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ABSTRACT. A classification of dynamical systems in terms of their variational properties is reviewed. Within
this classification, front propagation is discussed in a non-gradient relaxational potential flow. The model is
motivated by transient pattern phenomena in nematics. A front propagating into an unstable homogenous
state leaves behind an unstable periodic pattern, which decays via a second front and a second periodic
state. An interface between unstable periodic states is shown to be a source of propagating fronts in opposite
directions.

1. Introduction.

In this paper we will consider pattern formation in systems which approach, asymptotically in time,
an homogeneous stable state. However, they exhibit long-lived pattern dynamics as transient states.
Such patterns may originate in finite wavenumber fluctuations triggering the decay of an initially
homogeneous stable state1;2 or be a consequence of fronts propagating through the system3. We
will focus here on patterns created by front propagation into unstable states. A physical motivation
for this study is the long lived transient patterns observed in the Fréedericksz transition in nematic
liquid crystals4.

The type of systems discussed here are described by dynamical systems for which a Lyapunov
functional, also called potential, exists. Time evolution proceeds then by minimizing such potential.
However, we wish to emphasize that potential minimization can be attained along many different
directions in the phase space of the system, depending on other ingredients of the dynamical system
beyond the potential. In fact, the existence of rich transient dynamical behavior in many systems
can be traced back to these other dynamical ingredients of the potential system. For pedagogical
purposes we review in Sect. 2 a classification of dynamical systems in which the different role of
relaxational vs. non-relaxational (non-dissipative) contributions to the dynamics is pointed out.

A general model for transient pattern dynamics is introduced in Sect. 3. The model is motivated
by the physics of the Fréedericksz transition in nematics and justified from the nematodynamic
equations5. Within the classification of Sect. 2, the model belongs to the class of potential and
relaxational non-gradient flows. The non-gradient contributions originate in an approximation to
non-relaxational dynamics associated with hydrodynamic coupling in the nematodynamic equa-
tions. In Sects. 4 and 5 we study front propagation in this model. A front connecting homogeneous
stable and unstable states is seen to propagate leaving behind it a periodic spatial pattern which
is linearly unstable. The decay of this pattern is via an intermediate periodic pattern of larger
wavelength. This second pattern is still linearly unstable, but it is more stable in terms of the
Lyapunov potential. It appears behind a second front which propagates into the original periodic
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state. The velocity of the two propagating fronts, as well as the wavenumber of the periodic states
is successfully determined from marginal stability arguments6. Finally, in Sect. 5 we consider the
fronts which originate in the interface between two periodic unstable states of different periodicity.
Such interface is shown to be a source of fronts propagating in opposite directions, while the system
evolves through states of greater stability in its search for the global potential minimum.

2. What is a potential system?

It is commonly stated that the rich variety of dynamical states that occur in non-equilibrium systems
originates in the non-potential or non-variational character of the dynamical models which describe
them. The main argument is that, in these cases, the study of the dynamics can not be reduced to
the minimization of a potential which plays the role of the free energy of equilibrium systems. This
general statement needs to be qualified, since it is well known that models used to study equilibrium
critical dynamics7 include mode-mode coupling terms such that its dynamical evolution is not
simply given by the minimization of the free energy. In the following we review a classification
of dynamical systems that, although well established in the context of stochastic dynamics8;9 it is
often overlooked in general discussions of deterministic spatio-temporal dynamics.

Non-potential dynamical systems are usually defined as those for which there is no Lyapunov
potential giving the time evolution. Unfortunately, this definition is also applied to cases in which
there is no known Lyapunov potential. To be more precise, let us consider dynamical systems of
the form  ̇ = A[ ] (2:1)
where  represents the set of dynamical variables. For generality, we take them to be complex,
and the notation  � represents the complex conjugate of  . Here the dynamical variables will be
spatially dependent fields:  =  (x; t). A[ ] is a functional of them. Let us now split A into two
contributions: A[ ] = G[ ] +N [ ] ; (2:2)
where G, the relaxational part, will have the formG[ ] = �Γ

�F [ ]� � ; (2:3)
with F a real and scalar functional of  . Γ is an arbitrary hermitic and positive-definite operator
(possibly depending on  ). In the case of real variables there is no need of taking the complex
conjugate, and hermitic operators reduce to symmetric ones. The functional N [ ] in (2.2) is the
remaining part of A[ ]. The important point is that, if the splitting (2.2) can be done in such a
way that the following orthogonality condition is satisfied (c.c. denotes the complex conjugate
expression): Z dx��F [ ]� � N [ (x)]�+ c:c:� = 0 ; (2:4)



then the terms in N neither increase nor decrease the value of F , which due to the terms in G
becomes a decreasing function of time: dF [ (x; t)]dt � 0 : (2:5)
If F is bounded from below then it is a Lyapunov potential for the dynamics (2.1). Equation
(2.4), with N = A� G can be interpreted as an equation for the potential F associated to a given
dynamical system (2.1). It has a Hamilton-Jacobi structure. Its solution is in general a difficult
task, but several non-trivial results exist in the literature10;9.

Once this notation has been set-up, we can call relaxational systems those such that there is a
solution F of (2.4) such that N = 0, that is all the terms in A contribute to decrease F . Potential
systems can be defined as those for which there is a nontrivial (i.e. a non-constant) solution F to
(2.4). A more detailed classification is the following:

1.- Relaxational gradient flows: Those dynamical systems for whichN = 0 and Γ is a constant.
In this case the time evolution of the system follows the lines of steepest descent of F . A
well known example is the so called Fisher-Kolmogorov equation, also known as model A of
critical dynamics7, or (real) Ginzburg-Landau equation for a real field  (x; t): ̇ = rr2 + c � b j  j2  ; (2:6)
where r, c, and b are real coefficients. This equation is of the form of Eq. (2.1)-(2.3) withN = 0, Γ = 1, and F = FGL[ ], the Ginzburg-Landau free energy:FGL[ ] = Z dx�r

2
j r j2 � c

2
j  j2 + b

4
j  j4� (2:7)

2.- Relaxational non-gradient flows: Still N = 0, but Γ is not constant, so that the dynamics
does not follow the lines of steepest descent of F . A well known example of this type is the
Cahn-Hilliard equation of spinodal decomposition, or model B of critical dynamics7: ̇ = (�r2)���FGL[ ]� � ; (2:8)
The symmetric and positive-definite operator (�r2) has its origin in a conservation law for .

3.- Non-relaxational potential flows: N does not vanish, but the potential F , solution of (2.4)
exists and is non-trivial. Most models used in equilibrium critical7 dynamics belong to this
category. A simple example of this is ̇ = �(1 + i)�FGL[ ]� � ; (2:9)
where now  is a complex field. Notice that we can not interpret this equation as being of
type 1, because (1 + i) is not a hermitic operator, but still FGL is a Lyapunov functional for
the dynamics. Equation (2.9) is a special case of the Complex Ginzburg- Landau Equation



(CGLE), in whichA[ ] is the sum of a relaxational gradient flow and a nonlinear Schrödinger-
type equationN [ ] = �i �FGL[ ]� � . The general CGLE11 is of the form (2.6) but  is complex
and r, c, and b are arbitrary complex numbers. Calculations by Graham and coworkers
indicate12;13 that the CGLE, a paradigm of complex spatio-temporal dynamics, might be
classified within this class of non-relaxational potential flows. The difficulty is that the
explicit form of the potential to be obtained as a solution of (2.4), is only known in an
uncontrolled small-gradient expansion.

4.- Non-potential flows: Those for which the only solutions F of (2.4) are the trivial ones (that
is F = constant). Hamiltonian systems as for example the nonlinear Schrödinger equation
are of this type.

In this paper we only deal with potential situations. The model we introduce in the next section
belongs to the class of relaxational non-gradient dynamics. The non-gradient character has its
origin in the non-relaxational and more complex dynamics of nematic liquid crystals in a magnetic
field, from which our model is obtained after some approximations.

3. A general model for transient pattern dynamics

Transient pattern formation is well documented experimentally for different instabilities in nematic
liquid crystals14. We discuss here a general model whose physical motivation is the magnetic
Fréedericksz transition. In this transition the reorientation of the nematic director in response to a
large enough applied magnetic field does not proceed homogeneously: a transient striped pattern
with a characteristic wavelength emerges. At long times the pattern disappears leading to the
homogeneously reoriented final equilibrium state. We consider a twist geometry in which the
sample is contained between two plates separated a distance d and perpendicular to the z-axis. The
nematic material is prepared with its director field ~no aligned with the x-axis and a magnetic field~H is applied in the y-direction. When the magnetic field is switched-on at time t = 0 from an initial
value smaller than a critical value to a final value above it a striped pattern appears in the x-y plane
with domain walls parallel to the y-axis.

The dynamics of this system can be described in terms of the nematodynamic equations. We
assume homogeneity in the y-direction and that the reorientation takes place in the x-y plane, so
that the director field ~n(~r) is written in terms of an angle � as nx(x; z) = cos�(x; z) ; ny(x; z) =
sin�(x; z). The director field is coupled to a velocity field ~v(x; z) which in the geometry described
above we assume to be oriented along the y-direction. In a minimal coupling approximation the
equations for � and vy become15:dt�(x; z) = � 1
1

�F�� + 1
2�(1 + �)@x �F�vy ; (3:1)dtvy(x; z) = 1

2�(1 + �)@x�F�� + 1�2 (�2@2z + �3@2x) �F�vy : (3:2)� is the mean density, 
1, � , �2, and �3 are viscosity coefficients and F is a free energy:F = Z d~rf1
2

hk1(~r � ~n)2 + k2(~n � ~r� ~n)2 + k3(~n� (~r� ~n))2
i� 1

2
�a(~n � ~H)2+ 1

2
�~v2g (3:3)



The first three terms in (3.3) form the Oseen-Frank free energy associated with distortion of the
director field, with k1; k2 and k3 being splay, twist and bend elastic constants respectively. The
next term is the magnetic contribution with �a being the anisotropic susceptibility, and the last term
gives the hydrodynamic contribution.

This dynamical model falls within the general category of non-relaxational potential flows
discussed above. The free energy F is a Lyapunov functional, but the dynamical model contains
non-relaxational terms which give a vanishing contribution to the time derivative of F . The term
proportional to 1=
1 in (3.1) gives a gradient relaxational dynamics for�, and the terms proportional
to �2 and �3 in (3.2) give a non-gradient relaxational dynamics associated with viscosity for the
velocity flow. On the other hand, the terms proportional to (1 + �) in (3.1) and (3.2), which
give the coupling between � and vy , are of non-dissipative hydrodynamical origin and produce a
non-relaxational dynamics for the whole system.

Dynamics can be described in terms of the amplitude  (x) of the most unstable Fourier mode
of �(x; z) in the z-direction. A useful approximation in the limit of small inertia is to eliminate
adiabatically the velocity field, which leads to a closed equation for  (x; t). In appropriate
dimensionless units such equation reads16@t (x; t) = Γ(@x)[@2x + c � b 3]; b; c > 0 ; (3:4)
where Γ(@x) is a complicated kinetic coefficient which contains the remanent effect of the hydro-
dynamic coupling of director and velocity field after the adiabatic elimination of the latter. In the
limit of long wavelengths that we consider in the following Γ(@x) becomes

Γ(@x) � a � @2x; a > 0 (3:5)
In the absence of hydrodynamic coupling Γ becomes a constant and (3.4) describes a gradient flow.
In general (3.4) describes a non-gradient relaxational dynamics, with the @2x term in (3.5) being the
leading contribution from the non-relaxational dynamics in (3.1)-(3.2). By comparison with (2.8)
we call (3.4) Modified Cahn-Hilliard Equation (MCH).

Eqs. (3.4) and (3.5) define a generic model to study transient pattern dynamics1. For this study
it is first important to recall the existence of at least three kinds of bounded stationary solutions: (a) (x) = �pc=b �  �, (b)  (x) = 0, and (c) a family of periodic solutions  q(x) of fundamental
wavenumber q in the range

�
0;pc�. Regarding stability with respect to small perturbations, both

solutions included in type (a) are linearly stable, and all the solutions in (b) and (c) and linearly
unstable. The dynamical evolution from the unstable solution (b) to the stable solution (a) proceeds
via the formation of long-lived transient patterns which locally are close to solutions of type (c).
The initial stages of pattern formation can be understood by the fact that the linear stability analysis
of (3.4)-(3.5) around the solution  = 0 identifies a mode with finite wavenumber as the most
unstable one. The instability becomes of zero wavenumber in the limit of gradient-flow dynamics
in which Γ is a constant. What we show in the next section is that the periodic solutions (c) can
also be realized by front propagation: A front connecting solutions (a) and (b) advances into (b)
and leaves behind it a solution of type (c). This solution is shown to decay via a secondary front
which separates states close to two different solutions of type (c).



4. Fronts propagating into periodic unstable states

The description of a uniform stable state advancing into a uniform unstable one is well known17;18.
It is also known that front propagation can produce unstable periodic patterns, as explicitly demon-
strated for the Extended Fisher-Kolmogorov model (EFK)19, which is a relaxational gradient flow.
For the MCH model a new situation occurs, as shown in Fig. 1.

Figure 1 Graph of  (x; t) for t = 0, 20, 50, 125, 195, and 455 for a = 0:2 and b = 3.

First, a front advances into the initial homogenous state leaving behind a periodic state. The
novelty is that a second front appears and moves into the periodic state leaving behind a second
periodic state with different periodicity. This was observed for different values of a. Figure 2 shows
space-time plots of (x; t) obtained from a numerical solution of eqs. (3.4-3.5) for several values ofa. The horizontal axis represents space, and time runs along the vertical axis. White corresponds to
regions with  near the value of the stationary stable solution 1=pb and black to those with a value
near �1=pb. The location of the fronts is clear and the measured slopes determine their velocities.

Our numerical results indicate that the mechanism of decay of the periodic state left behind the
first front is similar to the decay of the initial  = 0 unstable state. That is, a front replaces the
unstable state by some more stable state. Relative stability is here defined in terms of the Lyapunov
functional of the model. This interpretation leads naturally to the study of fronts propagating into
periodic unstable states as relevant for the understanding of the second-front phenomenon.

The first front, the one moving into the homogeneous phase, has a velocity well reproduced
by marginal stability theory19–21;6;18. We will now show that the second front, understood as a



front moving into an unstable periodic state, can also be described by a generalization of such
theory3. There are several ways of formulating the marginal stability hypothesis for propagation
into an homogeneous state. In all of them the dynamics of the front is analyzed in the leading edge,
where the field is small enough so that the equation describing its evolution can be linearized. We
use here the steepest descent (or saddle point) approach19;22, since it is easily generalized to front
propagation into a periodic state.

Figure 2 Space-time plots of  (x; t) in gray levels, for b = 3 and a = 0:0, 0:3, 0:6 and 0:9. Space is represented

along the horizontal axis (system size: 137:5) and time runs along the vertical one from 0 to 575.

We assume that the periodic pattern left by the first front is close to one of the stationary solutions
with dominant wavenumber q = qi, that will be denoted by  qi . We linearize around the periodic
state  (x; t) �  qi(x) + � (x; t) obtaining an equation for � of the form

˙� = �L+ Uqp� � : (4:1)L is the linear operator giving the dispersion relation corresponding to linearization around the
uniform solution  = 0, and Uqp stands for the remaining part: a periodic operator of periodicityqp related to qi. Eq. (4.1) is a linear equation with periodic coefficients whose formal solution is
given by Bloch (or Floquet) theory. Given � 0(x) = � (x; t = 0), the solution of (4.1) can be



expressed in terms of the eigenfunctions fk(x) (of the Bloch form) and the eigenvalues �(k) of the
linear operator L+ Uqp � (x; t) = Z +1�1 e�(k)tfk(x)� ̂0(k)dk (4:2)
where � ̂0(k) = ZL f�k (x)� 0(x)dx ; (4:3)

The integral is evaluated using the saddle point method in a referential frame z = x� vt moving
with the front velocity v, � (z; t!1) � eh(q0s)t+iq0sz (4:4)
where h(q0) = iq0v + �(k = q0 �mqp), and q0s is the dominant saddle point of the function h(q0)
extended to the complex plane. In our case3, mqp � �2qi, so that k = q0 + 2qi. The saddle point
condition and the additional requirement that the perturbation � remains finite and bounded in
time in the vicinity of the leading edge (z � 0) lead to8>><>>: d�(k)dk ���k=q0s�mqp = �iv

Re[h(q0s)] = 0

(4:5)
From equation (4.5) one can determine the velocity of the front v = vs and the complex numberq0 = q0s locating the saddle point. These equations are equivalent to the ones obtained for a front

moving into an homogeneous state. The interpretation of q0s is the same as in such case: Eq.(4.4)
shows that the real part of q0s gives the periodicity of � at the edge of the front, and its imaginary
part characterize its steepness. The difference with the homogeneous case lies in the different
eigenvalue spectrum �(k).

Figure 3 The spectrum �(k) in the weak coupling approximation with a = 0:02 ; c = 1:0 ; b = 3:0 and an initial

wavenumber qi = 0:95



Figure 3 shows two branches of the spectrum �(k) calculated using a weak coupling approximation3

for an initial wavenumber qi = 0:95. Since the upper branch is the positive one, it is the only to be
used in (4.5).

The wavelength � of the periodic pattern left behind by the moving front can be calculated
following a standard prescription19: we assume that the oscillations created at the leading edge
by the linear instability will become quenched by the nonlinearities but their periodicity will
not be modified. In the moving frame of speed vs, linear theory predicts that the leading edge
(4.4) oscillates at a frequency such that a number of nodes Φ is created in the unit of time, with
Φ = ��1 �Im ��(ks)�+ vsRe

�q0s��. Behind the front, where the pattern has a wavelength �, the
flux of nodes passing in the unit of time through a point fixed in the moving frame is 2vs=�. From
this we get ��1 = 1

2�  Im
��(ks)�vs + Re

�q0s�! ; (4:6)� is determined by the two different wavenumbers ks and q0s . The hypothesis behind this formula
are that no nodes are created nor destroyed far from the leading edge, and that every node that linear
analysis predicts to be created has to be really created.

The velocities of the front propagating into the periodic state obtained from the theory and from
numerical solution of the MCH equation are shown in Fig.4a. The mean periodicities left behind
the second front are shown in Fig.4b together with those obtained from Eq. (4.6).

Figure 4 Velocity of the second front and wavenumber of the structure created when the front propagates into

stationary states  qi(x) with different dominant wavenumber (a = 0, c = 1). +: numerical simulations, 3 : theory.

The point represented by � corresponds to the value of qi obtained in the wake of the first front.

The initial conditions  0(x) for the numerical simulations were states in which a part of the
system is in the  + state and the rest in the periodic unstable state  qi(x) state. Simulations with
several values of qi are shown in Fig. 4. The  qi(x) states, which are periodic functions containing
the mode qi and its harmonics, were obtained numerically by integrating the MCH equation with an
approximation to the stationary solution as initial condition:  qi(x) � [4(c� q2i )=3b]1=2 sin(qix).

For qi > 0:9 the pattern is already very unstable and numerically it decays by roll annihilation
before the appearance of the front. On the other hand, for qi < 0:6 the velocity of the front tends to
be so small that the computer time needed to observe it becomes prohibitive. For intermediate qi,



Fig. 4 shows good agreement between theoretical and numerical values for the velocity of the front
and the wavenumber of the periodic pattern left behind (determined from the average wavelength
of the pattern). Specially for qi<�pc, for which the weak coupling approximation is justified.

Once the theory for front propagation into periodic unstable states has been proved to be accurate,
we used it to describe the second-front phenomenon of Figs. 1 and 2, that is, to predict the speed
and the periodicity left behind a front that advances into the periodic state created by a first front,
which is slightly different from the  qi(x) used before. For small a the agreement is good3 and
becomes poorer for large a. The reason is that for large a the pattern created by the first front has a
wavenumber quite different from

pc, so that the weak coupling approximation used for calculating�(k) is not accurate. It is interesting to note that for nematics such as PBG in solution23, and
for applied magnetic fields of about 8 kG, the parameters in the MCH model are b � 3, c � 1,
and a � 0:02, which are in the range of validity of the theory. The theoretical prediction in such
case is that the speed and periodicity behind the first front are of the order of 6 �m/s and 100�m, respectively, whereas for the second front the values predicted are approximately 1�m/s and
170�m. Experiments to check these predictions would be welcome.

It is finally interesting to point out analogies and differences between the MCH model (a relax-
ational non-gradient flow) studied here and the EFK model20 (a relaxational gradient flow). In the
decay of an initial homogeneous unstable state a transient pattern with selected periodicity occurs in
the MCH model, while the zero wavenumber is the most unstable mode in the EFK model. In front
propagation into the unstable homogeneous state a pattern behind the front appears in both models.
However the second front described here possibly occurs in the EFK model only in situations which
are very difficult to observe numerically.

5. Interface between periodic unstable patterns: A source of propagating fronts

The results obtained in the previous section can be understood by saying that within the non-gradient
potential flow (3.4)-(3.5), an unstable periodic state in contact with the homogeneously stable state
decays through intermediate periodic and linearly unstable states. Such intermediate states are
more stable than the initial one in terms of the Lyapunov potential of the problem. In addition the
validity of the marginal stability criterion implies that the velocity of the front only depends on the
initial periodic state and not on the state originally on the stable side of the front. To check the
generality of these ideas we have considered the evolution of an interface between two periodic
states of different wavenumbers q1 < q2. Both are linearly unstable, but from the argument above
we expect the generation of a front moving into the less stable state (the one with larger wavenumberq2) and leaving behind it a third state of wavenumber q3 < q2. If this process is still described by
the marginal stability criterion the front velocity should be independent of q1.

Numerical results corroborating such expectations are shown in Fig. 5. We note that the interface
is far away from the boundaries of the system and, as the propagation of the front is analyzed also
far enough from them, the boundaries of the system are meaningless in this discussion. We also
note that two periodic solutions can be joined either through their maxima or through points of zero
amplitude. In the first case, the initial condition will have a small jump since the steady amplitude
depends on qi. In the second case the change is smoother. However, when the matching is done
with the homogeneous steady solution only the first case is meaningful. From Fig. 5 it is apparent



that the way in which the matching is done does not affect the steady movement of the front: despite
there is a slightly different delay for the first white region to disappear, the velocity of both fronts
is the same and equal to 0.22. To check the independence of front velocity on q1 we have also
considered the situations with q1 = 0:785, 0:628, and 0:419 joined to a region with q2 = 0:698. In
all cases we have found the same front velocity (0:21� 0:01) propagating into the region of q2.

Figure 5 Space-time plots of  (x; t) in gray levels (system size=130, the time for both plots run from 0 to 500). The

initial condition correspond to an interface between two periodic stationary solutions with q1 = 0:503 and q2 = 0:698

connected through their maxima (top) and through a zero amplitude point (bottom)

The iteration of the mechanism that we have described of front propagation between two unstable
periodic states naturally leads to a source of fronts propagating in opposite directions: if in the
example in Fig. 5 it turns out that q1 > q3 we should expect a new front, now moving into theq2-region. Such behavior of an interface as a source of fronts is seen in Fig. 6. We have considered
here q1 = 0:698 < q2 = 0:785. A first front appears moving to the right with a velocity of 0:43.
The pattern left behind by this front has a dominant wavenumber q3 < q1 = 0:698. The situation
is then similar to the one found in Fig. 5 where we had a front propagating into a region with
wavenumber 0:698, and, indeed, we find a front moving towards the left with the expected velocity
of 0:21. This front leaves behind a new state with dominant wavenumber q4 and a new front should



emerge in the interface between the q2 and q4 regions already created by front propagation.

Figure 6 Space-time plots of  (x; t) in gray levels. Two fronts moving in opposite directions emerge at the interface

between the periodic patterns (q1 = 0:698 and q2 = 0:785); (system size=137.5 and time from 0 to 300).

We finally note that, in practice, the patterns left behind a front are not perfectly periodic. This
makes the decay of periodic unstable states by a bulk mechanism more efficient and limits the
number of successive fronts that are observed. In any case, and as a speculative comment, it is
interesting to note some analogy between the source of fronts discussed here and the sources of
traveling wave solutions found in non-relaxational flows such as the CGLE11.

ACKNOWLEDGMENTS: RM and EHG acknowledge financial support from DGYCIT (Spain)
Project PB92-0046. R.M. also acknowledges partial support from the Programa de Desarrollo de
las Ciencias Básicas (PEDECIBA, Uruguay), the Consejo Nacional de Investigaciones Cientı́ficas
Y Técnicas (CONICYT, Uruguay) and the Programa de Cooperación con Iberoamérica (ICI, Spain)

References.

1- A. Amengual, E. Hernández-Garcı́a, and M. San Miguel, Phys. Rev. E 47, 4151 (1993).
2- M. San Miguel, A. Amengual and E. Hernández-Garcı́a, Phase Transitions 48, 65 (1994).
3- R. Montagne, A. Amengual, E. Hernández-Garcı́a and M. San Miguel, Phys. Rev. E 50, 377

(1994).
4- M. San Miguel and F. Sagués, in Patterns, defects and materials instabilities, edited by D.

Walgraef and N. Ghoniem (Kluwer, Dordrecht, 1990), and references therein.
5- P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).
6- W. van Saarloos, Phys. Rev. A 37, 211 (1988).
7- P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 535 (1978).



8- R. Graham, in Theory of continuous Fokker-Plank systems, Vol. 1 of Noise in nonlinear dynamical
systems, edited by F. Moss and P. V. E. M. Clintock (Cambridge University, Cambridge, 1989),
p. 225.

9- R. Graham and T. Tel, in Instabilities and Nonequilibrium Structures III, edited by E. Tirapegui
and W. Zeller (Reidel, Dordrecht, 1991), p. 125.

10- R. Graham, in Instabilities and Nonequilibrium Structures, edited by E. Tirapegui and D.
Villarroel (Reidel, Dordrecht, 1987), p. 271.

11- W. van Saarloos and P. Hohenberg, Physica D 56, 303 (1992).
12- O. Descalzi and R. Graham, Phys. Lett. A 170, 84 (1992).
13- O. Descalzi and R. Graham, Z. Phys. B 93, 509 (1994).
14- B. L. Winkler, H. Richter, I. Rehberg, W. Zimmermann, L. Kramer, A. Buka, Phys. Rev. A 43,

1940 (1991).
15- M. San Miguel and F. Sagués, Phys. Rev. A 36, 1883 (1987).
16- F. Sagués and M. San Miguel, Phys. Rev. A 39, 6567 (1989).
17- A.N. Kolmogorov, I.G. Petrovskii, and N.S. Piskunov, Bull. Univ. Moscou, Ser. Int., Sec. A 1,

1 (1937), translated in Dynamics of curved fronts. P. Pelcé ed. (Academic, San Diego, 1988).
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