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Anticipated synchronization: A metaphorical linear view
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We study the regime of anticipated synchronization recently described on a number of dynamical
systems including chaotic ones. We use simple linear caricatures to show the minimal setups able to
reproduce the basic facts described.2004 American Institute of Physics.
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The possibility of predicting the behavior of a dynamical discrete or continuous, chaotic and noisy excitable, and
system (“master” ) in real time using a similar copy  quasi-periodic one&:** Experimental results have consid-
(“slave”) has been demonstrated theoretically, numeri- ered either electronic circuit implementations of the dynami-
cally and experimentally. This surprising result is of gen-  cal equation%'° or lasers running in the chaotic regime both
eral validity, although its main interest concerns those in one-directiondf and bidirectional coupling®=°
systems, such as chaotic, whose dynamics has an intrinsic From the viewpoint of an external observer, the dynam-
degree of unpredictability. The prediction scheme is very ics of anticipated synchronization can be seen as if one sys-
simple and relies on the use of time delay lines in the tem is forecasting the state of the other. It is unclear, how-
dynamics of the slave system, while the master dynamics ever, under which general conditions a given dynamical
is not altered. By focusing on simple linear examples, in  system would or not exhibit such dynamics. The phenom-
this paper we extract and highlight the essential ingredi-  enon in itself is rather counterintuitive because, depending
ents of this intriguing phenomenon. We also analyze it on the setting, it mixes notions of synchrony and order with
from the engineering point of view, where the slave is the dynamics of chaos and disorder. Furthermore, it is not
seen as a cascade of control system blocks, an interpreta- jmmediately apparent whether or not nonlinearities are es-
tion which might be useful in future applications to sys-  sential for the process. This paper is dedicated to answer
tem control. these concerns, by analyzing the minimal setup able to ex-
hibit the more fundamental aspects of this phenomena.

The paper offers three perspectives covering from the
simplest scenario to the more complex ones. Section Il is a

The coupling of dynamical systems can lead to the synbrief overview of anticipated synchronization as described in
chronization of their outputs.Synchronization means that recent work. In Sec. Il we discuss a toy model describing
two or more systemswith a dynamics that can be either the trivial situation of two “particles” moving with uniform
periodic or chaotit adjust each other giving rise to a com- trajectory in which one particle attempts to closely follow the
mon dynamical behavior. This common behavior can be inother using the scheme described in the anticipated synchro-
duced either by coupling the systeihscally or globally or  nization literature. These particles can be seen as a special
by forcing then? Recently, attention has been given to thecase of the dynamical system presented in Sec. IV, where the
peculiar phenomenon introduced by V&€swhere one sys- case of two coupled maps is analyzed from a dynamical sys-
tem synchronizes not with the present state but with soméems perspective and the condition for anticipated synchro-
future state of another system. This regime, cabdici-  nization derived analytically. The same system is revisited in
pated synchronizatignhas been demonstrated theoretically Sec. V, but now from a Control Systems point of view, both
and numerically in disparate dynamical systems includingor continuous and discrete cases. The paper closes by listing

I. INTRODUCTION

1054-1500/2004/14(1)/7/7/$22.00 7 © 2004 American Institute of Physics

Downloaded 26 Oct 2003 to 130.206.131.132. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



8 Chaos, Vol. 14, No. 1, 2004 Calvo et al.

the most relevant conditions one would expect to see in albystem can be predicted by using this scheme. Again, the
cases of anticipated synchronization. anticipation is more relevant when the dynamics of the mas-
ter is unpredictable by other simple means.
Recently an extension of the scheme was introduced to
II. OVERVIEW OF ANTICIPATED SYNCHRONIZATION include anticipation in nonautonomous systefhs. Specifi-

cally, it has been considered the following set of equations:
Two different schemes have been proposed in order to

achieve anticipated synchronizatidBoth schemes use, in a X(O)=fx®)+1(v),

way or apother, delay Iings w_hich allow forecasting of a (1) =Fy(t)+1(t)+K[x(t)—y(t—7)], (4)

mastertrajectory by aslaveidentical system. ) )
The first scheme uses the techniqueomplete replace- where the new terni(t) represents an external input ggtlng

ment It considers a dynamical system(t) (known as the ©N both master and slave systems. Although the anticipated

master systejn whose dynamics involves a delayed feed-manifoldy(t) =x(t+ 7) is no longer arexactsolution of the

back of the form previous equationfexcept in the case of a periodic forcing
) I(t+ 7)=I1(t)], it has been shown that several features of the
X(t) = —ax(t) +f(x(t— 7)), (1) dynamics of the master can indeed be predicted by the slave.

a>0 being a constant, anda given, generally nonlinear, For instance, it is possible to predict the peaks fired by an
function. The dynamics of thslave systemy(t), is obtained excitable system subjected to a random external fortdAy.

by a similar equation in which the delay term has been comYVe stress that in this case the random forcing induces peak
pletely replaced by the master system. Namely, the evolutiofiing at uncorrelated and unpredictable times.

equation fory(t) is In this second scheme, Eg8)—(4), the actual mecha-
) nism leading to synchronization is much more elusive and,
()= —ay(t) +fx(1). (2> despite the wide variety of work, it is still unclear which are

It is easy to see that the manifoydt)=x(t+ 7), in which  the relevant conditions and requirements for two dynamical
the slave anticipates by a timethe actual output of the Systems to exhibit this type of anticipated synchronization.
master, is a stable solution of the dynamical equatidps  For instance, one would like to understand whether or not
(2). This follows readily from theexac evolution equation nonlinear aspects of the dynamics are needed for the systems
A(t)=—aA(t) for the delayed difference(t)=x(t+7) © exhibit anticipqted.synchronizatior?. In the same line to
—y(t). This result is independent of both the functitin) what extent anticipation can be arbitrarily long is of rel-
under consideration, or the arbitrarily large delay timghe ~ €vance for practical purposes.

structural stability of the asymptotic solution has been dem-

onstrated by implementation in electronic circlitdf  11I. MOTION OF TWO COUPLED PARTICLES

course, the result is more remarkable when the dynamics of The intention in thi tion is t d th ticinated
the master has a high degree of unpredictability, i.e., by € intention In tis section 1S 1o undress the anticipate

choosingf(x) and 7 such that the dynamics of the master is §ynchronization models of irrelevant aspects, to be able to

chaotic. In this scheme, and beyond the mathematical resullf,jentify th? ess_ential mechanisms at play. The goal_is to _have
the anticipation mechanism can be understood from the fad System identical to the more general ones described in the

that the dynamics of the master at timafluences its own anticipated synchronization literature. We first look at the
dynamics at a time later, whereas it enters the dynamics of simplest linear one, thus we choose a dynamical system of

the slave immediately at timte In other words, it is as if the two particles moving uniformly in a one-dimensional space.

slave systeny(t) hasanticipated knowledgef an essential We consider a particle following a uniform motion,
part of the dynamics of the master systg(h). X(t)=v, (5)

The second scheme is one that includes only a delay in

the slave dynamicdThis is defined by the following dy- “lereX(t) is the position of the particle at timeando its
) . i velocity. Following the scheme in anticipated synchroniza-
namical equations for the master and slave systems:

tion to forecasiand “synchronize” with the position of the
X(t)=f(x(t)), master particle we consider anotli&slave”) particle whose

YO =Fy(0)+K[x(H) —y(t—1)]. (3) trajectory is given by

wheref(x(t)) is an arbitrary function andk is a coupling YO =v+ KX =y(t=7)), ©6)
strength matrix. It is easy to show that the anticipated synwhereK is the strength of the coupling between the master
chronization manifoldy(t)=x(t+ 7) is again a solution of particle [Eq. (5)] and the slavgEq. (6)]. To achieve the
this set of equations. At variance with the case of complet@nticipation, the solutiory(t)=x(t+7) has to be a stable
replacement, its stability can only be fulfilled in a limited solution. The stability can be studied analyzing the behavior
range of parameters for and K. Despite this restriction, of the delayed differenca (t) =x(t+ 7) —y(t). We obtain
however, we believe that this method of anticipated synchro- A= —KA(t—7) Ry
nization deserves more attention than that of complete re- '
placement because the anticipation times included as an The condition for local stability, which in linear systems
external parameter and does not influence the dynamics @ a necessary and sufficient condition, of the soluthdh)
the master system. Therefore, in principle, any dynamicak0 (y(t)=x(t+ 7)), is given by"8
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An analysis complementary to ours can be found in Ref. 9.

T
Kr<>. (8 The ansatz5,=\X leads to
n+1
This indicates that in order to observe an anticipated solution 5 — > ¢ \k  modm). (19
of the slave particle within this scheme, the product of the =

coupling with the anticipation time has to be smaller than a

certain value. Larger values produce an over-correction angne (complex constantsCy, . ..,Cp,, are determined by
the slave is unable to anticipate. This expression qualitativel{® initial conditions. The\;, i=1,...n+1 are the solu-
reproduces the numerical results obtained by several rdions of the polynomial equation:
searchers. n _
It is interesting to note that if the two systems are not N(A=a)+y=0. (19
identical, e.g., the velocities are different, then A necessary and sufficient condition for anticipated synchro-
y(t)=v' +KX(t)—y(t—1)). (9) nization to hold and to be asymptotically stable is that

, o y lim_.. 8,=0, or equivalently|\;|<1,Vi=1,... n+1. We
Then we obtain the same stability condition. However the; a6 now the range of validity of this condition as a func-
anticipation is not perfect in the sense that the slave antici

- ) N ” tion of the parameters, n and . It turns out that anticipated
pates with a constant mismatcly(t) =x(t+7)+ (v" g nchronization occurs i e (a—1,y.), where the value of
—v)/K. The mismatch decreases with increasing couplmgy depends onv andn. We consider three cases
constantk.. ¢ ' '

More generally from the set of motion equations includ- (1) a<1. We treat for completeness this case, although it is
ing a dissipation/acceleration term: less interesting from the practical point of view, since the

: maps tend asymptotically to a fixed poigih practice,
X()=v+AXx, (10 after a finite number of stepsAlthough a full analytical
y(t)=v+Ay+KX(t)—y(t—17)), (11) solution does not seem to be available in this case, it is
possible to obtain the asymptotic behavior in the case of

we obtain a stability equation of the form large anticipatiom:

A()=AA(t) —KA(t—17), (12
leading to the conditiort$*® Yeolratss, e<l (20
[K[<—A, (13 Notice that anticipation is possible for arbitrarily lange
or (2) @=1. In this case, the dynamics is quasi-periodic. The
cos Y(A/K) interval of anticipated synchronization can be found ana-
K>[A[ and T KZ=pADT2 (14 lytically as
where the principal valu€d=<cos YA/K)<) is taken. o ™
Ye=2Si 2+ (21

IV. ADYNAMICAL SYSTEMS PERSPECTIVE: . .
TWO COUPLED MAPS In the limit n—o0, y.~ /2n, the same as the continu-

ous case considered in the previous section. Again, an-
Let us consider the same two particles of the previous ticipation is possible for arbitrarily large.
section but now moving with a dynamics given by the fol-

lowing coupled maps: 3) a>1. Th|§ is the more interesting case since the maps
are chaotic. It turns out that the conditipg|<1 is only
Xk+1=aXgta  modm), satisfied fora<1+ 1/n. Alternatively, for fixed a>1
15 the maximum anticipation time is
Yk+1= ayktat y(Xg=Yk-n) modm), (19 1 P
where >0 anda are constants. lix>1 the x, form a Mmax=| 7 @1, (22)

chaotic map, whereaa=1 leads to a quasi-periodic map
and fora<1 the map converges tq=a/(1— «). The nec-
essary n+2 initial conditons are the set
(X0,Y—n:Y-n+1:---Y-1.Y0)-

We are interested in the possibility of the coupled maps
leading to anticipated synchronization, i.e., in having

Yk= Xn+k (16)

. . . L I h i ility of th ki
as an asymptotic solution for the maps. To this end, we con- et us now analyze the predictability of the map, taking

; e . a=1.1, n=6, for which the synchronization limits arg
su;er' the map satisfied by the delayed differedge x, €(0.1,0.19395). First, for visualization purposes, we trans-
—V

form the output of the master map into a series of aperiodic
S 1=ad— YSk_n- (170 spikes by defining a new “firing” sequenag, asu,=1 if

where[ x] denotes the integer part ®f Anticipated syn-
chronization is found forye (a—1,y;) but only forn
<Npax- IN this case ofa>1 we have not been able to
find any analytical approximation or asymptotic expres-
sion and the values of, need to be computed numeri-
cally. The previous results are summarized in Fig. 1.
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FIG. 1. The anticipated synchronization regime is achieved for values of
andn inside the dashed region. Far=1 the upper limit of the synchroni-
zation region is the analytical result, EQ1), whereas fore=0.5 anda
=1.1 these limits have been computed numerically.

X>u and u,=0 if x,<u, with u a convenient threshold
value. Similarly for the slave map, we defing=1 if y,>u
andv,=0 if y,<u. In the case olx=1.1 the timing of the
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FIG. 3. Pulsesy (solid lines and circlesandv_, (dashed lines and dia-
monds, generated by the iteration of E(L5), with «=1.1,a=0.1, n=6,
for three values ofy. Notice that anticipated synchronizati@oincidence of
theu, andv,_,, pulses occurs only for the intermediate value fmiddle
pane).

power spectrum of the, signal is flat, showing the absence
of any preferred time scale, the series is highly unpredict-
able.

In Fig. 3 we show that, in accordance with the previous

pulses does not have any regularity. As shown in Fig. 2, thanalysis, each pulse of the master systgms anticipated

u
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w
FIG. 2. Power spectrura,, (arbitrary unitg of the series ofi, pulses gen-
erated by Eq(15) with parameterge=1.1,a=0.1 andm= 1. This spectrum
is defined as the modulus squared of tdiscrete Fourier transform of the
sequencely, .

n=6 units of time by a pulse in the slave systeq ,, for a
coupling y=0.16e (0.1,0.19395) (middle panel. For too
large or too small values of the coupling the synchroniza-

tion is lost. The existence of a minimum and maximum value
for the coupling in order to have anticipated synchronization,
which appears here as a property of simple linear maps, has
also been observed in more complex chaodind excitable
nonautonomous systeriisThese maps can be seen as well
as a case of integrate and fire dynamics, often used as cari-
catures of neural systems.

V. A CONTROL SYSTEMS PERSPECTIVE

From an engineering viewpoint, the slave dynamical sys-
tem following a master, shown in the previous section, is
seen as a cascade of control system blocks. In this section
anticipated synchronization is analyzed from this Control
System perspective. In both, the continuous and discrete time
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systemsx(t) will be seen as the output of a first order open G(s) V(s)

loop system with no feedback, and the slg¢® (controlled ——

signa) represents the output of an identical system but with X(s) " Y(s)
delayed time feedback and driven by the master sysi@in K/s vl

(the reference signalWith enough loop gain in the feedback
loop, the control will act as a servo mechanism which mini-
mizes the error between the refereogasterx(t)] and its

own delayed outpuy(t— 7). Hence, the internal variable -18
y(t) will be a predictionof x(t).

A. Two coupled particles seen as a servo mechanism | ——

H
The example of the two particles following each other (€)

described by Eqg5) and(6) can be seen as a servo mecha-riG. 4. Block diagram of the continuous-time servo mechanism system, Eq.
nism where the position of the controlled partigig — 7) is (24)—(26), represented by a transfer function in the Laplace domain.
compared with a reference signdlt). The integrator nature
of the loop provides enough gain so that in steady state the
error will vanish and the two signals will match.
Equation(5) represents a pure integrator to inputDe-
noting by X(s) the Laplace transform of(t) and assuming
zero initial conditions fox(t=0), the Laplace transform of
x(t) will be sX(s). Also, since the constant velocity is
represented as an external step input, its Laplace transfor,
V(s) will be equal tov/s. Thus we can write

It follows that if the loop gainG(s)H(s)>1, the closed
loop transfer function will be given by the feedback term
Gy=(H(s)) . For our example this means that(s)
=X(s)e™, and applying the inverse Laplace transform

t)=x(t+ 7). This was the expected result that proves that
e delayed position of the second particle, after some tran-
sient, will follow the position of the first one. Likewisg(t)
will be moving ahead ok(t) in a predictive manner.
X(s)= 12 (23 To perform a stability analysis, the roots of the denomi-
S nators+Ke™ =0 must be found. If we replaceby iw a
frequency analysis can be obtained. This is usually done
This represents a transfer function, in the Laplace domairgrawing real and imaginary parts of the transfer function
with a pole at the origin of the plane. Ifv is constant the wjth the Nyquist diagram or using the Bode plots, represent-
output is a ramp(t) =vt. ing the module and phase separately. The te®iiw)

Repeating the same process for E&).we can write ~K/iw has a gain whose module decreases witand be-

comes unity foro=K, and a constant phase equakar/2.

_v s The transfer function of the delai(iw) has a constant
sY(s)= s +HKX(s)—e""Y(9)), (24 module equal to one,
from where we obtain IH(iw)|=]e" 7 =1, (28)
vls KX(s) and a phase that decreases with
Y(s)= (25

— 7S + — 7S\ *

(stke™™) (s+Ke™™) d(o)=arde = —wr. (29

According to the standard stability criteria for linear sys-
ms the module of the gain &(w)H(w) must be smaller
an 1 when the phase crosses thboundarymeaning the
denominator ofG(s) is zerd. Substitutingw=K the total
phase contribution#K + 7r/2) at the unity gain point should
be smaller thanr, recovering Eq(8),

Applying the inverse Laplace transform to E@5) we can
obtain the temporal evolution of the output for any given
. . . . e
input. The dynamics of the error in the servo mechanism cag‘[‘h
also be obtain by subtracting(s) —Y(s).

The input/output relation(transfer functionin control
system termys betweenX(s) andY(s) is given by the ratio
of these two functiongconsidering zero external input

v

_Y(s)  KIs <5 (30)
GC|(S)_ X(S) - 1 K . (26) 2K
+ ge

B. Discrete system

Equations(24)—(26) can be represented in a block diagram, A giscrete system similar to the coupled maps described
as in Flg_.;l, with direct gaits(s) = K/s and feedback gain by Eq.(15) [but without the modg) constraint can be seen,
H(s)=e ™. In more general terms, the closed loop transfer, engineering terms, as a discrete time control system writ-

function is given by ten as two difference equations: one for the mastend the
other for the slaveyy.
~Y(s)  G(s) To solve Egs(15), without the modfn) constraint, we
Ga(s) (27)

" X(s)  1+G(s)H(s)’ will use theZ-transform®® If Z{x,} is the Z-transform ofx,
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G,(2) V(2) Gy(2) VI. CONCLUSIONS
X(z)__&(z) = 1 Y(s) As stated at the outset, the purpose of this paper is to
> z" 1.2 undress the models of anticipated synchronization to be able
y to see the essentials of this intriguing dynamics, which in

summary are the following.

z" . - T
(i) The phenomenon of anticipated synchronization in it-
— self does not rely on nonlinear properties of the dy-
H(z) namics, indeed, as shown in Sec. IV nonlinearities

FIG. 5. Block diagram of the discrete-time servo mechanism system, Eq. make the anticipation harder or ImpOSSIble.
(34), represented by a transfer function in théransform domain. (i) Some aspects of the problem are naturally understood

by looking at it from a Control Systems approach,
where the delayed terms are seen as an “error signal”
) in a servo mechanism control lo@fec. V.
denoted asX(z) and Z{X,_,} is the Z-transform ofx,_1  (ji) As shown by the derivation using simple stability cri-

obtained by multiplying(z) by z"*, applying these rules to teria (Secs. Il and 1V, the boundaries of the antici-
both equations, we obtain pated synchronizatiofi.e., the fundamental diagram
in Fig. 1 of coupling strength versus the delare
Z{a} expected to be universal for this kind of system.
XD =11 (31)
Overall, these results account for the necessary qualita-
Z{a}+yz *X(2) tive features two systems must have in order to exhibit an-
Y@ =11 vz (D) (32 ticipated synchronization. By clarifying under which condi-

tions the phenomenon would be observable, some questions

where theZ-transform ofa, zZ{a}, depends on the type of Wwill naturally arise opening new applications of these ideas.
input a. For our casea is constant and From the arguments discussed here it seems that “synchro-

nizing in advance” and “controlling the future state” can be

az equivalent objectives describing the aim of the process of

Z(a)= —a (33 anticipated synchronization. In that sense it might be worth
studying the possible connections with systems that teach us
As in the continuous system, we are interested in thd0 master such objectives, as for instance the task of a neural

transfer function betweeX(z) andY(z). Any feedback sys- net adapting to capture a flying object.
tem can be viewed as a direct transfer functi®fz) and a
feedback blockH(z) whose output will be subtracted from AckNOWLEDGMENTS
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