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Abstract
We report the results of numerical investigations of the dynamical behaviour of an integrated
device composed of a semiconductor laser and a double cavity that provides optical feedback.
Due to the influence of the feedback, under the appropriate conditions, the system displays
chaotic behaviour appropriate for chaos-based communications. The optimal conditions for
chaos generation are identified. It is found that the double cavity feedback requires lower
feedback strengths for developing high complexity chaos when compared with a single cavity.
The synchronization of two unidirectional coupled (master–slave) systems and the influence of
parameters mismatch on the synchronization quality are also studied. Finally, examples of
message encoding and decoding are presented and discussed.

1. Introduction

The synchronization of chaotic oscillators has been the subject
of significant studies in the last few years due to its fundamental
and applied interests [1]. From the application point of
view, chaos-based communications have become an option to
improve privacy and security in date transmission, especially
after the recent field demonstration of the metropolitan
fibre networks of Athens [2]. In optical chaos-based
communications, the chaotic waveform is generated by using
semiconductor lasers with either all-optical [3–7] or electro-
optical [8–10] feedback loops. In particular, semiconductor
lasers subject to the influence of optical feedback from a
distant mirror have been investigated extensively for the
past two decades and different dynamical behaviours have
been characterized, including periodic and quasi-periodic
pulsations, low frequency fluctuations and coherent collapse
(for more details, see [11]). In the conventional all-optical
feedback case (COF), the set-up consists of a laser with
an external mirror. Typically, to achieve chaotic behaviour
in COF a delay roundtrip time of at least few hundreds of
picoseconds is needed. So, in air the external cavity should
be about few centimetres long, which is a drawback for the

design of compact chaotic sources. In this context, multi-
section lasers with an amplified feedback section could be
suitable candidates for integrated chaotic emitters. Due to
the continuing technological progress, multi-section lasers
have reach stable and compact configurations which include
integrated sections with common waveguides tunable phase
shifts [12]. However, the simplest configuration, a two-section
laser with one active section and one passive section acting as
an external cavity, is not suitable since the length of the passive
section is typically too short to achieve chaotic dynamics.
Therefore, more complex designs have to be explored. A
recent step in this direction was the consideration of integrated
three section lasers with amplified feedback [13]. Here we
consider a different configuration which includes feedback
from an integrated double cavity.

Lasers subject to feedback from two cavities have
been considered in several configurations [14–18]. In
particular, feedback from a second cavity has been used to
control the chaotic dynamics of semiconductor lasers with
optical feedback. Control in the low frequency fluctuation
regime has been achieved by properly adjusting both the
length and the feedback strength of the second external
cavity. Configurations using Fabry–Perot resonators to
provide feedback have also been studied [19, 20]. In this
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Figure 1. A sketch of the proposed setup for chaos synchronization and message encoding, using semiconductor lasers under the influence
of double cavity feedback. R1 and R2 are the reflectivity of the air-material facet and the outer facet of the material cavity, respectively. The
length of the air cavity l and the material cavity L are taken to be the same: L = l = 1 cm, nL = 3; ω0 is the free running frequency of the
CW laser.

case, the feedback can destabilize the laser emission but can
also improve the stability of CW emission by enhancing the
damping of relaxation oscillations or allowing the control of
the chip in a non-invasive way.

In this paper, we consider an integrated device composed
of a semiconductor laser subject to feedback from a double
cavity with the aim of generating a complex chaotic waveform
suitable for applications in chaos-based communications. The
scheme of the system is depicted in figure 1. It consists of
a single mode semiconductor laser coupled to an external
passive cavity of the same III–V material through an airgap.
Here we choose the two external cavities (airgap and III–V
material) of the same length, in this case 1 cm. To avoid
diffraction losses in the air cavity, a microlens should be
placed at the laser facet to collimate the beam (not shown
in our set-up). Assuming a refractive index of 3 for the
material, the total delay time in the two cavities amounts to
approximately 0.266 ns. The advantage of this double cavity
configuration is the existence of two feedback phases, one
in the airgap cavity and the other in the material cavity; the
latter can be easily adjusted to destabilize the dynamics of the
laser. Moreover, while we assume that the first reflectivity is
defined by the air-material facet, the outer facet of the material
cavity can be coated to increase its reflectivity. We study the
conditions for which the behaviour of the system is chaotic
due to the influence on the laser dynamics of the feedback
from the double cavity. We also study the synchronization
of two of such systems under unidirectional coupling. In the
absence of coupling, the behaviour of transmitter and receiver
systems is uncorrelated. When a certain amount of light is
injected from the transmitter into the receiver, the latter is able
to synchronize to the emitter under appropriate conditions.
Typically, the receiver does not synchronize identically to the
emitter due to the injected field. Therefore, synchronization is
not complete but generalized [21]. Synchronization is robust
to small perturbations of the carrier. A message of small
amplitude can then be included in the carrier which will be
filtered out by the receiver. Several message encoding schemes
have been proposed in the literature [22, 23]. Here we include
the message as a modulation in the amplitude of the chaotic

carrier (chaos modulation) [3]. The message can be decoded
at the receiver by comparing its input (carrier mixed with
message) with its output (which ideally reproduces only the
carrier).

The paper is structured as follows. In section 2,
we introduce an appropriate model to describe the system
dynamics. Section 3 presents a study of the dynamics of a
laser under the influence of double cavity feedback (DCF). In
section 4, we study the synchronization of two of such systems.
The influence of the mismatch in the feedback phases on the
synchronization quality is also discussed. Section 5 is devoted
to message encoding and decoding. Finally, conclusions are
given in section 6.

2. The model

To model the set-up shown in figure 1, we consider a single
mode CW laser coupled to a longitudinal double cavity. The
first mirror is located at distance l from the laser facet. The
distance between first and second mirrors is L. The optical
feedback phase in the second cavity ψ can be controlled by
injecting current into the passive section. We assume that
the current injected in the passive section is small enough to
affect only the refractive index, so that the optical length of
the resonator is changed in the sub-wavelength range. In this
way, while the feedback phase ψ can be tuned, the change
in the delay time between the two mirrors τL is negligible.
Alternatively, this phase could also be controlled with a piezo
actuator. In principle, multiple reflections may take place.
However, for the feedback parameters we will use, it is
enough to consider a single reflection in both cavities. This
approximation strongly simplifies the calculations.

The laser dynamics can be analysed in the framework of
the extended Lang–Kobayashi equations for the complex field
amplitude E and an excess carrier density N [24, 25]:

dEt,r

dt
= (1 + iα)

[
g(Nt,r − N0)

1 + ε|Et,r |2 − 1

τph

]

× Et,r

2
+ γt1,r1 e−iϕEt,r (t − τl) + γt2,r2 e−i(ϕ+ψ)

×Et,r (t − (τl + τL)) + krEt , (1)

2
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dNt,r

dt
= It,r

e
− 1

τe

Nt,r − g(Nt,r − N0)

1 + ε|Et,r |2 |Et,r |2. (2)

The subscripts t and r refer to transmitter and receiver lasers,
respectively. The last term in equation (1) is present only in
the receiver laser and describes the unidirectional coupling. kr

is the coupling parameter of the injected field into the receiver
laser given by κr = √

1 − Rηext/(τc

√
R), where R is facet

power reflectivity of the slave laser (R = 30%), τc is the cavity
roundtrip time of the light within the laser (τc = 10 ps),
ηext accounts for losses different than those introduced by the
laser facet (ηext = 0.5). τl and τL are the airgap and passive
material roundtrip times, respectively. γt1,r1 and γt2,r2 are the
feedback strengths governed by the reflectivity R1 and R2,
respectively. For simplicity, we assume R1 and R2 such that
γt1 = γt2 = γr1 = γr2 = γ . ϕ = ω0τl (whose value can
strongly vary from one device to another) and ψ = ω0τL

are the optical phase accumulated in the airgap and material
cavities, respectively. The other parameter values are α = 5,
the linewidth enhancement factor; g = 1.5 × 10−8 ps−1, the
differential gain parameter; ε = 5 × 10−7, the gain saturation
coefficient; τ ph = 3 ps and τ e = 2 ns, the photon and carrier
lifetimes, respectively; τ l = 0.066 ns and τ L = 0.2 ns, the
round trip times. The injected current is fixed at I = 50 mA
(the threshold current Ith = 11.5 mA) and the carrier number
at the transparency at N0 = 1.2 × 108. The parameter values
are used for the calculated results that are shown in all figures
of the paper.

3. Laser dynamics under the influence of double
cavity feedback

3.1. Stationary states. External cavity modes

In the subsequent analysis, we consider the stationary lasing
states of the system (1) and (2). They are given by rotating
wave solutions, usually called external cavity modes (ECMs),

E(t) = ES eiωSt , N = NS. (3)

Inserting (3) into (1) and (2), we obtain a transcendental
equation for the emission frequency ωS :

F(ωS) = −ωS + αγ [− cos(ϕ + ωSτl)

− cos(ϕ + ψ + ωS(τl + τL)] − γ [sin(ϕ + ωSτl)

+ sin(ϕ + ψ + ωS(τl + τL))], (4)

where ωS is obtained from F(ωS) = 0. Finally, ES and NS

can be obtained by inserting the value of ωS in (1) and (2) and
equalling rhs to zero.

When only one cavity is present (COF), equation (4)
provides a finite number of solutions which are located on
top of an ellipse in the NS versus ωS plane. This elliptical
locus for the solutions is independent of the feedback phase
ωSτ , τ being the external cavity roundtrip time. The feedback
phase then determines the exact number of solutions as well
as its precise location on the ellipse. If the feedback phase is
changed, the location of the solutions moves on the ellipse.

In contrast to the COF case, the feedback from the Fabry–
Perot resonator implies a non-elliptic location of modes [19].

For different phases ϕ, the location of the ECMs moves along
an eight-shape figure, with the solitary laser mode located in
the waist. The nature of the bifurcations and the stability of
the solutions for the resonant feedback from FPR have been
analysed in more detail in [19].

The situation is again different for the case of DCF. The
solid lines in figures 2(c) and 3 show the locus of ECMs
in the plane (NS − ωS) for two different levels of feedback
strength and different values of one of the feedback phases
ϕ. The other feedback phase, ψ , then determines the exact
number of solutions and its precise location on the geometrical
locus (marked by circles). We first consider a small feedback
strength γ = 5 ns−1 (left column in figure 2(c)). For
ϕ = −π/2, the location of the fixed points is similar to that of
the COF case, i.e. the modes are located on a ellipse although
now the ellipse is distorted (see figure 2(c) (left)). The number
of ECMs depends on the values of the feedback phase. Only
one mode is present for ψ = π/4. When the feedback strength
is increased to γ = 15 ns−1 (right column in figure 2(c)), new
satellite bubbles of ECMs appear on left and right sides of the
deformed ellipse. The different satellite bubbles span for a
range of frequencies which is much larger than for the weak
feedback case γ = 5 ns−1. The onset of these bubbles reflects
the existence of frequency gaps for which no ECM solutions
exist. These frequency gaps are originated from destructive
interference in the feedback coming from the two cavities.
Figure 2(a) shows the total reflected light for γ = 5 ns−1 (left)
and γ = 15 ns−1 (right). For the last value of γ within the
range of frequencies in which ECM solutions are found, there
are two regions of vanishing reflected light which correspond
to the two regions that separate the three bubbles shown in the
right panel of figure 2(c)). Figure 2(b)) shows the value of
the rhs of equation (4) for ϕ = −π/2. It can be seen as a fast
oscillatory behaviour on top of a slower one. The fast and slow
oscillatory periods are determined by the two feedback times.
The intersection of this curve with zero shows the solutions of
equation (4). Increasing γ , the amplitude of the oscillations
becomes larger and therefore more ECMs exist for any given
values of the feedback phases. Also increasing the feedback
strength leads to the emergence of additional bubbles of ECMs.
For ϕ = π/6, the system exhibits almost the tilted eight-shape
(see figure 3(a) (left)) which is similar to that found in a Fabry–
Perot resonator [19]. Although the level of feedback is still
the same as before, the number of solutions has increased for
ψ = π/4. Also note that the size of the locus for the ECMs is
clearly larger than in the previous case. Finally, for ϕ = π/2
the tilted eight-shape opens in the centre leading to a ‘peanut’
shape for the locus of the ECMs (see figure 3(b) (left)). The
overall size of the locus as well as the approximate number of
solutions is the same as for ϕ = π/6. This clearly illustrates
that in the case of the DCF, the location of the modes becomes
more complicated when compared with that of the COF.

3.2. Chaotic behaviour

For feedback strength small enough, a laser under the
influence of COF or DCF shows either CW or pulsating
operation. Chaotic behaviour appears as the feedback strength

3



J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 155401 V Z Tronciu et al

(a)

(b)

(c)

Figure 2. External cavity modes for a double cavity with γ = 5 ns−1 (left) and γ = 15 ns−1 (right). (a) Reflection spectrum. (b) Graphical
solution of (4) for ϕ = −π/2 and ψ = π/4. The circles indicate the modes. (c) Locus of the ECMs in the plane (NS − ωS) for ϕ = −π/2.
The circles indicate the precise location of ECMs for the feedback phase ψ = π/4.

(a)

(b)

Figure 3. Locus of the ECMs in the plane (NS − ωS) for different phases. (a) ϕ = π/6 and (b) ϕ = π/2 and two levels of feedback
strength: γ = 5 ns−1, (left) and γ = 15 ns−1 (right). The symbols indicate the external cavity modes for ψ = π/4.

is increased. Figure 4 illustrates typical time traces (left) and
the power spectra (right) of a semiconductor laser under the
influence of COF and DCF for identical laser parameters in the

chaotic regime. It can be observed that the DCF makes the laser
behaviour more complex. This fact was further confirmed by
calculation of the autocorrelation time from equations (3) Tc =

4
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Figure 4. A typical optical power time trace (left) and the power spectrum (right) of a semiconductor laser under the influence of (a) COF
for γ = 30 ns−1, ϕ = −π/2, τ = 0.266 ns and (b) DCF for γ1 = γ2 = 30 ns−1, ϕ = −π/2, ψ = π , τ = τl + τL = 0.266 ns, τl = 0.066 ns,
τL = 0.2 ns.

∫ ∞
0 dτ �2

ii (τ ) and (4) �ij (τ ) = 〈(Pi (t)−〈Pi 〉)(Pj (t−τ)−〈Pj 〉)〉√
〈(Pi (t)−〈Pi 〉)2〉〈(Pj (t)−〈Pj 〉)2〉

of [13]. These calculations yield to T COF
c ∼ 0.1 ns and

T DCF
c ∼ 0.037 ns. Moreover, larger amplitude fluctuations

when compared with COF can be observed.
Figure 5 displays the bifurcation diagrams of the

semiconductor laser subject to DCF for two feedback phases.
As the feedback strength is increased, several instabilities
take place. For a given value of the feedback strength, the
figure displays the values of all the local maxima of the time
traces of the emitted power. Considering ϕ = −π/2 and
ψ = π , for low values of the feedback strength, the CW
operation is observed, which is depicted as a single value for
the maxima of the power in figure 5(a). At the feedback
strength γ = 10 ns−1, Hopf bifurcation appears and the
output power develops an oscillatory behaviour. Since the
oscillations are periodic, for a given feedback strength all
the local maxima of the output power have the same value
and consequently a single point appears in figure 5. The Hopf
bifurcation is supercritical and, as expected, the oscillation
amplitude grows with the square root of the distance from
the bifurcation point. As the feedback strength is further
increased, a scenario compatible with the quasiperiodic route
to chaos is obtained. However, the range and amplitude of
this behaviour are small. When the feedback strength reaches
the value γ = 15 ns−1, a jump to a new P periodic operation
region is observed. As the feedback strength increases, a
second scenario compatible with the quasiperiodic route to
chaos appears. For large values of the feedback strength, the
system displays a chaotic behaviour.

For ϕ = π/2 and ψ = π/4 (see figure 5(b)), the
system behaviour is slightly different; the Hopf bifurcation
is shifted to a lower feedback level involving the appearance
of low amplitude chaotic behaviour for low feedback strengths

feedback strength       [ ns-1  ]
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Figure 5. Numerical bifurcation diagrams for different values of
phases (a) ϕ = −π/2, ψ = π and (b) ϕ = π/2, ψ = π/4. CW
shows the continuous-wave operation, the circle H indicates Hopf
bifurcation and P shows the peak of the stable periodic solution.

followed by the CW operation and a scenario compatible
with the quasiperiodic route to chaos. We mention that the
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Figure 6. (a) Synchronization diagrams for different levels of the
coupling parameter k. (a) k = 0 ns−1 (the systems are uncorrelated),
(b) k = 50 ns−1 (C = 0.75), (c) k = 75 ns−1 (C = 0.997),
(d) k = 100 ns−1(C = 0.9995). The feedback strength is taken as
γ = 30 ns−1 and the feedback phases are ϕ = −π/2 and ψ = π .

numerical calculations show that in this parameter region and
for any value of the feedback strength larger than 25 ns−1 and
combination of phases ϕ and ψ , the laser behaviour is chaotic
and robust.

4. Synchronization and mismatch in feedback
phases

In the previous section, we have clarified different aspects
of the dynamics of a semiconductor laser with integrated
DCF for obtaining chaotic behaviours. In what follows,
we are interested in the transmitter–receiver configuration
and in the evaluation of its synchronization properties.
Synchronization can be quantified by measuring the cross
correlation coefficient:

[C = 〈Pm(t)Ps(t)〉/(〈|Pm(t)|〉〈|Pm(t)|〉)]. (5)

Figure 6 shows the emitted power of the slave system
versus the power of the master (synchronization diagram)
for feedback strength γ = 30 ns−1and different levels of
the coupling parameter k. We first consider the case of
identical master and slave systems, so we take the same
parameter values for both of them. When the coupling
parameter is equal to zero, as shown in figure 6(a), the
trajectories of the master and slave lasers depart from each
other and the synchronization map is a cloud of points showing
the lack of correlation between outputs. Increasing the
coupling parameter to k = 50 ns−1, the synchronization map
shows a clear synchronization process (see figure 6(b)) with
a cross correlation coefficient C = 0.75. By increasing the
coupling until 100 ns−1, the synchronization improves and
the cross correlation coefficient increases approaching 1 (see
figures 6(c) and (d)).
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Ψ 
/ π
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Figure 7. The cross correlation coefficient as a function of the
feedback phases for γ = 30 ns−1 and κ = 75 ns−1. The star is
the operating point for message encoding and decoding used in
section 5.

Figure 7 shows the dependence of the synchronization
quality as a function of the feedback phases. It displays
the value of the correlation function in the parameter space
(ϕ − ψ) for feedback strength γ = 30 ns−1 and coupling
coefficient κ = 75 ns−1. It can be clearly seen that the region
of high correlation coefficients is wide while regions of low
correlation hardly appear. The star in figure 7 corresponds
to the operating point that will be considered for message
encoding and decoding in the following section.

It is well known that the quality of the synchronization
depends on the similarity between master and slave lasers.
The influence of the internal laser parameters’ mismatch on
the synchronization quality has been studied in [26, 27], so
here we focus on the influence of the mismatch on the two
feedback phases. Figure 8 shows the dependence of the cross
correlation coefficient on the phase difference (phase master −
phase slave) for feedback strength γ = 30 ns−1 and coupling
strengths k = 75 ns−1 (a) and k = 100 ns−1 (b). The solid
line shows the degradation of the synchronization due to a
mismatch in the material cavity feedback phase. We take
ϕm = ϕS = π and ψs = 0 while ψm is varied from 0 to
π . The dotted line shows the effect of a mismatch in the
air cavity feedback phase. We consider ψs = ψm = π and
ϕS = 0 while ϕm is varied from 0 to π . When the feedback
phases coincide, the system shows perfect synchronization
with a C ∼ 1 cross-correlation coefficient. An increase of the
mismatch in any of the feedback phases induces degradation
of the synchronization which is indicated by a reduction of
the cross correlation coefficient. For small mismatch, the
degradation of the correlation is similar for the mismatch in
any of the two phases. As the mismatch is increased, the
degradation is clearly more severe in the case of mismatch in
the feedback phase of the air cavity, ϕ. This may be understood
from the fact that ϕ is the phase of the shorter cavity and in
general short cavities are more sensitive to phase variations
than long cavities. For larger values of the coupling strength,
the effect of the mismatch in the feedback phases is smaller and
therefore the cross-correlation coefficient decreases slower as

6
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Figure 8. The cross correlation coefficient as a function of the feedback phase difference (phase master − phase slave) for
coupling k = 75 ns−1 (a) to k = 100 ns−1 (b). Panel (c) shows the cross correlation coefficient for ϕm = ϕS = π and ψm = 0 as a
function of the material phase for the slave laser ψs . For both master and slave systems, the feedback strength has been taken as
γ = 30 ns−1.

the mismatch is increased. High values of the cross-correlation
coefficient are usually required for efficient message encoding
and decoding; therefore, the mismatch in the feedback phases
should not exceed 0.1/π . Alternatively, a small airgap phase
mismatch can be compensated adjusting the material phase
ψ of the slave laser. Figure 8(c) shows an example of such
compensation. The mismatch in the airgap phase is 2.5%
(point B of figure 8(a)), and a very good correlation can be
achieved (point C).

5. Message transmission

In this section, we consider the use of these integrated
devices for message encoding and decoding in chaos-based
communications. Several ways for encoding and decoding a
message within the chaotic carrier has been proposed in the
literature, including chaos modulation [3], chaos shift keying
[28], chaos masking [26], etc. Here we consider the chaos
modulation technique [3] which can be easily implemented in
real devices. The message is encoded as a small amplitude
modulation of the emitted field of the master, so that the signal
transmitted to the receiver is

ET = Et(1 + ςm(t)), (6)

where m(t) is the message and ς is the message amplitude.
At the receiver system, the message is decoded comparing
the input of the receiver with its output which is ideally
synchronized to the carrier

Mdecoded =
√

PT /PS − 1. (7)

Figure 9 illustrates the transmission of a non-return to zero
pseudorandom message. The system parameters correspond
to the operating point shown with a white star in figure 7.
Panel (a) shows the input message. Panels (b) and (c) show
the chaotic carrier without the message and the transmitted
signal (carrier with message) respectively. Panel (d) shows
the decoded message, as indicated in equation (7), and filtered
by an appropriate low-pass filter [29]. As can be seen from
the figure, the message is well recovered. Panel (e) shows
the recovered message for a 2.5% mismatch in the airgap
phases between master and slave lasers. It can be clearly seen
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Figure 9. Numerical results of encoding and decoding of a
2.5 Gbit s−1 digital message for a closed loop scheme: (a) encoded
message, (b) output of the master laser, (c) output of the master laser
with a message, (d) recovered message after filtering (solid line) and
input message (dotted line) for identical parameters for master and
slave lasers (point A of figure 8(a)), (e) recovered message (solid
line) after filtering for lasers with 2.5% mismatch of airgap phases
(point B of figure 8(a)), (f) recovered message (solid line) after
filtering for lasers with 2.5% mismatch of airgap phases, but the
slave airgap phase is compensated by a different ψ s phase (point C of
figure 8(c)). Parameters γ = 30 ns−1, κ = 75 ns−1, ϕ = −π/2,
ψ = π , τl = 0.066 ns, τL = 0.2 ns.

that part of the message cannot be recovered. On the other
hand, the airgap phases’ mismatch can be compensated by the
controllable phase of the slave laser. As can be seen in panel
(f), the message is now well recovered.
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It is worth to stress that these simple examples of the chaos
modulation encoding technique, within a chaotic waveform,
obtained from a double cavity feedback are efficient and simple
and could be easily applied to a chaos-based communication
system by using an external modulation.

6. Summary and conclusions

We have studied the dynamics of an integrated device
composed of a semiconductor laser and a double cavity
that provides delayed optical feedback. The double cavity
feedback implies the existence of two feedback phases which
can play an important role in the dynamics. This extra degree
of freedom leads to a more complex behaviour which, in fact,
is already indicated when looking for the number and location
of the fixed points. While in the more conventional case of
using a single cavity, these steady states are located on top
of an ellipse in the (NS − ωS) plane, in the double cavity
case the ellipse can be strongly distorted and can break into
several bubbles. The number of coexisting steady states is also
increased in the case of double cavity feedback, and chaotic
behaviour is found for lower values of the feedback strength.
Furthermore, chaos already appears for quite short cavities,
allowing for compact devices.

We have shown that two of these devices can be
synchronized when operating in the chaotic regime in a
master–slave configuration. However, synchronization is
degraded when there is a mismatch in the parameters of the
master and slave systems. Since the novelty of this scheme is
the existence of two feedback phases, we have addressed in
detail the effect of a mismatch in these phases. A mismatch
in the airgap feedback phase turns out to have stronger effects
in the master–slave cross-correlation than a mismatch in the
material cavity feedback phase. However, for small enough
mismatches, good quality synchronization is achieved. For
the parameter values where good synchronization is achieved,
it is possible to encode a message in the carrier using the chaos
modulation technique. The message can be appropriately
recovered at the receiver even for high bit rates. The
codification method we employed is just an example of what
can be done. While this codification technique is efficient
and simple to implement, other codification methods could be
used as well. We believe that our work provides a good basis
for future study and, in particular, provides some pointers
for more detailed investigations of multi-section integrated
devices and their applications for chaos-based communication
systems.
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