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Characterizing strong disorder by the divergence of a diffusion time
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We propose to characterize strong disorder and the degree of disorder (in anomalous diffusion
problems) by the divergence and the divergence law, respectively, of the mean first passage time

to leave an arbitrary interval of finite size.

Exact results for the exponents and amplitudes

characterizing the divergence are given for certain models.

A stochastic process x(z) admits, in general, two com-
plementary descriptions. In the first one (most often
used), the process is described by the time-dependent sta-
tistical properties of the variable x. A second alternative
is to look for the statistical properties of the time 7 at
which the process x(¢) reaches a prescribed value L from
a given initial condition for the first time. This corre-
sponds to focusing on the inverse stochastic function of
x(2), t(x), which is characterized by a first-passage-time
distribution (FPTD).! The second alternative emphasizes
the role of the individual realizations of the process.

The problem of transport in disordered media? modeled
by random walk (RW) in a chain with quenched disorder
has usually been characterized by the time-dependent be-
havior of {(x2). Anomalous diffusion of the subdiffusive
type, in which {x2) grows slower than linearly with time,
is found in several cases. A hierarchy of disorder can be
associated with the different asymptotic laws in time for
(x?). For weak disorder [model A of Ref. 2(a)], (x2) =1,
but with a diffusion constant modified by the disorder.
For strong disorder [model C of Ref. 2(a)], {(x? =1?,
6<1, and 6=0 in the extreme case in which
configurations with perfectly absorbing sites are allowed.
Intermediate cases are model B of Ref. 2(a) with (x2)
= t/Int and the Sinai model® with (x?) = (Int)*. A natu-
ral question which we address here is the study of RW in a
disordered chain by the passage times, characterizing
anomalous diffusion and the degree of disorder by a
FPTD.

Such a question corresponds to the meaningful physical
problem of the time that a particle takes to leave a given
interval in the presence of disorder. A naive answer to the
problem is to invert the function (x2)(¢) obtaining
t =L for strong disorder. This generally does not give
a correct answer due to the importance of the tails of the
FPTD. In particular, configurations of the disorder with
small statistical weight can dominate the average passage
time.

While transport in chains with quenched disorder is a
problem of long-lasting interest, it is only recently that a
few attempts at characterization in terms of a FPTD have
been reported.*”7 A different but related problem for
which a FPTD characterization has been used is that of
calculating the survival probability for normal diffusion in
a medium with randomly distributed traps.2®> Our re-
sults here are for a model defined by a master equation
describing RW in an infinite disordered chain

P, () =(E*+E~ —2)w,P, (1), e}

41

where P,(t) is the probability of finding the walker at site
n at time t. E¥ are shift operators such that E tp,
=P, +,. The quantities w, are independent random vari-
ables with a given Probability distribution. The model (1)
is usually called2@2® the random trap model.

We consider a site-percolating model in which the jump
rates o, from site n take values 0 or 1 with probability 1+
and the version of models A, B, and C of Ref. 2(a) defined
by Eq. (1). For these models we analyze the FPTD for
leaving a finite interval [—L,L] of the chain. Previous re-
sults in this context refer to continuous models,*
continuous-time random-walk models® (CTRW), or to
the Sinai model.2»® Other results are for the time to
leave an interval with a reflecting boundary in one ex-
treme in cases of weak disorder or local bias.” A novelty
of the problem that we consider here is that, except for
model A, the mean first passage time (MFPT) diverges
independently of the size of the interval. This fact is easy
to understand for the site-percolating model defined above
in which there are always configurations where the time to
escape from [—L,L] is infinity. For models B and C, the
value of the MFPT is not so obvious because the walker
leaves any finite interval with probability one. In spite of
this, it turns out that the MFPT is also infinity for any
finite interval [this makes it clear that it cannot be ob-
tained by an inversion of {(x2)(¢)]. In other models, such
as the Sinai model, and in the absence of trapping, the
MFPT is finite for finite intervals.® This implies a clear-
cut difference among models that can be classified as hav-
ing an intermediate degree of disorder when considering
the time dependence of (x?2). Our proposal here is to asso-
ciate the concept of strong disorder with a divergent
MFPT and to characterize, in these cases, the degree of
disorder by the divergence law in a survival probability.
We present here exact results for the exponents and am-
plitudes characterizing the divergence laws for intervals of
any size. The exponents are independent of the size of the
interval and the initial condition. This implies an interest-
ing scaling form for the divergence law.

Equation (1) can be averaged over the probability dis-
tribution of the w, giving rise to an effective master equa-
tion with non-Markovian characteristics.® This equation
gives information on the statistical properties of the mo-
ments, but it does not contain the required information on
the process to be a correct starting point for us to calcu-
late the passage-time statistics of the process (1) averaged
over the distribution of w,. To this end we need to consid-
er the equation satisfied by the survival probability FZ (¢)
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for a given configuration of disorder. This is the probabil-
ity that the walker is still at time ¢ in the interval [—L,L]
starting at time ¢ =0 at a site ng belongmg to this interval.
It is obvious that F% (0) =1. The FPTD f%,(¢) is given by
S ()= —dF,,,,(t)/dt The MFPT T'is obtained from the
Laplace transform F,,o(z) as T=F% (z=0). We are in-
terested in the asymptotic dependence for z— 0 of F,’.'o (z)
averaged over the configurations of ®,. Such dependence
characterizes the possible divergence of the averaged
MFPT (T). For large z, and given the initial condition at
t =0, it is obvious that (F,, (z))~z ~! for all types of dis-
order. The survival probablhty FE (¢) obeys the adjoint or
backwards equation associated with Eq. (1), but with the
evolution operator adjusted so that stochastic paths reen-
tering the interval from the outside are eliminated.® The
equation for Fi,(¢) is

FL ) =w, (EY+E ™ =2)F5 (D). ()
The adjustment of the evolution operator is easily done

since the process is Markovian for a given configuration of
]
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the dlsorder It consists of imposing the boundary condi-
tion E — F,,o- +1 =0, or equivalently, F,,,, =0 for any
no€ [—L,L]. Equation (2) takes into account the exact
statistics of the passage-time problem for a given config-
uration of @, For a finite value of L, Eq. (2) in the La-
place space lS a linear algebraic equation that can be
solved for F,,0 (z) and then averaged over the distribution
of quenched disorder. This gives a correct calculational
method from first principles and of practical use for small
values of L. In the site-percolatmg problem defined
above, the asymptotic behavior of (Fj,(z)) as z— 0 can
be obtained independently of (2). For this problem it
is obvious that the probablllty of leaving the interval
is_less than one: (ft (z=0))=p < 1. This implies that
(F,,o(z—>0))~ (1 —p)/z. The consequence is that the
asymptotic dependence of (F,ﬁ,(z)) is the same (~z ~!)
for small and large z. The divergence of the MFPT deter-
mined by the divergence as z— 0 is characterized by the
probability 1 —p of no escape from the interval. For ex-
ample, the average of the solution of (2) for L=1 and
no=0 is obtained by simple configuration counting as

(FEZOY =1(5/2) +2(z2+ 4z +2)/z(z +3) z + 1) + (2 +4)/(z 2+ 4z +2)1/8.. (3

This reproduces the announced law z ~! for z <1 and
gives the result p = 3. We have also obtained the result
for F5(z) for L=2 and 3 by solving (2) and doing the
average numerically by exactly enumerating all the possi-
ble configurations of disorder. The result is shown in Fig.
1. We obtain p =3 and p=13%is for L=2 and 3, re-
spectively.

We next consider three models of varying strength of
the disorder, but for which the probability of escaping
from the interval is always p=1. We first consider model
A of weak disorder for which no anomalous diffusion ex-
ists. We define it by Eq. (1) and o, taking the values +
and 3 with probability § so that the inverse moments
(w, M) are finite for any M. The number of possible
conﬁguratlons of the disorder is finite and we have calcu-
lated (F ,.o(z)) for L =1, 2, and 3 and different initial con-

10!
A Y N S =2
N N
iy N Tt L=t
v F N
100 ™N
-
10-1 e M
101 100 10l
z
FIG. 1. Survival probability for the site-percolation model for

several values of L. Initial condition: n=0.

r
ditions ng, by solving (2) and averaging by the exact
enumeration of configurations. Our results are shown in
% 2(a), where the expected dependence for z>>1,
,(z))~z " is observed. We find that (F,,o(z—->0))
tends to a finite quantity Q4(L,n¢). This gives a finite
value for the MFPT. Disorder models B and C are
defined by a probability distribution p for the @, with
diverging inverse moments plw,)=(0—a)w, %
0=<a<1. The limiting case a@=0 defines model B.
Again we have calculated (FZ (z)) for L=1, 2, and 3,
different initial conditions, and several values of a. Here
the average with p(w,) has been made by a Monte Carlo
sampling of the different configurations. The delicate
dependence on configurations with small statistical weight
has required samples of 107 configurations. Results for
a=0and 5 are shown in Figs. 2(b) and 2(c). Similar re-
sults are obtained for other values of a. Besides the ex-
pected z ~! dependence for z>> 1, for z <1 our results are
well fitted by (F,fo(z)) ~ﬂB(L ,no) |Inz| for model B,
and by (F,',‘o(z))~QC(L no)z ~® for model C. In fact,
these are the exact asymptotic behaviors, as will be com-
mented on below. These results characterize the diver-
gence of the MFPT and provide us with a novel quantita-
tive description of the strong disorder. In the sense pro-
posed here, model B is a model of strong disorder, but not
the Sinai model, for which the MFPT is finite® for finite L.
It is interesting for us to comment on the relation be-
tween our results and those of a CTRW approach. An ap-
proximation to the general model of Eq. (1) is obtained by
associating it with a CTRW. This is done by constructing
a waiting time distribution y(z) to jump from one site to
its neighbor site by averaging over p(w,) the exponential
waiting-time distribution associated'® with (1) for fixed
w,=w. For our model C, one finds for z<1, y(z) =1
—Ao(a)z' ~*+0(z). This is the form of w(z) used in
Ref. 5. It is known that this association gives an incorrect
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FIG. 2. Survival probability for different models of disorder:
(a) weak disorder (model A); (b) strong disorder (model B); (c)
strong disorder (model C, a=1%). Curves with different values
of (L,n) are plotted; from top to bottom: (L,n) =(3,0), (3,1),
(3,2), (2,0, (2,1), (3,3), (2,2), (1,0), and (1,1). A scaled form
of the survival probability is shown in the insets; different sym-
bols are for different values of (L,n); the solid line is the small-z
prediction of the finite-effective-medium approximation.

exponent & of the law (x2)~¢% [For model C one
finds23® §=2(1 —a)/(2 —a), while & obtained from the
associated CTRW is § =1 —a.] However, it happens that
the exact dependence (F,,o(z))~z ¢ obtained here for
model C coincides with the one obtained® by a
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renormalization-group argument in the large-L limit for
the corresponding CTRW model.

Our results for (F%(z)) and small L discussed above
can be understood within the context of a general theory,
which will be described in detail elsewhere.!' The basic
idea is to average (2) by a projector method® similar to
the one used in Ref. 8(b). Such a straightforward averag-
ing does not define a good perturbative series for small z.
In order to construct a good perturbation theory we intro-
duce a sort of effective medium characterized by effective
non-Markovian rates ['(z) between nearest-neighbor sites.
The rates I'(z) are determineed so that a straightforward
perturbation theory around such mean-field approxima-
tions has good convergence properties for z << 1. This ap-
proximation has a number of peculiarities associated with
boundary conditions due to the fact that (2) is defined for
finite intervals. To differentiate it from the standard-
effective-medium approximation (EMA) for the calcula-
tion of frequency-dependent  diffusion coeffi-
cient, 2@ 26)50) we wish to call it the finite-EMA (F-
EMA). The F-EMA for the calculation of the survival
probability is given by

ZEH —1=TGIE*+E ™ —2XFD, (4)
with I'(z) defined in a self-consistent way by

-I(z2)
< | —log—T@ONE *+E - —2)Gogll @) 2] > 0, )

where Goo(I',z) is the Green’s function for a RW with
effective rates I' and absorbing boundary conditions.

Two important things have to be noted about the F-
EMA. The first one is that it generally does not coincide
with the adjoint or backwards equation of the standard
EMA. The second one is that the analysis of the correc-
tions to the F-EMA shows'! that it gives the exact result
for the exponent in the leading contribution to (FE w,(2)) as
z— 0 for all models of disorder considered here. More-
over, it can be demonstrated'' that the F-EMA also gives
the exact amplitude Q(L,no) for models A and B. For
model C, corrections to the amplitude given by Egs. (4)
and (5) can be shown to be generally very small. Explicit
evidence of this fact is seen in the inset of Fig. 2(c). The
results obtained from Eqs (4) and (5) confirm the asymp-
totic dependence of (FE ,(z)) on z numerically established
before, giving the following values for the amplitudes:

Q8(L,no) =[(L+1)? —no]/2
.QA(L,no) =() B(L,no)(w -,
Q(L,ng) =a8(L,no)x(1 —a)2%/[(L +1)%sin(ra)].

We first note that the exact result for the averaged MFPT
for model A, (T)=0"4(no,L), only involves the static
limit of the frcquency-dependent diffusion coefficient
D(z=0)={w ") ~'. The important fact is that for all
the models studied here the dependence on ng and L of the
asymptotic law for (F: ,(z)) only appears through the am-
plitudes ©. This permits us to scale out such dependence.
The scaling form is manifested in the insets of Fig. 2. Our
numerical calculation gives a rather convincing check of
the exponents and amplitudes that follow from the theory
sketched above.
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