the noise rate . For small noise
rate the state of the system is monocultural. This occurs because disordered
configurations are unstable with respect to the perturbation introduced by
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Figure 2.6: (S,,,.)/N as function of the effective noise rate ' = r(1—1/q) for different values
of q. System size N = 502 with F' = 10. From [49]

the noise. However, when the noise rate is large, the disappearance of do-
mains is compensated by the rapid formation of new ones, so that the steady
state is disordered. For a finite system, the ordered state of the system un-
der action of small perturbations, is not a fixed homogeneous configuration.
During long time scales, the system visits a series of monocultural configu-
ration. The threshold between the two behaviors is set by the inverse of the
average relaxation time for a perturbation 7'(V), so that the transition occurs
for r.T'(N) = O(1). An approximate evaluation of the relaxation in d = 2 gives
T = Nin(N), in good agreement with simulations, while 7 ~ N? on one di-
mension [49, 52], Therefore, no matter how small the rate of cultural drift is,
in the thermodynamic limit the system remains always disordered for any g¢.

Other extensions include the consideration of quantitative instead of qual-
itative values for the cultural traits (Flache and Macy, 2006 [57]), the exten-
sion of the model to continuous values of the cultural traits and the inclusion
of heterophobic interactions (Macy et al., 2003 [58]]), the simulation of tech-
nology assimilation (Leydesdorff, 2001 [59]) and the consideration of specific
historical contexts (Bhavnani, 2003 [60]).

Within this general context of different forms of social interactions, the
influence of mass media on the system has also been considered [43, /44,45, 53|,
54, 55]. In these works, mass media are modeled as different types of fields. A
mass media cultural message is described as a vector M that can interact with
each node in the system. The vector field M may be of different nature. For
example, Shibanai et al. [43]], study the effect of a global mass media influence
interpreted as a kind of global information feedback acting on the system. In
this case, mass media is represented by a global field vector which contains
the most predominant trait in each cultural feature present in a society. In
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this work [43] two mechanisms for the interaction with the global field have
been considered. In the first one, the field has the same influential power as a
real neighbor, in the second one, the neighbors are influential only when their
traits are concordant with the trait of the global vector field. In this case the
global information feedback acts as filter of local neighbor’s influence. The
intensity of the fields or the mass media influence is controlled by an external
parameter. The conclusion of this work, somehow counterintuitive, is that
global information feedback facilitates the maintenance of cultural diversity.
However, Shibanai et al., restrict the study of global mass media interaction
to a single value of ¢ in the ordered phase. In this work we investigate the
general problem of the effect of different mass media, and for different values
of ¢ [54, 55]. Other recent related works deal with a version Axerlrod’s model
with both an external field and noise in a two-dimensional network and in
social networks with community [44] [45].






Chapter 3

The Axelrod’s Model with global,
local and external field
interaction: Mass media effects

In this Chapter we address the general question of the effects of different
types of mass media influences on cultural dynamics in the context of Axel-
rod’s model. Here the mass media is modeled as field interaction applied on
the system. This extension was referred to as "public education and broad-
casting” [42]. Our aim is to identify the mechanisms, and their efficiency,
by which mass media modifies processes of cultural dynamics based on local
agent interactions. To answer these questions, we consider mass media in-
fluences that originate either externally or endogenously, and that the agent-
agent interaction and interaction of the agents with the mass media is based
on the same homophily and social influence principles of Axelrod model. For
the case the endogenous mass media interaction, our scheme is a model for
social systems interacting with global or local mass media that represents
plurality information feedback at different levels.

3.1 The model

The system consists of V elements as the sites of a square lattice. The state
of an agent i is given by an F-component vector C/ (f = 1,2,...,F). In this
model, the F' components of vector Cif correspond to the culture features (lan-
guage, religion, etc.) describing the I'-dimensional culture of agent ;. Each
component of the cultural vector of i can take any of the ¢ values in the set
{0,1,...,q — 1} (called cultural traits in Axerlrod’s model). As an initial con-
dition, each agent i is randomly and independently assigned on of the ¢ pos-
sible state vectors with uniform probability. We introduce a vector field M
with components (p1, fi2, - - -, ir). Formally, we treat the field at each ele-
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Figure 3.1: Order parameters g (circles) and (S,,..)/N (squares) as a function of ¢, in the
absence of a field B = 0.

ment ¢ as an additional neighbor of i with whom an interaction is possible.
The field is represented as an additional element ¢(i) such that C;:(i) = pir in
the definition given below of the dynamics. The strength of the field is given
by a constant parameter B € [0, 1] that measures the probability of interaction
with the field. The system evolves by iterating the following steps:

(1) Select at random an element i on the lattice (called active element).

(2) Select the source of interaction j. With probability B set j = ¢(i) as an
interaction with the field. Otherwise, choose element ; at random among the
four nearest neighbors (the von Neumann neighborhood) of i on the lattice.

(3) Calculate the overlap (number of shared components) [(i, j) = Z?zl (503«705.

If0 < i(i,j) < F, sites ¢ and j interact with probability /(i, j)/F. In case of in-
teraction, choose g randomly such that C} # CY and set C} = C7.

(4) Update the field M if required (see definitions of fields below). Resume
at (1).

Step (3) specifies the basic rule of a nonequilibrium dynamics which is at
the basis of most of our results. It has two ingredients: i) A similarity rule
for the probability of interaction, and ii) a mechanism of convergence to an
homogeneous state.

In order to characterize the ordering properties of this system, we consider
as an order parameter the average fraction of cultural domains g = (N,)/N.
Here N, is the number of domains formed in the final state of the system for
a given realization of initial conditions. Figure shows the quantity ¢ as a
function of the number of options per component ¢, for ' = 5, when no field
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Figure 3.2: Diagrams representing the different types of mass media influences acting on
the system. a) Global mass media. b) Local mass media. ¢) External mass media

acts on the system (B = 0). For values of ¢ < ¢. ~ 25, the system always
reaches a homogeneous state characterized by values ¢ — 0. On the other
hand, for values of ¢ > ¢., the system settles into a disordered state, for which
(Ny) > 1. Another previously used order parameter, as described in Chapter
2 [46, 511, the average size of the largest domain size, (S,.x) /N, is also shown
in Fig. for comparison. In this case, the ordered phase corresponds to
(Smax)/N = 1, while complete disorder is given by (Sy..)/N — 0. Unless
otherwise stated, our numerical results throughout the paper are based on
averages over 50 realizations for systems of size N = 40 x 40, and I’ = 5.

Let us now consider the case where the elements on the lattice have a non-
zero probability to interact with the field (B > 0). We distinguish three types
of fields.

(i) The external field is spatially uniform and constant in time. Initially
for each component f, a value ¢; € {1,...,q} is drawn at random and p;; = ¢
is set for all elements i and all components f. It corresponds to a constant,
external driving field acting uniformly on the system. A constant external
field can be interpreted as a specific cultural state (such as advertising or
propaganda) being imposed by controlled mass media on all the elements of a
social system [53]].

(ii) The global field is spatially uniform and may vary in time. Here 1 is
assigned the most abundant value exhibited by the f-th component of all the
state vectors in the system. If the maximally abundant value is not unique,
one of the possibilities is chosen at random with equal probability. This type of
field is a global coupling function of all the elements in the system. It provides
the same global information feedback to each element at any given time but
its components may change as the system evolves. In the context of cultural
models [43], this field may represent a global mass media influence shared
identically by all the agents and which contains the most predominant trait
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Figure 3.3: Asymptotic configurations of the Axelrod’s model with mass media influence,
for F =5, ¢ = 10, and N = 32 x 32. Top panel corresponds the numerical simulation for
B = 0.0045 < B.. Bottom panel corresponds to the numerical simulation for B = 0.5 > B.. a)
Absence of field interaction, b) External field, ¢) Local field, d) Global field. The vector field in
the case of external interaction is identified with the black color [65].

in each cultural feature present in a society (a “global cultural trend”).

(iii) The local field, is spatially non-uniform and non-constant. Each com-
ponent ;i is assigned the most frequent value present in component f of the
state vectors of the elements belonging to the von Neumann neighborhood of
element i. If there are two or more maximally abundant values of component
f one of these is chosen at random with equal probability. The local field can
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Figure 3.4: Order parameter g as a function of the coupling strength B of an external
(squares), global (circles) and local (triangles) field. Parameter value ¢ = 10 < ¢..

be interpreted as local mass media conveying the “local cultural trend” of its
neighborhood to each element in a social system.

Case (i) corresponds to a driven spatiotemporal dynamical system. On the
other hand, cases (ii) and (iii) can be regarded as autonomous spatiotemporal
dynamical systems. In particular, a system subject to a global field corre-
sponds to a network of dynamical elements possessing both local and global
interactions. Both the constant external field and the global field are uni-
form. The local field is spatially non-uniform; it depends on the site i. In
the context of cultural models, systems subject to either local or global fields
describe social systems with endogenous cultural influences, while the case of
the external field represents and external cultural influence.

Cultural influences generated endogenously represent a plurality informa-
tion feedback, which is one of the functions of mass media [43]], but this can
occur at a global ("broadcast”) or at a local ("narrowcast”) level.

The strength of the coupling to the interaction field is controlled by the
parameter B. We shall assume that B is uniform, i.e., the field reaches all
the elements with the same probability. In the cultural dynamics analogy, the
parameter B can be interpreted as the probability that the mass media vector
has to attract the attention of the agents in the social system. The parameter
B represents enhancing factors of the mass media influence that can be var-
ied, such as its amplitude, frequency, attractiveness, etc. The different types
of field or mass media influences are schematically shown in Fig.

Simulations of the model described here for different values of parameters,
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Figure 3.5: Threshold values B, for ¢ < ¢. corresponding to the different fields. Each line
separates the region of order (above the line) from the region of disorder (below the line) for
an external (squares), global (circles), and local (triangles) field.

can be accessed on-line (http://ifisc.uib-csic.es/research/APPLET_Axelrod/Culture.html
) trough a Java Applet.

3.2 Effects of an interacting Field for ¢ < ¢.

In the absence of any interaction field, the system settles into one of the pos-
sible ¢© homogeneous states for ¢ < ¢. (see Fig. . However, when the inter-
action with a field is added, the behavior is affected as shown in the numerical
simulation of the figure |3.3| This figure, shows the asymptotic configurations
of the system for the different fields and two values of B in the ordered phase
(¢ < ¢.). For the case B = 0.0045 the system reaches a homogeneous state,
while for B = 0.5, independently of the nature of the field, the system dis-
plays a disordered state. This results suggest that there is a threshold in the
intensity of the applied field on the system for which the mass media induce
disorder.

A systematic study of this behavior, the figure shows the order param-
eter ¢ as a function of the coupling strength B for the three types of fields.
When the probability B is small enough, the system still reaches in its evo-
lution a homogeneous state (g — 0) under the action of any of these fields.
In the case of an external field, the homogeneous state reached by the system
is equal to the field vector [53]. Thus, for small values of B, a constant ex-
ternal field imposes its state over all the elements in the system, as one may
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Figure 3.6. Order parameter g as a function of the coupling strength B of an external
(squares), global (circles) and local (triangles) field. The horizontal dashed line indicates
the value of g at B = 0. Parameter value ¢ = 30.

expect. With a global or with a local field, however, for small B the system
can reach any of the possible ¢ homogeneous states, depending on the initial
conditions. Regardless of the type of field, there is a transition at a threshold
value of the probability B, from a homogeneous state to a disordered state
characterized by an increasing number of domains as B is increased. Thus,
we find the counterintuitive result that, above some threshold value of the
probability of interaction, a field induces disorder in a situation in which the
system would order (homogeneous state) under the effect alone of local inter-
actions among the elements. The same behavior is reported by Shebanai et
al. for the case of a global field [43].

The threshold values of the probability B, for each type of field, obtained
by a regression fitting [53]], are plotted as a function of ¢ in the phase diagram
of Fig. The threshold value B. for each field decreases with increasing ¢
for ¢ < g.. The value B, = 0 for the three fields is reached at ¢ = ¢. = 25,
corresponding to the critical value in absence of interaction fields observed in
Fig. For each case, the threshold curve B, versus ¢ in Fig. separates
the region of disorder from the region where homogeneous states occur on the
space of parameters (B,q). For B > B, the interaction with the field domi-
nates over the local interactions among the individual elements in the system.
Consequently, elements whose states exhibit a greater overlap with the state
of the field have more probability to converge to that state. This process con-
tributes to the differentiation of states between neighboring elements and to
the formation of multiple domains in the system for large enough values of
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Figure 3.7: Asymptotic configurations of the Axelrod’s model with mass media influence, for
F =5,q=10, N =32 x 32 and B = 0.0045. a) Absence of field interaction, ) External field, ¢)
Local field, d) Global field. The vector field in the case of external interaction is identify with
the black color [65]].

the probability B.

Note that the region of homogeneous ordered states in the (B, q) space in
Fig. is larger for the local field than for the external and the global fields.
A nonuniform field provides different influences on the agents, while the in-
teraction with uniform fields is shared by all the elements in the system. The
local field (spatially nonuniform) is less efficient than uniform fields in pro-
moting the formation of multiple domains, and therefore order is maintained
for a larger range of values of B when interacting with a local field.

3.3 Effects of an interacting Field for ¢ > ¢,

When there are no additional interacting fields (B = 0), the system always
freezes into disordered states for ¢ > ¢. (see Fig.[3.1). Figure [3.6] shows the
order parameter g as a function of the probability B for the three types of
fields. The effect of a field for ¢ > ¢. depends on the magnitude of B. In the
three cases we see that for B — 0, g drops to values below the reference line
corresponding to its value when B = 0. Thus, the limit B — 0 does not re-
cover the behavior of the model with only local nearest-neighbor interactions.
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Figure 3.8: Scaling of the order parameter g with the coupling strength to the global field
B. The slope of the fitting straight line is 3 = 0.13 & 0.01. Parameter value ¢ = 30 > q..

The fact that for B — 0 the interaction with a field increases the degree of
order in the system is related to the non-stable nature of the inhomogeneous
states in Axelrod’s model. When the probability of interaction B is very small,
the action of a field can be seen as a sufficient perturbation that allows the
system to escape from the inhomogeneous states with frozen dynamics. A ex-
ample of this behavior is observed in the figure that shows the spatial
configurations of the final states of the systems under the influence of a field
in the disordered state (¢ > ¢.). In the numerical simulation, we observe that
a weak interaction with the field can induce order in the system. This effect
is similar independently of the source of the field, however, the local field is
more efficient to order the system, while the external field interaction is less
efficient to induce order in the system. The role of a field in this situation is
similar to that of noise applied to the system, in the limit of vanishingly small
noise rate [49].

The drop in the value of ¢ as B — 0 from the reference value (B = 0)
that takes place for the local field in Fig. is more pronounced than the
corresponding drops for uniform fields. This can be understood in terms of
a greater efficiency of a nonuniform field as a perturbation that allows the
system to escape from a frozen inhomogeneous configuration. Increasing the
value of B results, in all three types of fields, in an enhancement of the de-
gree of disorder in the system, but the local field always keeps the amount of
disorder, as measured by g, below the value obtained for B = 0. Thus a local
field has a greater ordering effect than both the global and the external fields
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Figure 3.9: Finite size effects at small values of the strength B of a global field. Order
parameter g as a function of B is shown for system sizes N = 202, 302, 402, 502, 702 (from top
to bottom). Parameter value ¢ = 30.

for ¢ > q..

The behavior of the order parameter ¢ for larger values of B can be de-
scribed by the scaling relation ¢ ~ B?, where the exponent 3 depends on the
value of ¢. Figure|3.8/shows a log-log plot of g as a function of B, for the case of
a global field, verifying this relation. This result suggests that ¢ should drop
to zero as B — 0. The partial drops observed in Fig. seem to be due to
finite size effects for B — 0. A detailed investigation of such finite size effects
is reported in Fig. for the case of the global field. It is seen that, for very
small values of B, the values of ¢ decrease as the system size /N increases.
However, for values of B > 1072, the variation of the size of the system does
not affect ¢ significantly.

Figure displays the dependence of ¢ on the size of the system N when
B — 0 for the three interaction fields being considered. For each size N, a
value of ¢ associated with each field was calculated by averaging over the
plateau values shown in Fig. in the interval B € [107°,107%]. The mean
values of ¢ obtained when B = 0 are also shown for reference. The order
parameter g decreases for the three fields as the size of the system increases;
in the limit N — oo the values of g tend to zero and the system becomes
homogeneous in the three cases. For small values of B, the system subject
to the local field exhibits the greatest sensitivity to an increase of the system
size, while the effect of the constant external field is less dependent on system
size. The ordering effect of the interaction with a field as B — 0 becomes more
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Figure 3.10: Mean value of the order parameter g as a function of the system size N without
field (B = 0, solid circles), and with an external (squares), global (circles) and local field
(triangles). Parameter value ¢ = 30.

evident for a local (nonuniform) field. But, in any case, the system is driven to
full order for B — 0 in the limit of infinite size by any of the interacting fields
considered here.






Chapter 4

(Global field and the filtering of
local interactions: Indirect mass
media influence

In this chapter we analyze a model of global information feedback where the
global mass media acts as a moderator or filter of the local influence of neigh-
bors, as proposed by Shibanai et al. [43]. In the original Axelrod’s model one
feature with different traits for two neighboring agents is chosen, and the
trait of the active agent is changed to that of the neighbor. This is modified
in the model of indirect global mass media influence analyzed here, taking
into account the agreement of the chosen trait of the neighbor and that of
the global mass media or the plurality of the population. If the trait of the
neighbor is concordant with the dominant one, that is, the same as that of the
global mass media message M, the feature of the active agent will be changed
to that of the neighbor. But if the feature of the neighbor is different from
that of the global mass media message M, then, with probability R the active
agent will not change. Thus, this model assumes that agents are more likely
to adopt a trait from those neighbors that are concordant with the plurality.

We use the definition of a uniform global mass media as in Section 1.1,
M = (us, ftiz, - - -, pir). The dynamical evolution of the filter model can be de-
scribed in terms of the following iterative steps:

(1) Select at random an agent i on the lattice (active agent).
(2) Select at random one agent j among the four neighbors of :.

(3) Calculate the overlap (i, j). If 0 < [(i, j) < F, sites i and j interact with
probability p;; = [(i,j)/F. In case of interaction, choose g randomly such that
Cijs # CF. If Cf = 14, then set C7 = CY; otherwise with probability 2 the state
of agent i does not change and with probability 1 — R set C7 = CY

(4) Update the global mass media vector M if required. Resume at (1).
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Figure 4.1: Diagram representing the filter model.

Figure(4.1/shows a diagram of the filter model. The parameter R describes
the intensity of the filtering effect of the global mass media on the local in-
teractions. The case R = 0 corresponds to the original Axelrod’s model, while
R = 1 implies that cultural interaction only causes a change if the chosen
trait of the neighbor was equal to that of the global mass media. The overall
probability of interaction between an active agent i and a chosen neighbor j
is p;;(1 — R) if the chosen trait of j is different from that corresponding to M/,
and p,; if the chosen trait is equal to that corresponding to ).

Figure shows the average fraction of cultural domains g as a function
of time in the global mass media filter model, for two values of ¢ with F' =
5, and for different values of the filtering probability R. In Fig. (left),
when ¢ < ¢. the system reaches a homogeneous state for R = 0 and also for
small values of R. However, when the probability R increases, the filtering
influence of the global mass media can induce cultural diversity. Our results
for ¢ < q. support the results obtained by Shibanai et al. [43] about the ability
of the filtering process to induce cultural diversity in the same fashion as the
model with direct global mass media influence. But comparison with Fig.
where we plot the average fraction of cultural domains ¢ as a function of time
under the direct action of global mass media, for ¢ < ¢. with FF = 5, and for
different values of the probability B, shows that direct interaction with global
mass media is more efficient in promoting cultural diversity than the filtering
mechanism of agreement with the global plurality.

The analysis of reference [43]] was restricted to a single value of ¢ < ¢.. We
have also explored values of ¢ > ¢., where the system would be in a hetero-
geneous cultural state in absence of any filtering (R = 0). For these values
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Figure 4.2: Time evolution of the average fraction of cultural domains ¢ in the filter model
for different values of the probability R, with fixed ' = 5. Time is measured in number of
events per site. System size N = 50 x 50. Left: ¢ = 10; R = 0 (crosses); R = 0.0005 (squares);
R = 0.15 (diamonds); R = 0.6 (circles). Right: ¢ = 30; R = 0 (crosses); R = 0.0005 (squares);
R = 0.005 (circles); R = 0.1 (diamonds).

of ¢ we find (Fig. right) that the filtering mechanism has no appreciable
effects for small R, in contrast with the case of direct global mass media influ-
ence where for small values of the probability of interaction B with the media
message, the number of cultural groups is reduced as a consequence of this
interaction.

A systematic analysis of the filtering effect for different values of ¢ is sum-
marized in Figure |4.4] which shows the asymptotic value for long times of the
average fraction of cultural domains g as a function of ¢, with F' = 5, for differ-
ent values of the filtering probability . When no filtering acts on the system
(R = 0) the behavior is that of the original Axelrod’s model and also coincides
with the direct mass media models for B = 0.

The effects of the filtering process in the culturally homogeneous region,
i.e., for parameter values ¢ < ¢., is similar to that of a direct influence of
endogenous mass media. When the probability R is increased, the thresh-
old value of ¢ decreases. There is a value ¢.(R) below which the system still
reaches a homogeneous cultural state under the influence of the filter. An
increase in R for parameters ¢ < ¢.(R) leads to cultural diversity. Thus,
both mechanisms of feedback information, either direct or indirect, promote
multiculturality in the region of parameters where globalization prevails in
the absence of any feedback. The similar behavior found for the all types
of mass media influences considered here suggests that the phenomenon of
mass media-induced diversity should be robust in this region of parameters,
regardless of the type of feedback mechanism at work.

However, in the region of parameters ¢ > ¢. where multiculturality oc-
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Figure 4.3: Evolution of ¢ in a system subject to a global mass media message for different
values of the probability B, with fixed F' = 5. Time is measured in number of events per site.
System size N = 50 x 50, ¢ = 10; B = 0 (crosses); B = 0.0005 (squares); B = 0.15 (diamonds);
B = 0.6 (circles).

curs for R = 0 or B = 0, the behavior of the filter model differs from those of
the direct mass media influence. The filtering mechanism has little effect for
values of the probability R < 1. As R — 1 there is a small decrease in the
number of cultural groups formed in the system. But at R = 1 a discontinuity
appears: the fraction of cultural groups ¢ jumps from a value close to the one
for R = 0 to a value close to ¢ = 1 corresponding to maximum multicultural-
ity (number of cultural groups equal to the number of agents in the system).
The case R = 1 corresponds to an extreme restriction on the dynamics, when
no adoption of cultural features from neighbors is allowed unless the state of
the neighbor coincides with the one of the global mass media. Since we are
considering random initial conditions, when ¢ is large enough, the probability
that the features of any agent coincide with those of the global mass media
message M is quite small, making the convergence to globalization, i.e., a
common state with the media, very unlikely. As a consequence, the random
multicultural state subsists in the system and manifests itself as a maximum
value of g. The small probability of interaction with the global mass media
for large values of ¢ when R = 1 is also reflected in the very long conver-
gence time needed to reach the final multicultural state as compared with the
convergence time for R < 1.
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Figure 4.4: Average fraction of cultural domains ¢ as a function of ¢, for different values of
the probability R for the filter model. R = 0 (circles); R = 0.01 (squares); R = 0.1 (triangles
down); R = 0.5 (diamonds); R = 0.9 (triangles up); R = 0.99 (stars); R = 1.0 (plus signs)






Chapter 5

Summary and conclusions

We have analyzed a nonequilibrium lattice model of locally interacting ele-
ments and subject to additional interacting fields. The state variables are
described by vectors whose components take discrete values. We have con-
sidered the cases of a constant external field, a global field, and a local field.
The interaction dynamics, based on the similarity or overlap between vector
states, produces several nontrivial effects in the collective behavior of this
system.

We have first studied (Chapter 3) the effects of these different types of field
in the context of Axelrod’s interaction rules in which the fields acts as an ad-
ditional neighbor with some probability to interact. With these defined rules,
mass media have a direct influence on each agent. We find two main effects
that contradict intuition based on the effect of interacting fields in equilib-
rium systems where the dynamics minimizes a potential function. First, we
find that an interacting field might disorder the system: For parameter values
for which the system orders due to the local interaction among the elements,
there is a threshold value B, of the probability of interaction with a field. For
B > B. the system becomes disordered. This happens because there is a com-
petition between the consequences of the similarity rule applied to the local
interactions among elements, and applied to the interaction with the field.
This leads to the formation of domains and to a disordered system. A second
effect is that, for parameter values for which the dynamics based on the lo-
cal interaction among the elements leads to a frozen disordered configuration,
very weak interacting fields are able to order the system. However, increas-
ing the strength of interaction with the field produces growing disorder in the
system. The limit B — 0 is discontinuous and the ordering effect for B << 1
occurs because the interaction with the field acts as a perturbation on the non
stable disordered configurations with frozen dynamics appearing for B = 0.
In this regard, the field behaves similarly to a random fluctuation acting on
the system, which always induces order for small values of the noise rate [49].

These results are summarized in Fig. which shows, for different val-
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Figure 5.1: Influence of the interacting field on the nonequilibrium order-disorder transition
as described by the order parameter (S,,,.)/N. Results are shown for B = 0 (solid squares),
a global (B = 105 (empty squares), B = 0.3 (circles)) and a local (B = 10~° (triangles)) field.
Parameter value F' = 3.

ues of B, the behavior of the order parameter (S,,,,)/N previously considered
in Fig. 1.2. For small values of B, the interaction with a field can enhance
order in the system: for ¢ < ¢. interaction with a field preserves homogene-
ity, while for ¢ > ¢. it causes a drop in the degree of disorder in the system.
In an effective way the nonequilibrium order-disorder transition is shifted to
larger values of ¢ when B is non-zero but very small. For larger values of
B the transition shifts to smaller values of ¢ and the system is always disor-
dered in the limiting case B — 1. This limiting behavior is useful to under-
stand the differences with ordinary dynamics leading to thermal equilibrium
in which a strong field would order the system. In our nonequilibrium case,
the similarity rule of the dynamics excludes the interaction of the field with
elements with zero overlap with the field. Since the local interaction among
the elements is negligible in this limit, there is no mechanism left to change
situations of zero overlap and the system remains disordered. We have cal-
culated, for the three types of field considered, the corresponding boundary
in the space of parameters (B, q) that separates the ordered phase from the
disordered phase (see Fig. [3.5). In the case of a constant external field, the
ordered state in this phase diagram always converges to the state prescribed
by the constant field vector. The nonuniform local field has a greater order-
ing effect than the uniform (global and constant external) fields in the regime
q > q.. The range of values of B for which the system is ordered for ¢ < ¢. is
also larger for the nonuniform local field.

In spite of the differences mentioned between uniform and nonuniform
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fields, it is remarkable that the collective behavior of the system displays
analogous phenomenology for the three types of fields considered, although
they have different nature. At the local level, they act in the same manner, as
a “fifth” effective neighbor whose specific source becomes irrelevant. In par-
ticular, both uniform fields, the global coupling and the external field, produce
very similar behavior of the system. Recently, it has been found that, under
some circumstances, a network of locally coupled dynamical elements subject
to either global interactions or to a uniform external drive exhibits the same
collective behavior [61,, 62]. The results from the present nonequilibrium lat-
tice model suggest that collective behaviors emerging in autonomous and in
driven spatiotemporal systems can be equivalent in a more general context.

In the context of Axelrod’s model for the dissemination of culture [42]
the interacting fields that we have considered can be interpreted as differ-
ent kinds of mass media influences acting on a social system. In this context,
our results suggest that both, an externally controlled mass media or mass
media that reflect the predominant cultural trends of the environment, have
similar collective effects on a social system. We found the surprising result
that, when the probability of interacting with the mass media is sufficiently
large, mass media actually contribute to cultural diversity in a social system,
independently of the nature of the media. Mass media is only efficient in pro-
ducing cultural homogeneity in conditions of weak broadcast of a message, so
that local interactions among individuals can be still effective in construct-
ing some cultural overlap with the mass media message. Local mass media
appear to be more effective in promoting uniformity in comparison to global,
uniform broadcasts.

In Chapter 4 we have considered a model [43] of inderect mass media in-
fluence. The dynamical considered acts as filtering process for the agent-field
interaction. In the culturally homogeneous region, i.e., for ¢ < ¢., the effect of
this indirect influence is similar to that caused by a direct influence of mass
media. For small values of the filtering probability R the system reaches a
culturally homogeneous state. For values of R greater than a threshold value
the system converges to a state of cultural diversity. Thus, both mechanisms
of feedback information, either direct or indirect, promote multiculturality in
a region of parameters where it would not be present in the absence of any
feedback. In the region of parameters ¢ > ¢. where multiculturality occurs for
either B = 0 or R = 0, the filtering mechanism has, for values of the probabil-
ity R < 1, a very weak effect in comparison to the one caused by a direct mass
media influences: there is only a small decrease in the number of cultural
groups formed. However, when the extreme restriction R = 1 is imposed, the
number of cultural groups jumps discontinuously to a value corresponding to
maximum multiculturality.

Generally speaking, our analysis unveils the delicate compromise between
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direct agent-agent interactions and feedback processes. Mass media reflects
local or global cultural trends created by local agent-agent interaction, but
mass media information is processed by agent interactions, while the agent-
mass media interaction is conditioned by the overlap of the cultural features
of the agent and the mass media message. We have analyzed the effect of
different forms of mass media for the full range of the parameter ¢ that mea-
sure an initial cultural diversity. Our results indicate qualitatively different
effects when globalization (¢ < ¢.) or polarization (¢ > ¢.) would prevail when
no mass media feedback is taken in account. We find that, when the prob-
ability of interacting with the mass media is sufficiently large, mass media
actually contribute to cultural diversity in a social system, independently of
the nature of the media. But direct mass media influences are found to be
efficient in promoting cultural homogeneity in conditions of weak broadcast
of a message, so that local interactions among individuals can be still effective
in constructing some cultural overlap with the mass media message. Strong
media messages do not lead to cultural homogenization because agent-agent
interaction becomes inefficient. These results identify the power of being sub-
tle in mass media massages. In addition, direct local mass media appear to be
more effective in promoting uniformity in comparison to direct global broad-
casts, which identifies the importance of local media (feedback at regional
levels) in the cultural globalization path.

Finally, we note that the case B = 1 in the model of direct global mass me-
dia influence is less restrictive than the condition R = 1 in the filter model. Al-
though local agent-agent interactions produce negligible effects in both cases,
in the model of direct influence, an agent can still interact with the global
mass media when there is some cultural overlap between the agent and the
mass media message.

In summary, we find that ours results substantiate previous findings by
Shibanai et al. showing that cultural diversity is favored by increasing the
strength of the mass media influence. This effect occurs independently of the
mechanisms of action of the mass media message. However, through an anal-
ysis of the full range of parameters measuring cultural diversity, we establish
that the enhancement of cultural diversity produced by interaction with mass
media only occurs for strong enough mass media messages. A main different
result is that weak mass media messages, in combination with agent-agent
interaction, are efficient in producing cultural homogeneity. Moreover, the
homogenizing effect of weak mass media messages are more efficient for local
field than for global or external field.

Future extensions of this work can considere the competition between
noise and different fields, as well as the analysis in different networks, such
as, scale-free [63], small world [64] or a co-evolution networks [9, 56].
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