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Abstract

In this Letter, we make use of two information-theory based indicators to measure the goodness of two encryption schemes commonly used
within the context of chaotic communications. In particular, we have shown that the computation of the normalized Shannon entropy and the MPR-
Statistical Complexity measure [M.T. Martín, A. Plastino, O.A. Rosso, Phys. Lett. A 311 (2003) 126, P.W. Lamberti, M.T. Martín, A. Plastino,
O.A. Rosso, Physica A 334 (2004) 119] for different chaotic laser signals can lead to statistically significant criteria to assess the quality of several
encryption techniques. The proposed measures allow, in some cases, to detect the presence of a message embedded within a chaotic carrier.
They also reveal that the Chaos Modulation scheme is more reliable from the statistical point of view, when compared with the Chaos Shift
Keying.
© 2007 Elsevier B.V. All rights reserved.

PACS: 42.55.Px; 42.65.Sf; 89.70.+c

Keywords: Signal encryption; Chaos; Semiconductor laser; Entropy; Statistical complexity

1. Introduction

The security aspects of most of nowadays standard crypto-
graphic systems are often estimated on the basis of the com-
putational power that is required to effectively decode an en-
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crypted message. Thus, in digital cryptographic protocols (such
as the widely used RSA cipher [1]) the security of the sys-
tem relies on the fact that even with the most efficient algo-
rithms available today, the inversion of the encryption pro-
cedure is an excessively time-consuming task for any prac-
tical purpose. However, the potential security of most of the
well-known ciphers remains an open problem. For instance, in
present time, no mathematical proof is known to demonstrate
the non-existence of fast factoring large number algorithms,
a procedure whose presumed infeasibility lies at the heart of
the RSA performance.

The assessment of the security level for analog encryption
protocols has been much less studied in the literature. In this
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case, the presence of a continuum of states posses some prob-
lems which preclude the application of the mathematical appa-
ratus that has been traditionally used for cryptography based on
finite fields. In this Letter we propose the computation of two
information theory based quantifiers (normalized Shannon en-
tropy and MPR-Statistical Complexity [2,3]) as a possible test
of the goodness of different analog encryption schemes. Both
quantifiers are complementary in some sense and have proved
to be very useful in the characterization of time series from dif-
ferent origin [4–7]. In fact, the normalized Shannon entropy
provides a measure of the order/disorder. The MPR statistical
complexity quantifies not only randomness but also the pres-
ence of correlated structures [2,3]. It should be noticed that
the MPR complexity measure is not a trivial function of the
entropy, in the sense that, for a given entropy value H , there
exists a range of possible statistical complexity measure val-
ues between a minimum Cmin and a maximum Cmax [8]. Thus,
evaluating the statistical complexity measure provides one with
important additional information regarding the peculiarities of
a probability distribution (see i.e. Refs. [4–7] and references
therein).

We focus our attention on chaos encrypted communications.
The idea behind chaotic communications is to use the broad-
band spectrum of a deterministic chaotic carrier to hide a small
amplitude message. After propagation through a proper com-
munication channel, the recovery process relies on the selective
synchronization by an authorized part to the chaotic component
of the transmitted signal. Then, a straightforward comparison of
the received and the synchronized signal leads to the message
extraction [9].

Information theory offers a proper framework for the statis-
tical evaluation of quantities such as the content, rate of pro-
duction, and flow of information in univariate and multivariate
signals. Here, we take advantage of the ability of these statisti-
cal complexity measures to detect and quantify the effect of a
message embedded within a chaotic carrier.

Our main goal is to test whether these quantifiers can give
some insight to questions such as: (a) which is the optimal sam-
pling frequency that reveals the presence of information masked
in a chaotic signal? (b) which is the optimal message amplitude
for the encryption/decryption process? or (c) can we discrimi-
nate the security level of different encryption schemes?

The Letter is organized as follows. In Section 2 we intro-
duce the basic ideas and methodology to compute the infor-
mation theory based quantifiers. Section 3 describes the origin
and characteristics of the data sets used in our analysis. The re-
sults are presented in Section 4 altogether a discussion of their
significance. Finally, a summary and conclusions are given in
Section 5.

2. Information theory quantifiers

In a recent contribution, López-Ruiz, Mancini and Calbet
(LMC) have proposed a statistical complexity measure, based
on the notion of “disequilibrium”, as a quantifier of the degree
of physical structure in a time series [10]. Given a probability
distribution P associated to the state of a system, the LMC-

measure CLMC is the product of a normalized entropy H (nor-
malized Shannon-entropy) times the disequilibrium Q, given
by the Euclidean “distance” from P to the uniform distribution
Pe . The statistical complexity vanishes both for a totally ran-
dom process and for a purely periodic one. Martín, Plastino and
Rosso (MPR) [2] improved on this measure by suitably mod-
ifying the distance-component (in the concomitant probability
space). In Ref. [2], Q is built-up using Wootters’ statistical dis-
tance [11].

Regrettably enough, the two statistical complexity measures
above mentioned are neither intensive nor extensive quantities
in the thermodynamical sense, although they yield useful re-
sults. Also, a reasonable complexity measure should be able to
distinguish among different degrees of periodicity and it should
vanish only for the simplest degree of periodicity. In order to at-
tain such goals any natural improvement should give this statis-
tical measure an intensive character. In Ref. [3] Lamberti et al.
obtained a MPR-statistical complexity measure that is (i) able
to grasp essential details of the dynamics, (ii) an intensive quan-
tity, and (iii) capable of discerning among different degrees of
periodicity and chaos. This statistical complexity measure is the
one to be employed here to assess the goodness of different
chaotic encryption paradigms.

The intensive MPR-statistical complexity measure [3] can
be viewed as a functional CJS[P ] that characterizes the proba-
bility distribution P associated to the time series generated by
the dynamical system under study. It quantifies not only ran-
domness but also the presence of correlational structures [2,3,
10]. The intensive MPR-statistical complexity is of the form

(1)CJS[P ] = QJ [P,Pe] · HS[P ],
where, to the probability distribution P = {pj ; j = 1, . . . ,N}
with N is the number of possible states of the system under
study, we associate the entropic measure

(2)HS[P ] = S[P ]
Smax

=
(

−
N∑

j=1

pj ln(pj )

)/
Smax,

with Smax = S[Pe] = lnN (0 � HS � 1). Pe = {1/N, . . . ,1/N}
is the uniform distribution and S is Shannon’s entropy. The
disequilibrium QJ is defined in terms of the extensive Jensen–
Shannon divergence [3] and is given by

(3)QJ [P,Pe] = Q0
{
S
[
(P + Pe)/2

] − S[P ]/2 − S[Pe]/2
}
,

with Q0 a normalization constant (0 � QJ � 1) given by

(4)Q0 = −2

{(
N + 1

N

)
ln(N + 1) − 2 ln(2N) + lnN

}−1

.

Thus, the disequilibrium QJ is an intensive quantity. The dis-
equilibrium Q would reflect on the systems’s “architecture”,
being different from zero if there exist “privileged”, or “more
likely” states among the accessible ones.

For evaluating the probability distribution P associated to
the time series (dynamical system) under study we follow the
methodology proposed by Bandt and Pompe [12] and con-
sider partitions of the D-dimensional space that will hopefully
“reveal” relevant details of the ordinal-structure of a given
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one-dimensional time series. Given the time-series {xt : t =
1, . . . ,M} and an embedding dimension D > 1 and time lag
τ = 1, we are interested in “ordinal patterns” of order D [12–
14] generated by

(5)(s) �→ (
xs−(D−1), xs−(D−2), . . . , xs−1, xs

)
,

which assigns to each time s the D-dimensional vector of val-
ues at times s, s − 1, . . . , s − (D − 1). Clearly, the greater
the D-value, the more information on the past is incorpo-
rated into our vectors. By the “ordinal pattern” related to the
time (s) we mean the permutation π = (r0, r1, . . . , rD−1) of
(0,1, . . . ,D − 1) defined by

(6)xs−rD−1 � xs−rD−2 � · · · � xs−r1 � xs−r0 .

In order to get a unique result we set ri < ri−1 if xs−ri =
xs−ri−1 . Thus, for all the D! possible permutations π of or-
der D, the probability distribution P = {p(π)} is defined by

(7)p(π) = �{s|s � M − D + 1; (s), has type π}
M − D + 1

.

In this expression, the symbol � stands for “number”. The nor-
malized entropy HS and the intensive MPR-statistical complex-
ity CJS are then evaluated for this “permutation” probability
distribution.

The method proposed by Bandt and Pompe [12] for evalu-
ating the probability distribution P is based on the details of
the attractor-reconstruction procedure. Bandt and Pompe con-
sider a partition of the D-dimensional state space determined by
the intersections of D! hyper-planes of R

D : x1 = x2, . . . , x1 =
xD;x2 = x3, . . . , x2 = xD; . . . ;xD−1 = xD . Each permutation
π of order D can be associated with one of the connected pieces
determined by the partition. In other words an “ordinal pat-
tern” represents one connected piece of R

D , and the union of all
pieces is the total state space R

D . The probability distribution P

of “ordinal patterns” is given by the frequency, in the attractor
structure, of each piece (pattern). P is assigned by “counting”
the times that the attractor visits each piece (see Eq. (7)). In
particular, if the attractor is symmetric with respect to the hyper-
planes, all the connected pieces have the same frequency and
thus the distribution of ordinal patterns is uniform: the attrac-
tor “visits” all the partition pieces with the same frequency.
Consequently, the information provided by the time series so
as to predict geometric locations of successive D-strings van-
ishes and the entropy is maximal (Smax = lnD! and HS = 1).
On the other hand, if the situation is such that the attractor re-
mains always within just one of the connected pieces, one can
“predict” with certainty HS = 0.

The advantages of Bandt and Pompe’ method reside in
(a) its simplicity, (b) the associated extremely fast calculation-
process, (c) its robustness, and (d) its invariance with respect to
nonlinear monotonous transformations. The Bandt and Pom-
pe’s methodology can be applied to any type of time series
(regular, chaotic, noisy, or reality based), with a weak stationary
assumption [12]. It is important to remark that for the applica-
bility of Bandt and Pompe’s technique we need not to assume
that the time series under analysis is representative of low-
dimensional dynamical systems. In this methodology the em-

bedding dimension D plays an important role in the evaluation
of the appropriate probability distribution. This is so because D

determines the number of accessible states D! Also, it condi-
tions the necessary length M of the time series that one needs
in order to work with a reliable statistics. In relation to this last
point, we propose that the condition M � D! has to be satis-
fied. This relation is followed immediately taken into account
that (M − D + 1) is the total number of points (vectors) in the
reconstructed phase space. In particular, Bandt and Pompe sug-
gest for practical purposes to work with 3 � D � 7 with time
lag τ = 1.

3. Data description

The data under consideration correspond to numerical simu-
lations of a well-established semiconductor laser model subject
to coherent optical feedback; the Lang–Kobayashi model [15].
Under appropriate conditions of feedback strength and time de-
lay this type of laser enters into a high-dimensional chaotic
regime known as Coherence Collapse (see Ref. [16] for a de-
tailed analysis of the dimensionality and the Kolmogorov–Sinai
entropy measure of this chaotic regime as a function of sev-
eral laser parameters). The generated chaotic varying signal
can be used as the carrier in which a small amplitude digital
message can be hided. An extensive review on optical chaos
and applications to cryptography can be found in Refs. [17,18].
Here, we focus on the encryption of a pseudo-aleatory message
within such a chaotic carrier by means of two different tech-
niques; Chaos Shift Keying (CSK) [19] and Chaos Modulation
(CM) [9]. In the first one, a message is introduced in the chaotic
carrier by slightly perturbing one of the parameters of the laser
such as the injection current. On the other hand, the CM tech-
nique provides a suitable embedding of the message within a
chaotic series by a weak modulation of the output accordingly
to the message signal.

Each time series here analyzed contains N = 5 × 106 points
representing the intensity of the laser output. Three different
sampling period values are considered Ωs = 1, 10, 100 ps. Am-
plitudes ranging from A = 0% to 20% of a given reference
value are studied for the two encryption methods; the CSK and
CM. The message applied in all cases follows a pseudo-aleatory
binary distribution.

4. Results and discussion

For the evaluation of the information theory based quan-
tifiers (normalized entropy HS and intensive MPR-statistical
complexity CJS) each time series is divided in disjoint sections
of M = 104 points. For each portion the distribution of per-
mutation probabilities is determined considering an embedding
dimension of D = 6 while the time lag is chosen to be τ = 1.
Once the probability distribution is known the application of
Eqs. (1) and (2) leads to the corresponding values of HS and
CJS. Note that the condition M � D! is always satisfied and
consequently, statistically significant distribution probabilities
are expected.
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Fig. 1. Normalized entropy, HS , and intensive MPR-statistical complexity, CJS,
boxplots for different amplitude message percent and sample time Ωs = 1 ps.
Left and right column correspond to the Chaos Shift Keying (CSK) and Chaos
Modulation (CM) encryption techniques respectively. Horizontal lines repre-
sent the ANOVA results highly significant (p � 0.001).

Fig. 2. Same as Fig. 1 for sample time Ωs = 10 ps.

The obtained results (boxplots) for the two quantifiers (en-
tropy and complexity) are shown in Figs. 1 to 3 and correspond
to the three time samples Ωs = 1,10,100 ps respectively. As
usual, boxplots [20] illustrate lower and upper lines at the lower
quartile (25th percentile of the sample) and upper quartile (75th
percentile of the sample), respectively, while the line in the mid-
dle of the box is the sample median. The whiskers are lines
extending from each end of the box indicating the extent of the
rest of the sample.

Fig. 3. Same as Fig. 1 for sample time Ωs = 100 ps.

4.1. Encryption tests

We compare the mean values of the quantifiers HS and CJS
as a function of the amplitude used to encode the messages.
One-way ANalysis Of VAriance (ANOVA) together posthoc
tests with Sheffe multiple comparisons [20] are used to test if
the mean value of the complexity measures for different ampli-
tudes are statistically different (level of significance p = 0.05).
In particular, we are interested if such statistical difference is
found when comparing the pure chaotic carrier (A = 0%) to
non-zero amplitude message data sets (A �= 0%). If so, the
present procedure would provide a fast algorithm to detect the
presence of a hidden message in a chaotic carrier. The compar-
ison of the mean values corresponding to the Information The-
ory based quantifiers between the different encoding schemes
will also be investigated as well as the influence of the sam-
pling time (Ωs ).

4.2. Results

Following the order of the questions settled on the introduc-
tory section, we start our analysis by looking at the effects that
different sampling periods can produce on the entropy and the
complexity measures and their relation to the message masking.
Both quantifiers HS and CJS present relevant variations accord-
ing to the degree of detail in the description of the system under
study. The two measures here estimated are then cross-graining
dependents. For a discussion of this effect on two-dimensional
spatial patterns see Ref. [21]. In the case of one-dimensional
time series generated by a continuous dynamical system the
cross-graining effects are evidenced by changing the sample
time. As an example, consider the well known Lorenz sys-
tem given by three ordinal differential equations (ODEs) [22],
with parameters set: σ = 16, B = 4 and R = 45.92 which cor-
respond to a chaotic dynamics. Entropy and complexity were
evaluated for the corresponding time series (M = 32768 data
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Table 1
Normalized Shannon Entropy, H , and MPR-statistical complexity, CJS, ob-
tained with BP methodology (D = 6, τ = 1) for the time series (M = 32768
data samples) corresponding to the X-coordinate of the Lorenz system obtained
by integration of the three ODEs with chaotic behavior and different integration
time steps �T

�T H CJS

0.01 0.210 0.197
0.10 0.695 0.453
1.00 0.967 0.076

points) obtained by integration (fourth-order Runge–Kutta of
with variable step) of the ODEs for the followings time steps
(sampling time) �T = 0.01, 0.10 and 1.00. The obtained values
for the X-variable and D = 6 are given in Table 1. The typical
value used in the literature is �T = 0.1 which gives in princi-
ple a “correct” sampling of the dynamics under study, and the
values of the H and CJS can be taken of representative of this
behavior. The other two values clearly represent oversampling
and subsampling of the dynamics and their effect on the numer-
ical values of the quantifiers is clear (see Table 1). In fact, these
quantifiers could be consider as indicators of the best sampling
time in order to correct capture the systems dynamics. Deeper
works in this direction are in progress.

Figs. 1 to 3 show a clear dependence of the entropy and the
complexity measures as a function of the sampling time Ωs of
our laser time series, i.e. the temporal resolution at which we
are looking at the signal. We can observe that for all message
amplitudes studied A = 2%, 10% and 20% there is a system-
atic increment of HS while enlarging the sampling period. At
this point, it is important to remind the existence of two rele-
vant time scales in the time series. One is the typical correlation
time of the chaotic carrier (τc ∼ 40 ps), while the other is the
duration of a message bit (T = 1000 ps). For Ωs = 1 ps (� τc),
there is an oversampling of the dynamics of the recorded time
series which leads to low values for the normalized entropy and
complexity measures. On the other hand, subsampling at times
far beyond the correlation time induces a randomization of the
chaotic signal and high entropy values are reported (high degree
of disorder). Accordingly, the subsampled chaotic series reveal
their noise-like properties by throwing an almost null value for
the complexity due to the closeness of the computed permuta-
tion probabilities to a uniform distribution. Sampling values of
the order of the dynamics time scale provide a more representa-
tive structure of the signal and leads to intermediate values for
HS and CJS.

Perhaps more interesting is the fact that the ability of the
algorithm to detect the presence of a message crucially de-
pends on the sampling time. Thus, Fig. 3 reveals that for both
encryption schemes a sampling time of Ωs = 100 ps is the
best to discriminate a message-container signal from a pure
chaotic carrier. For such a sampling period the ANOVA analy-
sis of the CSK encoding detects highly significant (p � 0.001)
differences in the mean value of entropy and complexity cor-
responding to time series encrypted with A = 10% and 20%
amplitude message when compared to pure carriers. Messages
with amplitude A = 2% are statistically indistinguishable from

signals which contain no message at all. For the CM scheme
amplitudes as large as A � 20% are needed in order to produce
a significant effect on the entropy and complexity values to be
statistically distinguishable.

When shortening the sampling period one finds that the en-
tropy and complexity measures provide very similar values for
different message amplitudes. This turns out in a reduced func-
tionality of these statistical quantifiers as message detectors
even when the dynamics of the signal is better resolved. One
possible explanation for such behavior is that the main effects
of the introduction of a digital message within a chaotic car-
rier occur at the transition between two different bits. It is at
those borders, when the message is changing its value in a dis-
crete manner, where it is more probable that the message can
modify the ordinal structure of the chaotic signal and disturb
the natural permutation probability distribution. Consequently,
an oversampling of the signal by including more data points
where no message transition is occurring might tend to wash
out the effect of the message in our statistical measures. Taking
into account that T = 1000 ps is the duration of message bit, it
is clear that from our three sampling times Ωs = 100 ps is the
optimum for statistically describe those effects as observed in
Fig. 3.

In summary we have found that for Ω = 100 ps, our entropy
and complexity quantifiers are more sensitive to the presence of
a message within the chaotic carrier. In this case, the sampling
time is larger than the correlation time of the chaotic carrier
(we calculated the correlation time to be around 40 ps) and thus
the sampling procedure induces a randomization of the signal
which can be observed from the fact that the entropy and com-
plexity measures approach to 1 and 0, respectively, which are
the theoretical values for pure stochastic processes. This gen-
eralizes to sampling times larger than correlation time of the
carrier. However, sampling time of Ω = 1000 ps was not in-
cluded in the manuscript since it coincides with the duration of
a bit of the modulated message; in order to capture the struc-
ture of the message (which was the signal to detect within the
chaotic background) we work sampling times smaller than the
duration of a bit.

The chaotic carrier and the modulated message contribute
differently to the entropy and complexity measures as men-
tioned above. The larger contribution of the message to the
unpredictability of the whole signal occurs at the edges between
different bits. Thus, it is expected that oversampling the signal
while the message is at a constant level (this is during the du-
ration of a bit) does not effectively contribute much to reveal
the presence of the message (washing out). One could expect,
in principle, some changes in the time series when the message
is present. We have checked that a simple observation of the
time series does not reveal us any information about the effect
of the sampling in the detectability of the message (correlation
analysis of signals with different sampling times were also inef-
fective in such task). However, if we compare Figs. 1, 2, and 3 it
is clear that there is an increase of detectability of the message
with our quantifiers when changing the sampling time. Fig. 1
(Ω = 1 ps) shows a clear insensitivity in the quantifiers to the
presence of any message while Fig. 3 (for sampling times of
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Ω = 100 ps) shows the best detectability. This indicates that the
sampling time is critical to capture the structure of the message
within the carrier and that this increment in sensitivity cannot
come from the chaotic background contribution whose effect is
just to bias the values of the entropy and complexity to 1 and 0,
respectively. Thus, the change in the sensitivity (or “slope” of
the graphics) from Figs. 1 to 3 is associated to the effect of the
sampling relative to the duration of the message bit.

The characteristics of the encryption/decryption process in
chaos based communications impose some conditions on the
election of the amplitude to encode a message. On one hand, it
should be small enough to avoid simple attacks, e.g. unmasking
by attractor reconstruction techniques, and on the other hand
it must be large enough to ensure an efficient recovery of the
message by the synchronization to an authorized system. In our
case, when A = 2% independently of the encoding technique
and sampling time the complexity and entropy measures are
unable to detect any statistical difference due to the presence of
the message. For the value of A = 10% the difference is not de-
tected 66.67% of the cases for the CSK coding and 100% for
the CM. Amplitude A = 20% causes these values drop down to
33.33% and 50%, respectively. This is, for the same amplitude
messages encoded with CM are more difficult to detect. Based
on these results and the fact that a proper deciphering by selec-
tive synchronization can be performed for amplitudes as small
as A ∼ 2%, we consider that a CM masking at that amplitude
provides an optimum encryption scheme from the perspective
of information theory.

5. Conclusions

We have proposed the computation of two measures based
on information theory grounds to assess the performance of dif-
ferent chaotic encryption schemes. In particular, a disorder and
a complexity quantifiers (normalized Shannon entropy and in-
tensive MPR-Statistical Complexity) are evaluated for different
time series generated by a chaotic laser in which a message
is encrypted. ANOVA analysis has proved that both measures
successfully detect the presence of a message provided that a
message amplitude larger than 10% and the proper sampling
time are used. On the contrary, we observe that message ampli-
tudes smaller than 10% are almost undetectable for both CSK
and CM encryption schemes although CM appears to be more
secure. The statistical measures presented here offer criteria
to decide for optimum encoding techniques. The application
of these measures to explore and quantify the complexity of
synchronized chaotic lasers at different regimes and interact-
ing topologies is considered for future research. The proposed

quantifiers have not any restriction in its applicability to the
kind of time series, and then the advanced methodology in this
paper could work also in the case of data generated by digital
chaotic carriers.
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