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ABSTRACT. A classification of dynamical systemsintermsof their variational propertiesisreviewed. Within
this classification, front propagation is discussed in a non-gradient rel axational potentia flow. The model is
motivated by transient pattern phenomena in nematics. A front propagating into an unstable homogenous
state leaves behind an unstable periodic pattern, which decays via a second front and a second periodic
state. An interface between unstable periodic states is shown to be a source of propagating frontsin opposite
directions.

1. Introduction.

In thispaper wewill consider pattern formation in systemswhich approach, asymptotically in time,
an homogeneous stable state. However, they exhibit long-lived pattern dynamics astransient states.
Such patterns may originate in finite wavenumber fluctuations triggering the decay of an initialy
homogeneous stable state'? or be a consequence of fronts propagating through the system?. We
will focus here on patterns created by front propagation into unstable states. A physical motivation
for this study isthelong lived transient patterns observed in the Fréedericksz transition in nematic
liquid crystals®.

The type of systems discussed here are described by dynamical systemsfor which a Lyapunov
functional, also called potential, exists. Timeevolution proceeds then by minimizing such potential.
However, we wish to emphasize that potential minimization can be attained along many different
directionsin the phase space of the system, depending on other ingredients of the dynamical system
beyond the potential. In fact, the existence of rich transient dynamica behavior in many systems
can be traced back to these other dynamical ingredients of the potential system. For pedagogical
purposes we review in Sect. 2 a classification of dynamica systemsin which the different role of
relaxational vs. non-relaxational (non-dissipative) contributionsto the dynamicsis pointed out.

A general model for transient pattern dynamicsisintroduced in Sect. 3. The model is motivated
by the physics of the Fréedericksz transition in nematics and justified from the nematodynamic
equations®. Within the classification of Sect. 2, the model belongs to the class of potentia and
relaxational non-gradient flows. The non-gradient contributions originate in an approximation to
non-relaxational dynamics associated with hydrodynamic coupling in the nematodynamic equa
tions. In Sects. 4 and 5 we study front propagation in thismodel. A front connecting homogeneous
stable and unstable states is seen to propagate leaving behind it a periodic spatia pattern which
is linearly unstable. The decay of this pattern is via an intermediate periodic pattern of larger
wavelength. This second pattern is still linearly unstable, but it is more stable in terms of the
Lyapunov potentia. It appears behind a second front which propagates into the origina periodic
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state. The velocity of the two propagating fronts, as well as the wavenumber of the periodic states
is successfully determined from marginal stability arguments®. Finally, in Sect. 5we consider the
fronts which originatein the interface between two periodic unstable states of different periodicity.
Such interfaceis shown to be asource of fronts propagating in oppositedirections, whilethe system
evolves through states of greater stability in its search for the globa potential minimum.

2. What isa potential system?

Itiscommonly stated that therich variety of dynamical statesthat occur in non-equilibrium systems
originatesin the non-potentia or non-variational character of the dynamica modelswhich describe
them. The main argument is that, in these cases, the study of the dynamics can not be reduced to
the minimization of apotential which playstherole of thefree energy of equilibrium systems. This
generd statement needsto be qualified, sinceit iswell known that model sused to study equilibrium
critical dynamics’ include mode-mode coupling terms such that its dynamical evolution is not
simply given by the minimization of the free energy. In the following we review a classification
of dynamical systems that, although well established in the context of stochastic dynamics®? it is
often overlooked in genera discussions of deterministic spatio-temporal dynamics.

Non-potentia dynamical systems are usualy defined as those for which there is no Lyapunov
potential giving the time evolution. Unfortunately, this definition is also applied to cases in which
there is no known Lyapunov potential. To be more precise, let us consider dynamica systems of
theform

) = Al (2.1)

where ¢ represents the set of dynamical variables. For generaity, we take them to be complex,
and the notation «* represents the complex conjugate of ». Here the dynamical variables will be
spatially dependent fields: ¢ = 1(x,t). A[p] isafunctional of them. Let usnow split A into two
contributions:

AlY] = Gl + N[¥, (2.2)

where G, the relaxational part, will have the form

S F[ep]
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with I ared and scalar functiona of . I is an arbitrary hermitic and positive-definite operator
(possibly depending on ¢»). In the case of real variables there is no need of taking the complex
conjugate, and hermitic operators reduce to symmetric ones. The functiona N[¢]in (2.2) isthe
remaining part of A[«]. The important point is that, if the splitting (2.2) can be done in such a
way that the following orthogonality condition is satisfied (c.c. denotes the complex conjugate
expression):

(2.3)

[ (‘Sfﬁ]w(x)r + c.c.) 0, (2.4)



then the terms in NV neither increase nor decrease the value of £, which due to the termsin ¢
becomes a decreasing function of time:

dF[(x,t)]

— <O0. (2.5)
If £ is bounded from below then it is a Lyapunov potential for the dynamics (2.1). Equation
(2.4), with N = A — G can beinterpreted as an equation for the potentia F' associated to a given
dynamica system (2.1). It has a Hamilton-Jacobi structure. Its solution is in general a difficult
task, but several non-trivial results exist in the literature!®®,

Once this notation has been set-up, we can cdl relaxational systems those such that thereis a
solution F' of (2.4) such that N = O, that isal thetermsin A contribute to decrease F'. Potentia
systems can be defined as those for which there is anontrivial (i.e. a non-constant) solution F’ to
(2.4). A more detailed classification is the following:

1.- Relaxational gradient flows. Thosedynamical systemsfor which N = Oand T isaconstant.
In this case the time evolution of the system follows the lines of steepest descent of F'. A
well known exampleisthe so called Fisher-Kolmogorov equation, also known as mode A of
critical dynamics’, or (real) Ginzburg-Landau equation for areal field v (x, t):

V=1V tep—b| [P, (2.6)
where r, ¢, and b are rea coefficients. This equation is of the form of Eq. (2.1)-(2.3) with
N =0, =1,and F = Fg1[?], the Ginzburg-Landau free energy:
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2.- Relaxational non-gradient flows: Still N = 0, but I' is not constant, so that the dynamics
does not follow the lines of steepest descent of F'. A well known example of thistypeisthe
Cahn-Hilliard equation of spinodal decomposition, or model B of critical dynamics’:
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The symmetric and positive-definite operator (—V?) hasits origin in a conservation law for

.

3.- Non-relaxational potential flows: N does not vanish, but the potential I, solution of (2.4)
exists and is non-trivial. Most models used in equilibrium critical” dynamics belong to this
category. A simple example of thisis

dFarlv]
Sy

h=—(141) (2.9)
where now 1 is a complex field. Notice that we can not interpret this equation as being of
type 1, because (1 + ) is not a hermitic operator, but still £, isaLyapunov functional for
the dynamics. Equation (2.9) is a specia case of the Complex Ginzburg- Landau Equation



(CGLE), inwhich A[v] isthesum of arelaxationa gradient flow and anonlinear Schrodinger-
typeequation N [¢] = —i(SF(?TL*M . Thegeneral CGLE™ isof theform (2.6) but + is complex
and r, ¢, and b are arbitrary complex numbers. Calculations by Graham and coworkers
indicate’®'3 that the CGLE, a paradigm of complex spatio-temporal dynamics, might be
classified within this class of non-relaxational potentia flows. The difficulty is that the
explicit form of the potentia to be obtained as a solution of (2.4), is only known in an
uncontrolled small-gradient expansion.

4.- Non-potential flows. Those for which the only solutions ' of (2.4) are the trivial ones (that
is F' = constant). Hamiltonian systems as for example the nonlinear Schrodinger equation
are of thistype.

In this paper we only deal with potentia situations. The model we introduce in the next section
belongs to the class of relaxational non-gradient dynamics. The non-gradient character has its
origin in the non-relaxationa and more complex dynamics of nematic liquid crystalsin amagnetic
field, from which our model is obtained after some approximations.

3. A general model for transient pattern dynamics

Transient pattern formation iswell documented experimentally for different instabilitiesin nematic
liquid crystals'®. We discuss here a general model whose physical motivation is the magnetic
Fréedericksz transition. In thistransition the reorientation of the nematic director in responseto a
large enough applied magnetic field does not proceed homogeneously: a transient striped pattern
with a characteristic wavelength emerges. At long times the pattern disappears leading to the
homogeneously reoriented final equilibrium state. We consider a twist geometry in which the
sampleis contained between two plates separated a distance d and perpendicular to the z-axis. The
nematic material is prepared with its director field 77° aligned with the x-axis and a magnetic field
H isappliedinthey-direction. When the magnetic field is switched-on at time¢ = O from aninitial
value smaller than acritical valueto afinal value above it a striped pattern appearsin the x-y plane
with domain walls parallel to they-axis.

The dynamics of this system can be described in terms of the nematodynamic equations. We
assume homogeneity in the y-direction and that the reorientation takes place in the x-y plane, so
that the director field 7i() iswrittenin terms of an angle ¢ as n,(z, 2) = cosp(z, z) , ny(z, 2) =
sing(z, z). Thedirector field is coupled to avelocity field #(«, =) which in the geometry described
above we assume to be oriented along the y-direction. In aminimal coupling approximation the
equationsfor ¢ and v, become'®:

146F 1 OF
dip(z, 2) = T + Z( + /\)81,% ) (3.1)
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divy(z,2) = 2,0(1+ )0y oo + pz(l/zaz + 1/381,)6% . (3.2)

p isthe mean density, 71, A , v, and v3 are viscosity coefficients and F' is afree energy:

1 - - - 1 — 1
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The first three terms in (3.3) form the Oseen-Frank free energy associated with distortion of the
director field, with k1, k> and k3 being splay, twist and bend elastic constants respectively. The
next term isthe magnetic contribution with x, being the anisotropic susceptibility, and thelast term
gives the hydrodynamic contribution.

This dynamica model fals within the general category of non-relaxationa potentia flows
discussed above. The free energy I’ is a Lyapunov functional, but the dynamical model contains
non-relaxationa terms which give a vanishing contribution to the time derivative of . The term
proportional to 1/+1 in (3.1) givesagradient relaxational dynamicsfor ¢, and the terms proportional
to v, and v3 in (3.2) give a non-gradient relaxational dynamics associated with viscosity for the
velocity flow. On the other hand, the terms proportional to (1 + A) in (3.1) and (3.2), which
give the coupling between ¢ and v,,, are of non-dissipative hydrodynamical origin and produce a
non-relaxationa dynamicsfor the whole system.

Dynamics can be described in terms of the amplitude () of the most unstable Fourier mode
of ¢(z, z) in the z-direction. A useful approximation in the limit of small inertiais to eliminate
adiabatically the velocity field, which leads to a closed equation for (z,t). In appropriate
dimensionless units such equation reads'®

Opb(z,t) = T(9,)[02 + e — bv?, b,e >0, (34)

where (9, ) is a complicated kinetic coefficient which contains the remanent effect of the hydro-
dynamic coupling of director and velocity field after the adiabatic elimination of the latter. Inthe
limit of long wavelengths that we consider in the following I' (0., ) becomes

Fd,)~a—0d2 a>0 (3.5)

In the absence of hydrodynamic coupling I' becomes a constant and (3.4) describes a gradient flow.
In general (3.4) describes anon-gradient relaxational dynamics, with the 92 termin (3.5) being the
leading contribution from the non-relaxational dynamicsin (3.1)-(3.2). By comparison with (2.8)
we call (3.4) Modified Cahn-Hilliard Equation (M CH).

Egs. (3.4) and (3.5) define a generic model to study transient pattern dynamicst. For this study
it isfirst important to recall the existence of at least three kinds of bounded stationary solutions: (a)
Y(z) = £1/c/b = ¢y, (b) ¥(x) = 0, and (c) afamily of periodic solutions ¢, (=) of fundamental
wavenumber ¢ in therange (0, \/c). Regarding stability with respect to small perturbations, both
solutions included in type (@) are linearly stable, and al the solutionsin (b) and (c) and linearly
unstable. The dynamical evolution from the unstable solution (b) to the stable solution (a) proceeds
via the formation of long-lived transient patterns which locally are close to solutions of type (c).
Theinitial stages of pattern formation can be understood by the fact that the linear stability anaysis
of (3.4)-(3.5) around the solution v» = 0 identifies a mode with finite wavenumber as the most
unstable one. The instability becomes of zero wavenumber in the limit of gradient-flow dynamics
inwhich I isa constant. What we show in the next section is that the periodic solutions (c) can
also be redlized by front propagation: A front connecting solutions (a) and (b) advances into (b)
and leaves behind it a solution of type (c). This solution is shown to decay via a secondary front
which separates states close to two different solutions of type (c).



4. Fronts propagating into periodic unstable states

The description of auniform stable state advancing into a uniform unstable oneiswell known!”18,
Itisalso known that front propagation can produce unstable periodic patterns, as explicitly demon-
strated for the Extended Fisher-Kolmogorov model (EFK)°, which is arelaxationa gradient flow.
For the MCH model anew situation occurs, as shownin Fig. 1.
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Figure 1 Graph of (=, ¢) for ¢ = 0, 20, 50, 125, 195, and 455 for « = 0.2and b = 3.

First, a front advances into the initial homogenous state leaving behind a periodic state. The
novelty is that a second front appears and moves into the periodic state leaving behind a second
periodic statewith different periodicity. Thiswas observed for different valuesof «. Figure 2 shows
space-timeplotsof (x, t) obtained from anumerical solution of egs. (3.4-3.5) for several values of
a. The horizontal axis represents space, and timeruns aong the vertical axis. White corresponds to
regionswith ¢ near the value of the stationary stable solution 1/+/b and black to thosewith avalue
near —1/+/b. Thelocation of the frontsis clear and the measured slopes determine their velocities.

Our numerical resultsindicate that the mechanism of decay of the periodic state left behind the
first front is similar to the decay of theinitial ;> = O unstable state. That is, a front replaces the
unstabl e state by some more stable state. Relative stability is here defined in terms of the Lyapunov
functiona of the model. This interpretation leads naturally to the study of fronts propagating into
periodic unstable states as relevant for the understanding of the second-front phenomenon.

The first front, the one moving into the homogeneous phase, has a velocity well reproduced
by marginal stability theory'®2%6:18  We will now show that the second front, understood as a



front moving into an unstable periodic state, can aso be described by a generalization of such
theory3. There are several ways of formulating the marginal stability hypothesis for propagation
into an homogeneousstate. In all of them the dynamics of the front is analyzed in the leading edge,
where thefield is small enough so that the equation describing its evolution can be linearized. We
use here the steepest descent (or saddle point) approach'®??, sinceit is easily generalized to front
propagation into a periodic state.

Tl il
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Figure 2 Space-time plots of (=, ¢) in gray levels, for b = 3and « = 0.0, 0.3, 0.6 and 0.9. Spaceis represented
along the horizontal axis (system size: 137.5) and time runs along the vertical one from 0 to 575.

We assumethat the periodic pattern left by thefirst front is closeto one of the stationary solutions
with dominant wavenumber ¢ = ¢;, that will be denoted by v,.. We linearize around the periodic
state ¢(z,t) = g, () + 61(z, t) obtaining an equation for ¢+ of the form

0% = [£+Uy,) 60 . (4.1)

L is the linear operator giving the dispersion relation corresponding to linearization around the
uniform solution ¢» = 0, and ¢, stands for the remaining part: a periodic operator of periodicity
qp related to ¢;. Eq. (4.1) isalinear equation with periodic coefficients whose formal solution is
given by Bloch (or Floquet) theory. Given é1o(x) = 6 (x,t = 0), the solution of (4.1) can be



expressed in terms of the eigenfunctions fi(z ) (of the Bloch form) and the eigenvalues €( k) of the
linear operator L + Uy,

o) = [ O otk (4.2)
where
odalk) = [ filw)evole)de (43)

Theintegra isevaluated using the saddle point method in areferentia frame = = = — »¢ moving
with the front vel ocity v,

SU(z,1 — 00) ~ Mt (4.4)

where h(q¢') = i¢'v + e(k = ¢’ — mgq,), and ¢, isthe dominant saddle point of the function h(¢’)
extended to the complex plane. In our case®, mq, = —2¢;, sothat k = ¢’ + 2¢;. The saddle point
condition and the additiona requirement that the perturbation 6+ remains finite and bounded in
timein the vicinity of the leading edge (= ~ 0) lead to

de(k) _
" ‘k:qls_mqp - (4.5)
Re[i(¢',)] =0

From equation (4.5) one can determine the vel ocity of the front » = », and the complex number
q¢ = ¢, locating the saddle point. These equations are equivalent to the ones obtained for a front
moving into an homogeneous state. The interpretation of ¢, isthe same as in such case: Eq.(4.4)
shows that the real part of ¢, gives the periodicity of 64 at the edge of the front, and itsimaginary
part characterize its steepness. The difference with the homogeneous case lies in the different
eigenval ue spectrum (k).
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Figure 3 The spectrum (%) in the weak coupling approximation with « = 0.02, ¢ = 1.0, b = 3.0 and an initial
wavenumber ¢; = 0.95



Figure 3 showstwo branches of thespectrum «( k) cal cul ated using aweak coupling approximation®
for an initial wavenumber ¢; = 0.95. Since the upper branch isthe positive one, it isthe only to be
used in (4.5).

The wavelength A of the periodic pattern left behind by the moving front can be calculated
following a standard prescription'®: we assume that the oscillations created at the leading edge
by the linear instability will become quenched by the nonlinearities but their periodicity will
not be madified. In the moving frame of speed v;, linear theory predicts that the leading edge
(4.4) oscillates at a frequency such that a number of nodes @ is created in the unit of time, with
® = 771 (Im[e(k,)] + vsRe[q.]). Behind the front, where the pattern has a wavelength A, the
flux of nodes passing in the unit of time through a point fixed in the moving frameis 2v,/A. From
thiswe get

)1 1 (M + Re [q’s]) , (4.6)

2w Vs

A isdetermined by the two different wavenumbers & and ¢’, . The hypothesisbehind thisformula
arethat no nodes are created nor destroyed far from theleading edge, and that every nodethat linear
analysis predicts to be created has to be redly created.

The velocities of the front propagating into the periodic state obtained from the theory and from
numerical solution of the MCH equation are shown in Fig.4a. The mean periodicities left behind
the second front are shown in Fig.4b together with those obtained from Eq. (4.6).
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Figure 4 Velocity of the second front and wavenumber of the structure created when the front propagates into
stationary states v, (z) with different dominant wavenumber (¢ = 0, ¢ = 1). +: numerical simulations, < : theory.
The point represented by * correspondsto the value of ¢; obtained in the wake of thefirst front.

The initial conditions ¢o(z) for the numerical simulations were states in which a part of the
systemisin the o, state and the rest in the periodic unstable state ¢, (=) state. Simulations with
several valuesof ¢; are showninFig. 4. The,,(z) states, which are periodic functions containing
themode ¢; and its harmonics, were obtained numerically by integrating the MCH equation with an
approximation to the stationary solution asinitial condition: ,,(z) ~ [4(c — ¢?)/3b]Y2sin(¢;z).

For ¢; > 0.9 the pattern is already very unstable and numericaly it decays by roll annihilation
before the appearance of thefront. On the other hand, for ¢; < 0.6 the vel ocity of the front tendsto
be so small that the computer time needed to observe it becomes prohibitive. For intermediate ¢;,



Fig. 4 shows good agreement between theoretical and numerical valuesfor the vel ocity of the front
and the wavenumber of the periodic pattern left behind (determined from the average wavel ength
of the pattern). Specialy for ¢; < /¢, for which the weak coupling approximation isjustified.

Oncethetheory for front propagation into periodic unstabl e states has been proved to be accurate,
we used it to describe the second-front phenomenon of Figs. 1 and 2, that is, to predict the speed
and the periodicity left behind a front that advances into the periodic state created by afirst front,
which is dlightly different from the 1, (=) used before. For small a the agreement is good® and
becomes poorer for large a. The reasonisthat for large a the pattern created by the first front has a
wavenumber quitedifferent from /¢, so that the weak coupling approximation used for calculating
e(k) is not accurate. It is interesting to note that for nematics such as PBG in solution?®, and
for applied magnetic fields of about 8 kG, the parameters in the MCH model are b = 3, ¢ = 1,
and ¢ ~ 0.02, which are in the range of validity of the theory. The theoretica prediction in such
case is that the speed and periodicity behind the first front are of the order of 6 pm/s and 100
um, respectively, whereas for the second front the values predicted are approximately 1;:m/s and
170pm. Experiments to check these predictions would be welcome.

It isfinally interesting to point out analogies and differences between the MCH model (arelax-
ational non-gradient flow) studied here and the EFK model?° (a relaxational gradient flow). In the
decay of aninitial homogeneous unstable state atransient pattern with selected periodicity occursin
the MCH model, whilethe zero wavenumber isthe most unstable mode in the EFK model. In front
propagation into the unstable homogeneous state a pattern behind the front appearsin both models.
However the second front described here possibly occursin the EFK model only in situationswhich
are very difficult to observe numerically.

5. Interface between periodic unstable patterns. A source of propagating fronts

Theresultsobtai ned in the previous section can be understood by saying that withinthe non-gradient
potential flow (3.4)-(3.5), an unstabl e periodic statein contact with the homogeneously stable state
decays through intermediate periodic and linearly unstable states. Such intermediate states are
more stable than the initial one in terms of the Lyapunov potentia of the problem. In addition the
validity of the marginal stability criterion impliesthat the velocity of the front only depends on the
initial periodic state and not on the state originally on the stable side of the front. To check the
generdlity of these ideas we have considered the evolution of an interface between two periodic
states of different wavenumbers ¢; < ¢o. Both are linearly unstable, but from the argument above
we expect the generation of afront moving into theless stabl e state (the onewith larger wavenumber
¢2) and leaving behind it a third state of wavenumber ¢3 < ¢,. If this processis still described by
the marginal stability criterion the front vel ocity should be independent of ¢;.

Numerica results corroborating such expectationsare shownin Fig. 5. We notethat theinterface
isfar away from the boundaries of the system and, as the propagation of the front is analyzed also
far enough from them, the boundaries of the system are meaningless in this discussion. We aso
note that two periodic solutions can be joined either through their maximaor through points of zero
amplitude. Inthefirst case, theinitial condition will have a small jump since the steady amplitude
depends on ¢;. In the second case the change is smoother. However, when the matching is done
with the homogeneous steady solution only the first case is meaningful. From Fig. 5 it is apparent



that theway in which the matching is done does not affect the steady movement of thefront: despite
there isa dightly different delay for the first white region to disappear, the velocity of both fronts
is the same and equa to 0.22. To check the independence of front velocity on ¢; we have also
considered the situations with ¢; = 0.785, 0.628, and 0.419 joined to aregion with ¢ = 0.698. In
all cases we have found the same front velocity (0.21 + 0.01) propagating into the region of ¢».

Figure 5 Space-time plots of #(z, ¢) in gray levels (system size=130, the time for both plots run from 0 to 500). The
initial condition correspond to an interface between two periodic stationary solutions with g1 = 0.503 and ¢2 = 0.698
connected through their maxima (top) and through a zero amplitude point (bottom)

Theiteration of the mechanism that we have described of front propagati on between two unstable
periodic states naturally leads to a source of fronts propagating in opposite directions. if in the
example in Fig. 5 it turns out that ¢; > ¢3 we should expect a new front, now moving into the
¢o-region. Such behavior of an interface asasource of frontsisseenin Fig. 6. We have considered
here ¢; = 0.698 < ¢, = 0.785. A first front appears moving to the right with a velocity of 0.43.
The pattern left behind by this front has a dominant wavenumber ¢z < ¢; = 0.698. The situation
is then similar to the one found in Fig. 5 where we had a front propagating into a region with
wavenumber 0.698, and, indeed, we find afront moving towards the | eft with the expected vel ocity
of 0.21. Thisfront leaves behind a new state with dominant wavenumber ¢4 and anew front should



emerge in the interface between the ¢, and ¢4 regions aready created by front propagation.

il

Figure 6 Space-timeplots of 1 (z, ) in gray levels. Two fronts moving in opposite directions emerge at the interface
between the periodic patterns (31 = 0.698 and ¢» = 0.785); (system size=137.5 and time from 0 to 300).

We findlly note that, in practice, the patterns left behind a front are not perfectly periodic. This
makes the decay of periodic unstable states by a bulk mechanism more efficient and limits the
number of successive fronts that are observed. In any case, and as a speculative comment, it is
interesting to note some analogy between the source of fronts discussed here and the sources of
traveling wave solutionsfound in non-relaxational flows such as the CGLE*!.
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