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There is an apparent gap between the prominence of present theoretical frameworks involving 

ecological thresholds and regime shifts, and the paucity of efforts to conduct simple tests and 

quantitative inferences on the actual appearance of such phenomena in ecological data. There 

is a wide range of statistical methods and analytical techniques now available that render 

these questions tractable, some of them even dating half a century back. Yet, their application 

has been sparse and confined within a narrow subset of cases of ecological regime shifts. Our 

objective is to raise awareness on the range of techniques available, and to their principles and 

limitations, in order to promote a more operational approach to the analysis of ecological 

thresholds and regime shifts.
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The observation that managed ecosystems often fail to respond smoothly to changing 

pressures has generated perplexity and eventually lead researchers to draw parallels between 

the behaviour of ecological systems and other complex systems with non-linear dynamics, 

such as the global climate, the human immune system, and the world economy  (cf. [1] for a 

popular account). Initial reports of kelp forest disturbance and recovery [2], freshwater 

ecosystem shifts engineered by beavers [3], and vegetation shifts affected by fire [4] have lead 

on to an ever-growing research effort on ECOLOGICAL THRESHOLDS and REGIME SHIFTS (see 

Glossary), whose underlying theoretical framework [5, 6] (Box 1) has been shown to be 

applicable to a broad range of ecosystems from coral reefs to forests and lakes [7,8]. These 

concepts are now also making their way into the minds and discussions of policy makers and 

might soon be translated into legislative frameworks [9].  

 

Ecological regime shifts can be defined as abrupt changes on several trophic levels [10], 

leading to rapid ecosystem reconfiguration between alternative states. These shifts are 

generally thought to be driven by external perturbations (e.g. climatic fluctuations, 

overexploitation, eutrophication, and invasive species), but the exact mechanism is often 

unclear. The subject has become a fast growing scientific discipline, manifested by a 12-fold 

increase in publications between 1991 and 2006, twice as fast as the growth rate of research 

effort in ecology as a whole (7.7 % year-1, ISI Web of Science). Most of the reported cases of 

ecological regime shifts are inferred from time series of monitoring data, while direct 

evidence by controlled experiments of the existence of alternative states is difficult to find 

[11]. Surprisingly, the general techniques available to test for regime shifts and thresholds 

have only to a limited extent been applied to these data sets. As formal tests of regime shifts 

have a long history in the context of climate change research (e.g. [12]) it is not surprising 
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that formal statistical tests for ecological regime shifts have mostly been restricted to the 

effects of climate change on marine communities [13]. These observations suggest that there 

is a need to increase the awareness of ecologists on the availability and diversity of 

approaches allowing inferential analyses of ecological regime shifts and thresholds, helping 

this important research field to move to a more operational phase. 

 

Here, after exploring research efforts in several fields we provide a review of methods for 

regime shift and threshold detection relevant to ecosystems, including both informal 

EXPLORATORY DATA ANALYSIS and formal HYPOTHESIS TESTING approaches, with the aim of 

encouraging a more quantitative approach to the study of these phenomena. Finally, we 

provide an operational summary of available software that can be useful for investigating 

abrupt changes in ecological data sets. As some of the terms are used differently among 

different research traditions, a glossary is provided. 

 

Detecting thresholds and regime shifts in ecological data 

Figure 1 shows that there are at least three ways by which an ecological system might exhibit 

abrupt changes over time; two which are reversible in response to changes in environmental 

drivers, while a third (Figure 1C) and most undesirable one is not [14]. Thus the existence of 

an abrupt CHANGE-POINT is a necessary but not sufficient condition for demonstrating 

BISTABILITY and HYSTERESIS (Box 1), as it might actually derive from sudden changes in the 

main drivers of the systems. It should also be kept in mind that while most ecological regime 

shifts are inferred from abrupt changes over time, time itself is never the actual underlying 

driver. Identification of the environmental driver(s) is complicated by the general 

interrelatedness of different social and environmental factors, and often also by the lack of 

data. Identification of a change-point in time is therefore the natural first step towards 
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identifying a potential driver, which again is the first step towards identifying a regime shift 

mechanism that might eventually be relevant for policy-making. 

 

There is an abundance of methods for identifying abrupt changes in time series, most of them 

developed in scientific fields other than ecology. The basic change-point problem, i.e. 

detecting a step change in the mean value in a sequence of random variables, has a long 

history in statistical inference (Box 2). The general scientific literature contains a bewildering 

diversity of methods that in a widest sense correspond to change-point detection, either in 

time or space (Box 3). In this review we contend that terms like regime shift [10,14], abrupt 

change [15], break- or change-point [16], STRUCTURAL CHANGE [17], ecological threshold 

[18], tipping point [19], and observational inhomogeneity [20], basically address the same 

problem and that methods developed for their analysis should have general relevance for the 

study of ecological regime shifts. The rapid growth of this literature already makes it hard to 

maintain an overview, and increases risk of unnecessary reinvention. For example, one of the 

threshold detection methods proposed in Ref. [21] is basically a rediscovery of the basic 

change-point problem presented a half a century earlier in Ref. [22] (Box 2). 

 

Exploratory data analysis 

A substantial part of the literature on ecological thresholds and regime shifts follows an 

explorative approach where data are pre-processed in various ways that render the presence of 

thresholds or jumps more evident to heuristic inspection, but usually without any statistical 

significance tests. The AVERAGE STANDARD DEVIATES (ASD) compositing method [23] is a 

rather popular representative based on simple heuristics rather than an underlying statistical 

model. The ASD was for example used to propose the occurrence of regime shifts in the 

North-Pacific in 1977 and 1989 [24] (Box 4). It has however been demonstrated that the ASD 
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method is prone to false positives for AUTOCORRELATED time series, that is, to detect a regime 

shift when in fact there is none [25]. We recommend therefore that ASD, despite its 

popularity, is replaced by methods presented below for inference on regime shifts in ecology. 

 

PRINCIPAL COMPONENT ANALYSIS (PCA) and related techniques are known under a variety of 

names (EMPIRICAL ORTHOGONAL FUNCTIONS (EOF), SINGULAR SPECTRUM ANALYSIS (SSA), 

etc.). PCA is used to compress, by linear combinations, a large number of correlated time 

series into a small number of uncorrelated ones that contain as much as possible of the 

original total variance [26, 27]. The presence of threshold phenomena in the reduced set could 

become more evident to visual inspection, but further processing and statistical testing is 

recommended. Applications to regime shift detection include the reduction of 100 climatic 

and ecological time-series from the North-Pacific into just two variables [24] (Box 4) or the 

combination of different climatic indices related to Pacific fisheries into a single one [28]. 

The conclusions drawn from a PCA can be strengthened by combining it with other 

independent approaches to multivariate time series analysis, such as CHRONOLOGICAL 

CLUSTERING [29,30] (Box 4). For example, PCA and chronological clustering were found to 

yield comparable regime shift patterns in 78 time series from the North and Wadden Seas 

[31].  

 

PCA methods have well known limitations [27], such as the inability to capture relationships 

that are not linear, and the possibility of the reduced variables being distorted by the 

requirement of linear independence. Variants of non-linear dimensionality reduction [32] have 

been developed independently and also partly based on very different underlying concepts, in 

for example cognitive psychology [33] and oceanography [34]. The ARTIFICIAL NEURAL 

NETWORK-based approach [34] is claimed to be able to reveal multimodality, which in 
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principle would be very relevant for detecting regime shift mechanisms related to bistability 

and hysteresis loops. Unfortunately, it has also been shown that this approach [34] is prone to 

false positives, as it is reported to find multimodality even in data sets generated from a 

multivariate normal distribution [35], which, by definition, cannot be MULTIMODAL. Our 

opinion of the current state of this field is that non-linear dimensionality reduction methods 

should primarily be used if simpler methods such as PCA and chronological clustering have 

been documented to be incapable of capturing important variations in a data set. Conclusions 

will also in this case be strengthened if there is a general agreement between several 

independent methods.  

 

Inferential statistics and hypothesis testing 

In the search for ecological regime shifts there is always a risk for thresholds being detected 

in what is actually just random fluctuation. Statistical hypothesis testing aims at limiting this 

possibility to a predetermined fixed value, typically a significance level of 5%. If the time of 

the threshold event is known (e.g. introduction of an invasive species, change in management 

practice, deforestation event) the significance probability of the regime shift under a null 

hypothesis of no change can be analyzed using intervention methods from standard statistical 

textbooks [36]. While originally aimed at testing for a shift in a time series following a 

particular action, INTERVENTION ANALYSIS has also been applied to data where the change-

point was not known a priori, but hypothesized following exploratory data analysis [37]. 

Classical intervention analysis cannot be used for situations with the change-point occurring 

at an a priori unknown time. This calls for sequential tests where the existence of a regime 

shift is tested for at every point in time, and which must be characterized by higher critical 

values of the test statistic than in classical statistical methods (cf. Box 2) due to the so-called 

type I error (false positive) inflation in multiple tests. The underlying principle of the 
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sequential methods is to compare a test statistic with its distribution under the null hypothesis. 

Critical values at different significance levels are tabularized for regularly observed data 

points, typically time series [38], whereas critical values for irregularly spaced observations 

must be calculated case-by-case and therefore can be computationally costly, but the 

continuous increase in computing power has greatly alleviated this constraint. Sequential test 

methods have mainly been developed for univariate time series, particularly within 

econometrics  [17, 39] (Box 3) and climate research  [40, 41] (Box 3). 

 

The most commonly investigated regime shift hypothesis is a step change in mean level using 

parametric  [40, 42, 43] or non-parametric  [44] methods. Regime shift detection methods 

involving changing variance, shift in the frequencies of fluctuations, or even simultaneous 

interrelated shifts in several ecosystem components at a particular point have also been 

proposed [45], but their application to practical data analysis has so far been limited. The 

computational burden increases exponentially with the number of change-points in the data 

set [17]. While methods intended for identifying only single thresholds can also be employed 

to the individual subsets separated by a significant change-point in a hierarchical fashion [46], 

this will normally be less efficient than a DYNAMIC PROGRAMMING approach [39]. As the 

goodness of fit will generally increase with the number of change-points, model selection 

procedures involving penalties for the number of model parameters are to be recommended 

[47].  

 

One problem associated with the classical statistical framework for investigating regime shifts 

against a null hypothesis with no regime shift is the lack of STATISTICAL TEST POWER for 

robust inferences. Ecological time series displaying regime shifts are generally much shorter 

(typically 20-40 time steps, usually years) than the typical time series that has driven the 
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development of threshold detection methods in econometrics and climate research (often > 

100 time steps). As change-points occurring at the extremes of a time series do not lend much 

power to hypothesis testing, it is only those change-points located near the middle of the time 

series that can be detected with confidence. Moreover, since ecological data are typically also 

noisier than climatic or economic data, a null hypothesis of no change-point is unlikely to be 

rejected within a classical statistical testing framework.  

 

Testing the existence of hysteresis poses a statistical challenge even greater than threshold 

identification, because modelling hysteresis requires a memory effect to be included into the 

model formulation such that the present regime becomes dependent on previous states. 

Statistical inference must therefore be based on comparing the observations with the output of 

a dynamical model. In THRESHOLD AUTOREGRESSIVE (TAR) models the dynamics can switch 

between different linear autoregressive models depending on a linear function of the previous 

state relative to a threshold value [48]. The classical Canadian lynx population data could be 

modelled with a TAR model having two regimes, representing the increasing and declining 

phases of the lynx population cycle [49]. Otherwise, quantitative statistical studies of regime 

shifts with hysteresis in ecology are remarkably few. Needless to say, data requirements are 

high, as several transitions are needed to identify hysteresis effects (e.g. typically >10 

transitions in the Canadian lynx data sets [49]). Additional complications caused by to 

missing values, measurement errors, and non-stationarity could also contribute to the paucity 

of applications of these analyses. 

 

Although most of the threshold testing procedures described in the literature are univariate, 

they can naturally be expanded to include multiple variables. The advantage of multivariate 

analyses is that the power of testing increases provided that all variables show similar trends 
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and have interactions that can be accounted for in the analysis. However, if only a subset of 

the variables shows a threshold response, the power of the test decreases and the outcome can 

become less clear. Simultaneous estimation of changes in the community interaction matrix 

(i.e. the density-dependent effects of a population both on itself and on other populations) has 

been suggested [50], but this approach will usually inflate the number of parameters such that 

the data requirements will be beyond what is realistic for ecological time series. 

Consequently, parsimonious consideration of the variables to be included in a multivariate 

test is recommended. 

 

Available software for analysing regime shifts 

Most of the statistical methods discussed in this review are implemented in available software 

packages (Table 1). Table 1 is not an exhaustive list of relevant software, but rather a 

selection of possible starting points for scientists interested exploring different approaches to 

quantitative regime shift detection. The list contains both tools requiring little background 

knowledge, such as standalone products or Excel add-ins, as well as toolboxes or packages for 

some of the major statistical computing environments such as R, Matlab, and O-matrix. The 

emphasis in Table 1 is on inferential tools for hypothesis testing, but some of the software 

listed also implements exploratory analysis methods.  

 

Conclusions and future perspectives  

The remarkable paucity of inferential analyses of ecological regime shifts and thresholds in 

the literature is at odds with the vigorous growth of this research direction, and could be 

attributable to the perception that these techniques are so data-demanding that only 

exceptionally few long-term ecological data sets would meet the requirements. However, the 

impressive impetus to the development and implementation of observational platforms across 
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a broad range of ecosystems over the past two decades (e.g. the US NSF Long term ecological 

research (LTER) network and the EU Water framework directive (WFD) monitoring system) 

has already and will continue to deliver a wealth of data sets that could meet the requirements 

of even the more demanding of the techniques available. Lack of awareness on available 

techniques or misperceived data requirements should not keep ecologists from applying 

statistical techniques for threshold detection. 

 

As human pressures on ecosystems continue to increase worldwide, the need for analytical 

approaches allowing the detection of ecological thresholds and regime shifts becomes a 

matter of urgency. Particularly, the impacts of climate change on biodiversity and ecosystems 

are currently assumed to be smooth, involving a continuous increase in impacts and 

extinctions as global temperature rises [51]. Well-documented fisheries statistics have shown 

that even relatively smooth climatic changes might lead to strong regime shifts in ocean 

ecosystems [13], increasing the likelihood of more prevalent and abrupt regime shifts as the 

planet warms beyond ecological thresholds for a growing fraction of species and ecosystems. 

Ecologists should increasingly contribute quantitative evidence of ecological thresholds for 

the future environmental policy making. 

 

This review has documented a diversity of approaches, differing in complexity, power and 

requirements, which we hope will stimulate the transition from a phenomenological 

assessment of ecological regime shifts and thresholds to an operational one. All of the 

exploratory and inferential techniques covered here require that the threshold has to be 

crossed in order to be detected, which means that they cannot directly be used to prevent 

abrupt changes in ecosystems [1].  However, the accumulation of a broad empirical basis on 

the presence of ecological threshold and regime shifts in response to key pressures, such as 
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increased nutrient inputs, ecosystem fragmentation or climate change, will certainly help 

develop a predictive framework to be used to anticipate and avoid changes associated with 

loss of essential ecosystem functionality. The accumulating knowledge base of ecological 

thresholds across different ecosystems should be accompanied by developing quantitative 

methods that allow confident extrapolation of thresholds for ecosystems that have not yet 

experienced, in particular irreversible, regime shifts. 
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Artificial neural network: a mathematical model where input signals are processed through 

one or more layers of interconnected computational nodes resembling biological neurons 

Autocorrelation: the smoothness of a time series expressed as the correlation between its 

successive values 

Autoregressive model: a linear regression model that uses past values to predict the present 

value of a time series variable 

Average standard deviates (ASD): a regime shift detection method for multiple time series 

where the individual variables are forced to have the same sign on the same side of a 

change-point; known to have unacceptable false positive rate on autocorrelated data 

Bifurcation: a qualitative change in the behaviour of a dynamical system resulting from a 

small change in a system parameter 

Bistability: the existence of more than one locally stable stationary state in a dynamical 

system  

Brownian bridge: a Brownian motion (random walk) where both ends are clamped to zero 

Change-point: a step change in the mean value, or more generally, the distribution of a time 

series variable 

Chronological clustering: a hierarchical grouping of successive steps in a multivariate time 

series according to a dissimilarity measure, also called constrained or stratigraphic 

clustering 

CUSUM: cumulative sum of scaled deviations from a target value, such as the mean of a time 

series 

Dissimilarity measure: a single numerical value expressing a distance between two 

multivariate objects, such that identical objects have 0 dissimilarity  
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Dynamic programming: a computationally efficient method for solving sequential decision 

problems by recursion 
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Ecological regime shift: a sudden shift in ecosystem status caused by passing a threshold 

where core ecosystem functions, structures, and processes of are fundamentally changed 

Ecological threshold: the critical value of an environmental driver for which small changes 

can produce an ecological regime shift 

Ecotone: a transitional area between two adjacent ecological communities 

Empirical orthogonal function (EOF): a principal component decomposition of a 

multivariate time series 

Exploratory data analysis: the analysis of data for the purpose of formulating hypotheses 

worth testing, thus complementing the conventional statistical tools for hypothesis testing 

Hypothesis testing: making statistical decisions about data by asking a hypothetical question 

formulated as a null hypothesis 

Hysteresis: a property of systems that can follow different paths when increasing and when 

relaxing a perturbation   

Intervention analysis: a test of the hypothesis that an event at a known time caused a change 

in an autoregressive time series model 

Likelihood ratio: the relative probabilities of an observed data set under two alternative 

hypotheses 

Matrix decomposition: expressing a matrix as a product of (usually) simpler matrices 

Multimodal distribution: a probability distribution with more than one peak 

Principal component analysis (PCA): an orthogonal MATRIX DECOMPOSITION of the 

covariance or correlation matrix of a multivariate data set to reduce the dimensionality of 

interrelated variables 
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Recursive processing: a computational method for processing new data incrementally as 

they arrive, instead of processing them all in a single batch 
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Singular spectrum analysis (SSA): a technique for estimating the frequency components of 

a time series through a principal component decomposition of its autocorrelation matrix 

Statistical test power: the probability that a statistical test will reject a false null hypothesis; 

the sensitivity of the test 

Structural change: a change-point with a step change in the parameters of the generating 

model for a time series 

Threshold autoregressive model: a time series model that can change structurally depending 

on the past values of the series (rather than at a particular change-point in time) 
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Box 1: Theoretical and mechanistic approaches to regime shifts 1 
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An abrupt jump in a system indicator when changing continuously a driver is an example of 

the class of phenomena known as bifurcations. In general, a BIFURCATION is a qualitative 

change in system state, including appearance and disappearance of available regimes or 

alteration of their stability, as drivers exceed specific threshold values. Bifurcation theory [52] 

is the branch of mathematics which studies them, identifying a broad catalogue of possible 

types of transitions: from steady to cyclic regimes, to irregular (chaotic) fluctuations, etc. 

Ecological analyses have been restricted mainly to transitions between two steady states. In 

the typical case there is a range of driver values for which two steady stable states are possible 

(for example high and low internal phosphorus (P) loading in a lake at the same rate of 

external P supply [53], as illustrated in panel A). This phenomenon, known as bistability, 

makes the actual system state depend on a hysteresis loop of past history (panel B; see also 

Figure 1, column C).  
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Regime shifts and bifurcations occur even in rather simple ecosystems; for example, models 

of food chains with only 3 trophic levels can display virtually any of the known bifurcation 

types [54]. Attaining reliable predictive power from realistic complex models, however, faces 
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the difficulty of constraining model parameters from the relatively short and noisy time series 

typically available in ecology. As a consequence mechanistic models can rarely be used to 

predict accurately non-linear phenomena in ecological systems, but they can still give 

qualitative predictions that could be useful to interpret observations. For example, simplified 

models of grazing interactions [5] or of desertification [7] allow understanding the availability 

of multiple stable states for ecosystems in terms of the classical image of a marble rolling 

down a rugged landscape [5], for which the final rest state varies with the initial condition. 

They also reveal that system indicators will tend to change more slowly when approaching a 

regime change (this is called “critical slowing down” [52]). This and other features have led 

to propose indicators that should in principle enable detection of an approaching threshold 

before crossing it: rising variance [55], spectrum reddening (i.e. the relative increase of 

fluctuations of low frequency) [56], increasing return time from perturbations [57, 58], 

growing skewness [59]. Unfortunately, all these methods are very data demanding, and thus 

of restricted applicability to the analysis of real ecological time series. 
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Box 2: The basic change-point problem 1 
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The simplest case of threshold detection is identical to what statisticians have called the 

change-point problem: to estimate the change-point i=k in a sequence {xi} of independent 

random variables with constant variance, such that the expectation of xi is μ if i ≤ k and μ + α 

otherwise. Quandt [22] showed already in 1958 that the change-point can be estimated by 

finding the index value k that maximizes a LIKELIHOOD RATIO, which in the case of normally 

distributed variables corresponds to the ratio of the residual sum of squares for the alternative 

hypothesis (a change-point at k with α ≠ 0) to that of the null hypothesis (no change-point, α 

= 0). As this likelihood ratio would be F-distributed in the normal case, Quandt’s test statistic 

would be the maximum or supremum of F (sup(F)). Still, it was evident that a test for the 

existence of a change-point could not be made from critical values of the F statistic, due to the 

well-known inflation of p-values in multiple tests (n-1 in this case, since an F value can in 

theory be computed for every 1 ≤ k < n). The asymptotic distribution of Sup(F) under the null 

hypothesis of α = 0 was not worked out until 16 years later when MacNeill [60] showed that 

it could be constructed from moments of a BROWNIAN BRIDGE process. Extensions of these 

results are used for computation of confidence limits of Sup(F) and for general change-point 

hypothesis testing in software products such as the strucchange package for R [39] (Table 1). 
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We illustrate the use of this method on a data set [61] where a temporal pattern suggestive of 

a change point was found in the residuals of a multiple regression model for bottom-water 

oxygen concentrations in the Danish straits (panel B). The change-point F statistic (A) shows 

a distinct peak in 1983 and a smaller one in 1985, both higher than the 95% probability level 

for the sup(F) statistic under the null hypothesis (green line). Notice that the critical level for 

the sup(F) statistic is about twice that of the corresponding ordinary 2-sample F test (dashed 

green line). The fitted linear model (B; red line) indicates a 0.5 mg O2 L-1 drop in the model 

residuals after 1983, although the 95% confidence interval for the change-point runs from 

1979 to 1984 (red shaded area). This step change was interpreted as a consequence of the first 

major hypoxia event in the region, leading to a major restructuring of the zoobenthos 

community with repercussions on the system’s susceptibility to new hypoxia events [61]. 

19 



Box 3: What can be learned from other scientific disciplines? 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

The literature is enriched with a diversity of statistical methods for detecting thresholds, 

originating from other disciplines than ecology. Ecologists should adopt these methods rather 

than re-inventing new ways for analysing regime shifts. 

 

The goal of statistical process control, dating back to the 1930s [62], is to detect systematic 

deviations in the mean value of a time series of some quality measure, for example the yield 

of an industrial process. Parameter estimates of the process or specific statistic, such as the 

cumulative sums of scaled residuals (CUSUM), are updated, in a RECURSIVE fashion, as new 

observations arrive. These tools could be applied to ecosystem monitoring programs as early 

warning indicators of a potential regime shift. 

 

Econometry deals with time series that can be rich in abrupt changes due to both external 

interventions (e.g. policy options) and internal dynamics (e.g. consumer behaviour or 

different phases of economic cycles). Econometricians have developed a range of tools for 

detecting step changes in linear time series models, typically called structural changes or 

breaks in the econometric literature (see [63] for a recent review). These methods could be 

readily employed in ecology to obtain statistical evidence of regime shifts. 

 

Climatologists also have a long tradition of investigating regime shift phenomena  [12, 40, 

41], however, with the concern that some sudden step changes in climate time series might be 

artefacts of the measurement system, for example due to a change in the measurement method 

or a relocation of a meteorological station. Therefore, climatologists have developed so-called 

homogenization methods to account for measurement artefacts  [20, 64], and embedded this 

approach into general procedures for simultaneous detection of climate change and 
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observational bias [65]. Techniques developed in climatology appear particularly suitable for 

ecological research, due to the similarities in both the studied phenomena and in the 

observational problems. 

 

Vegetation ecologists have a range of methods for detecting change-points or discontinuities 

in the spatial extent of plant communities (reviewed in [66] and [67], among others).  Such 

spatial discontinuities, called ECOTONES, are detected in multivariate data ordered in one 

dimension through comparisons of DISSIMILARITY MEASURES computed between the two 

halves of all sequential groups of samples [68]. The vegetation analysis approach is inherently 

multivariate, but otherwise displays similarities to the sliding window methods used for 

univariate time series by e.g. econometricians and climatologists. The potential of these 

methods for detecting regime shifts in multivariate ecological time series [69] deserves to be 

explored further. 
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Box 4. Regime shift detection in practice 1 

2 

3 

4 

Here we illustrate the analysis of a particular data set with some of the methods described in 

the main text. Hare and Mantua [24] (hereafter HM) compiled 100 time series from the North 

Pacific Ocean and the Bering Sea, covering a 33-year period from 1965 to 1997 

(http://www.iphc.washington.edu/Staff/hare/html/decadal/post1977/100ts.xls). 31 of the time 

series were indicators of atmospheric and oceanic processes while the remaining were 

biological data, mostly catch and recruitment from commercially important fish stocks, but 

also some from lower trophic levels. As a first exploratory approach, we perform a Principal 

Component decomposition of the data set. Several of the time series have missing data which 

are filled with the mean of the series. The first 2 principal components (PC) of the HM data 

set contain about 35% of the total variance. As pointed out in the original publication [24], 

visual inspection of PC1 and PC2 (see figure) suggests abrupt changes around 1976-77 and 

1988-89. While HM further analyzed the series with the ASD method, we show instead the 

use of two different methodologies: First, following within the exploratory approach, we 

perform chronological clustering [29] of the same 100 time series data, using Ward’s linkage 

method on an Euclidean distance matrix (similar dendrograms are produced by other methods 

like complete or average linkage). The temporal grouping of three main regimes is consistent 

with the visual impression of the first two PCs.  
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Altogether, two reasonably independent exploratory methods both indicate regime shifts in 

1976-77 and 1988-89 in the area covered by the HM data set. We now move to the inferential 

methodology by using the sup(F) statistic described in Box 2 to show that the existence of 

change-points in the 2 first PCs is statistically well supported. Nevertheless the magnitudes of 

the F statistics indicate that the statistical support for the 1976-77 change-point is stronger 

than for the 1988-89 one. It has been proposed [24] that the different change-points in the two 

PCs could be interpreted as the regime shift in 1988-89 not just being a flip back to pre 1977 

conditions, but rather a transition to an altogether new regime.  
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Table 1. Software for regime shift detection 
A selection of available software products with relevance to detection of thresholds and regime shifts in ecological data sets 
 
 

Program Methods Approach Availability Authors URL 
Brodgar Chronological clustering, dynamical factor 

analysis, min/max autocorrelation factor 
analysis, etc. 

Inferential Commercial, standalone with R 
interface, Windows 

A. F. Zuur [30]  www.brodgar.com/brodgar.htm 

Change Point 
Analyzer 

CUSUM charts, bootstrap tests Inferential Shareware, standalone + Excel add-
in, Windows 

W. Taylor www.variation.com/cpa/ 

Caterpillar-SSA Singular spectrum analysis, structural change 
detection 

Exploratory Commercial, standalone, Windows N. Golyandina, V. Nekrutkin, A. 
Zhigljavsky [34] 

www.gistatgroup.com/cat/index.ht
ml 

DCPC Detection of changes using a penalized contrast Inferential Freeware, Matlab scripts, multiple 
OS 

M. Lavielle www.math.u-
psud.fr/~lavielle/programs/ 

Dimensionality 
Reduction toolbox 

Linear (PCA, etc) and non-linear dimensionality 
reduction methods 

Exploratory Freeware, Matlab scripts, multiple 
OS 

L. van der Maarten [32]  http://www.cs.unimaas.nl/l.vanderm
aaten/Laurens_van_der_Maaten/Ma
tlab_Toolbox_for_Dimensionality_
Reduction.html

Palaeo Chronological clustering Exploratory Freeware, R package, multiple OS S. Juggins http://www.campus.ncl.ac.uk/staff/S
tephen.Juggins/analysis.htm

Regime Shift 
Detection 

Sequential t-tests, pre-whitening option for 
auto-correlated data 

Inferential Freeware, Excel add-in, Windows S. Rodionov [42]  www.beringclimate.noaa.gov/regim
es/ 

STSA - Time Series 
Analysis Toolbox 

Dynamical linear models, TAR models, 
Singular spectrum analysis, etc. 

Inferential Commercial, O-matrix toolbox, 
Windows 

D. D. Thomakos www.omatrix.com/stsa.html

Strucchange Multiple change-points, F-tests, empirical 
fluctuation processes, etc. 

Inferential Freeware, R package, multiple OS A. Zeileis, F. Leisch, B. Hansen, K. 
Hornik, C. Kleiber [39]  

cran.r-
project.org/src/contrib/Descriptions/
strucchange.html

ThEnhancer Nonlinear diffusion filtering Exploratory Freeware, standalone, multiple OS A. Jacobo, P. Colet, E. Hernandez-
Garcia 

ifisc.uib.es/ThEnhancer/
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Figure 1. Three scenarios for regime shifts: Illustration of differences between regime 

shifts resulting from smooth pressure-status relationships, threshold-like responses, and 

bistable systems with hysteresis. The two top rows of graphs show time series of driver (e.g. 

nutrient inputs) and ecosystem state (e.g. phytoplankton biomass), and the lower row of 

graphs show the relationship between the driver and ecosystem state. Column A) Regime shift 

in driver linearly mediated to the ecosystem state. Jumps appear only in the time series. 

Column B) Regime shift in ecosystem state after driver exceeds a threshold. This is 

manifested through a jump in the time series of the ecosystem state. Column C) The 

hysteresis loop linking the ecosystem state to the environmental driver results in jumps 

between two alternative states when the driver is first slowly increased and then decreased 

again. Figure inspired by [70]. 
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