~® IFISC

Institut de Fisica Interdisciplinaria i Sistemes Complexos

Collective phenomena in social
dynamics: consensus problems,
ordering dynamics and language
competition

Memoria d’investigacié presentada
per Xavier Castellé i Llobet. Progra-
ma de Doctorat del Departament de
Fisica de la UIB.






iii

Aquesta memoria d’investigacié ha
estat codirigida pel Professor Maxi
San Miguel, de I'Institut de Fisica
Interdisciplinaria i Sistemes Com-
plexos (IFISC) i del Departament de
Fisica de la UIB; i pel Dr. Victor M.
Eguiluz, de I'TFISC.

Electronic version is available at http:/ /ifisc.uib.es/publications/






Contents

[1.1__Collective phenomena: phvsics. complexity and social scienced .
[1.2 The consensus problem. Mechanisms and modeld . . . .. ...

h_ﬁ_Lan,@ge competition . . . . .

33

33
35

37

43






List of Figures







Chapter 1

Introduction

1.1 Collective phenomena: physics, complexity
and social sciences

Understanding the complex collective behaviour of many particle systems in
terms of a microscopic description based on the interaction rules among the
particles is the well established purpose of Statistical Physics. This micro-
macro paradigm [1]] is also shared by Social Science studies based on agent
interactions. In many cases parallel research in both disciplines goes far
beyond superficial analogies. For example, Schelling’s model [[1] of residen-
tial segregation is mathematically equivalent to the zero-temperature spin-
exchange Kinetic Ising model with vacancies. Cross-fertilisation between
these research fields opens interesting new topics of research [2, 3.

On the one hand, the formalism and tools from statistical physics and com-
plex systems theory are becoming a powerful framework to model and under-
stand social systems: emergence of collective phenomena, non-equilibrium
dynamics, coarsening, phase transitions, bifurcations [4]. Social phenomena
appear to be complex systems of increasing interest for the physicists com-
munity. On the other hand, interactions in complex networks is a relatively
recent paradigm in statistical physics [5]. Complex topologies can be seen as
the skeleton of a complex system and are found everywhere in science: from
neuroscience and molecular biology, to financial markets and social networks.
The works at the end of the 90s by Watts and Strogatz [6]], and Barabasi and
Albert [7] opened a novel approach from the point of view of statistical physics
to the modelling and understanding of complex networks. The possibility
to have simple models accounting for the main features observed in these
topologies, such as the small world and the scale-free effects together with
the increasing power of computing, triggered a coherent effort to model and
study through network theory many different systems beyond the traditional
physics research, ranging from biology to economy and the social sciences. In
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particular, network theory applied to complex social networks makes possible
an analysis of the effect of the network structure on non-equilibrium dynam-
ics proposed in order to model social behaviour.

In this way, the micro-macro approach to the study of social systems is
reinforced, extended and renewed by statistical physics and complex systems
theory. The microscopic interaction rules include two main ingredients: (i)
structure: a set of interacting agents, which can account for individuals,
groups of individuals, organisations, institutions, etc., which are embedded
in a framework of interaction modelled by a network; and (ii) dynamics:
the interaction mechanism between particles/agents which defines the non-
equilibrium dynamics mentioned above. These dynamics have been proposed
in parallel to the explosion of the complex networks research field, and deal
with problems such as opinion dynamics [8], cooperation [9], culture dissem-
ination [10], epidemics [11], language dynamics [12], dynamics of financial
markets [13], game theory [14] etc. This micro-macro approach is generally
known as Agent Based Modelling (ABM) in computational and social sciences
(151

Today, researchers working with Agent Based Models come from very dif-
ferent backgrounds; physics, mathematics, engineering, computer sciences,
economics, sociology or cognitive science, and start to share a common for-
malism which is both, theoretical and experimental [16]]. Theoretical because
the micro-macro paradigm inherited from complex systems is underlying in
the conceptual modelling; and experimental in the sense that computer sim-
ulations make it possible to generate the data needed by scientists in order
to study the models proposed, which can be statistically analysed. Regard-
ing real data analysis, the recent explosion of the internet society has been
crucial, as it has increased enormously the amount of real data available to
study social systems: mailing networks, collaborative tagging systems, on-
line communities, etc. Although scientists from different disciplines think
and develop models in a different way according to their own background,
agent based modelling is currently giving a common framework and enhanc-
ing interdisciplinary research in many areas of science.

1.2 The consensus problem. Mechanisms and
models

The consensus problem is a general one of broad interest, recently addressed
by statistical physics: the question is to establish when the dynamics of a
set of interacting agents that can choose among several options leads to a
consensus in one of these options, or alternatively, when a state with several
coexisting social options prevails [17]. For an equilibrium system the analogy
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would be with an order-disorder transition. For nonequilibrium dynamics we
rely on ideas of studies of domain growth and coarsening in the kinetics of
phase transitions [[18], where dynamics is dominated by interface motion.
Several models have been proposed to account for different mechanisms of
social interaction in the dynamics of social consensus. The idea is to capture
the essence of different social behaviours by simple interaction rules: follow-
ing the idea of universality classes [4], in collective emergent phenomena de-
tails might not matter. There are several examples of this mechanisms that
have given fruitful results in the last years: (i) imitation (voter Model [19]),
(i1) social pressure (Ising-like models [18]]), (iii) homophily (Axelrod model for
cultural dissemination [[10]), (iv) majority convinces (Sznajd model [20]), (v)
interactions bounded by a threshold (Granovetter model [21]), (vi) interaction
through small groups (Galam model [22]]) (vii) game theory framework [[14].

1.3 Language competition

Language competition belongs to the general class of processes that can be
modelled by the interaction of heterogeneous agents as an example of collec-
tive phenomena in problems of social consensus, and it motivates the present
work. Language competition occurs today worldwide. Different languages
coexist within many societies and the fate of a high number of them in the
future is worrying: most of the 6000 languages spoken today are in danger,
with around 50% of them facing extinction in the current century. Even more
striking is the distribution of speakers, since 4% of the languages are spoken
by 96% of the world population, while 25% have fewer than 1000 speakers.
New pidgins and creoles are also emerging, but their number is relatively
small compared with the language loss rate [23]. In this scenario, and beyond
Weinreich ’s Languages in Contact [24], numerous sociolinguistic studies have
been published in order to: (1) reveal the level of endangerment of specific lan-
guages [25]; (2) find a common pattern that might relate language choice to
ethnicity, community identity or the like [26]; and (3) claim the role played
by social networks in the dynamics of language competition, which has given
rise to the monographic issue [27].

In recent years, language competition, which studies the dynamics of lan-
guage use and learning due to social interactions, has also been tackled with
from a different approach. Abrams and Strogatz model [12] for the dynamics
of endangered languages (from now on, AS-model) has triggered a coherent
effort to understand the mechanisms of language dynamics outside the tra-
ditional linguistic research. Their study considers a two-state society, that
is, one in which there are speakers of either a language A or a language B,
and accounts for data of extinction of endangered languages such as Quechua
(in competition with Spanish), Scottish Gaelic and Welsh (both in competi-
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tion with English). This seminal work, as well as others along the same line
[28, 29], belongs to the general class of studies of population dynamics based
on nonlinear ordinary differential equations for the populations of speakers
of different languages. In addition, other studies implement discrete agent
based models with speakers of many [30, 31]] or few languages [32, 33, as re-
viewed in [34]]. These studies consider spatially distributed social structures
in which agents are connected with one another.

A specific feature of language competition is that agents can share two of
the social options that are chosen by the agents in the consensus dynamics.
These are the bilingual agents, that is, agents that use both languages A and
B, who have been claimed to play a relevant role in the evolution of multi-
lingual societies [29, 35]. In this work, we will follow the proposal by Minett
and Wang for a dynamics of language competition including bilingualism [36]
which is an extension of the Abrams-Strogatz model. We are interested in
comparing both models, and analyse the effects of adding bilingualism. Fol-
lowing Milroy [37]], we expect that also social structure might be an important
factor in language competition, and, therefore, we are interested in the study
of these models in networks, providing in this way a quantitative analysis
that is wanting in the field of sociolinguistics, as noted by de Bot and Stoessel
[58].

Other different problems of language dynamics in which statistical physics
can play a relevant role, are those regarding language evolution (dynamics of
language structure) and language cognition (learning processes). These in-
clude evolution of universal grammar [39], utterance selection models [40],
and social impact theory applied to language change [41]. Among these, semi-
otic dynamics, considered in the context of language games such as the nam-
ing game [42, 43]], is another relevant example of the consensus problem. In
the naming game, a shared lexicon among agents emerges from peer interac-
tion. It has been studied in complex networks [44]], and the special case of two
words [45] has similarities with the AB-model [46], the model we present in
Chapter 2l and which is the core of the present work.

14 Ordering dynamics: towards models of two
non-excluding options

The microscopic version [33] of the Abrams and Strogatz model for the com-
petition of two equivalent languages and marginal volatility (presented in
detail in Chapter ) is equivalent to the voter model [19] 47, 48]]. The voter
model is a prototype lattice spin-model of nonequilibrium dynamics for which
d = 2 1is a critical dimension [49]: For regular lattices with d > 2 coars-
ening does not occur and, in the thermodynamic limit, the system does not
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reach one of the homogeneous absorbing states (consensus states). The same
phenomenon occurs in complex networks of interaction of effective large di-
mensionality where a finite system gets trapped in long-lived heterogeneous
metastable states [50} 51, 52]. From the point of view of interaction mecha-
nisms, the voter model is one of random imitation of a state of a neighbour. A
different mechanism (for d > 1) of majority rule is the one implemented in a
zero-temperature spin-flip kinetic Ising (SFKI) model [l. Detailed comparative
studies of the consequences of these two mechanisms in different interaction
networks have been recently reported [55]. From the point of view of coars-
ening and interface dynamics, a main difference is that, in the voter model
coarsening is driven by interfacial noise, while for a SFKI model coarsening
is curvature driven with surface tension reduction.

The voter and SFKI models are two-option models (spin +1 and spin —1)
with two equivalent global attractors for the system. Kinetics of multi-option
models like Potts or clock models were addressed long ago [56, 57]]. More re-
cently, a related model proposed by Axelrod [10] has been studied in some
detail [568, 59, 60]]. This is a multi-option model but, in general, its nonequi-
librium dynamics does not minimise a potential leading to a thermodynamic
equilibrium state like in traditional statistical physics [61]. On the other
hand, the kinetics of the simplest three-options models [62], 63|, 64] has not
been studied in great detail.

We are here interested in the class of 3-state models for which two states
are equivalent (spin +1, state A or B) and a third one is not (spin 0, state AB).
Motivated by studies of language competition as mentioned in the previous
Section, we consider the extension of the the Abrams and Strogatz model for
the dynamics of endangered languages [12] proposed by Minett and Wang, in
which bilingualism is taken into account [36]. The possible state of the agents
are speaking either of these languages (A or B) or a third non-equivalent bilin-
gual state (AB). In the context of the consensus problem this introduces a
special ingredient in the sense that the options are not excluding: there is
a possible state of the agents (bilinguals or AB agents) in which there is co-
existence of two possible options at the individual level. In a more general
framework, the problem addressed here is that of competition or emergence
of social norms [65]] in the case where two norms can coexist at the individ-
ual level. In other words: the general problem of ordering dynamics with two
non-excluding options.

In this work and within this general framework, we study in detail a 3-
state extension of the voter model, the AB-model, which reduces to the voter
model when AB agents are not taken into account [46]. We aim to explore
possible mechanisms for the stabilisation of a coexistence between the two
options, possible metastable sates, and the role of AB agents (bilingual in-

A different majority rule based in group interaction is considered in [53} 54]]
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dividuals) and the interaction network (social structure) in these processes.
To this end, we analyse the growth mechanisms of A or B spatial domains
(monolingual domains), the dynamics at the interfaces (linguistic borders),
and the scaling laws for the times to reach consensus (dominance/extinction
of a language). This is studied in regular lattices and in complex networks
of interaction. A regular lattice structure captures a topology where interac-
tions are based on geographical proximity. However, it has been shown that
social networks are far from being regular, and they are not totally random
either [6]. Quite on the contrary, what has been found as a main character
in most of the real social networks analysed (e.g., mobile phone calls [66]) is
the small world phenomenon, which describes the effect of long range social
interactions among the agents. Therefore, the analysis of the AB-model in
small world networks is crucial to understand the role of these long range
interactions in the dynamics.

Generally speaking, we find that allowing for the AB-state (bilinguals)
modifies the nature and dynamics of interfaces: agents in the AB-state de-
fine thin interfaces and coarsening processes change from voter-like dynamics
to curvature driven dynamics. This change of coarsening mechanism is also
shown to originate for a class of perturbations of the voter model.

The work presented in this master thesis has given rise to a publication
in The New Journal of Physics [46]. Some of the results, also correspond to a
previous work published in Physica A, [33].

1.5 OQOutline

The outline of this work is as follows: Chapter [2 describes the microscopic
models studied: the Abrams-Strogatz model and the Minett-Wang model,
which reduce to the voter Model and the AB-model in the case of socially
equivalent languages and marginal volatility. A mean field analysis of the or-
dinary differential equations is also presented. Chapter Bl contains the results
obtained in the analysis of numerical simulations of the latter models in fully
connected networks, two-dimensional lattices and small world networks. Fi-
nally, in Chapterdlwe expose our conclusions and we give an outline of further
research to be addressed.



Chapter 2
The models

2.1 The Abrams-Strogatz model

We present here the microscopic version of the AS-model [33], a two-states
model proposed for the competition between two languages. In this model, an
agent i sits in a node within a network of N individuals and has k; neighbours.
It can be in the following states: A, agent using language A (monolingual A);
or B, agent using language B (monolingual BA.

The state of an agent evolves according to the following rules: starting
from a given initial condition, at each iteration we choose one agent i at ran-
dom and we compute the local densities for each of the communities in the
neighbourhood of node i, o, ; (I=A, B). The agent changes its state according to
the following transition probabilities:

piamp = (1—3s)(oiB)" , PiB—a = S(05,4)" (2.1)

Equations @.J) give the probabilities for an agent i to change from com-
munity A to B, or viceversa. They depend on the local densities (0; 4, 0; 5) and
on two free parameters: the prestige of the language A, 0 < s < 1 (the one of
language B is 1 — s); and the volatility, a > 0. On the one hand, the prestige
gives a measure of the different status between the two languages, that is,
which is the language that gives an agent more possibilities in the social and
personal spheres. The case of socially equivalent languages is s = 1/2. On
the other hand, the volatility is a parameter which gives shape to the func-
tional form of the transition probabilities (see Figure 2.1). The case a=1 is
the marginal situation, where the transition probabilities depend linearly on
the local densities. A high volatility regime regime exists for a < 1, with a
probability of changing language state above the marginal case, and there-
fore agents change its state rather frequently. A low volatility regime exists

Notice that we consider use of a language rather than competence.
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Figure 2.1: Volatility parameter, a: marginal case (a = 1, solid line), high volatility regime
(a < 1, dashed line) and low volatility regime (a > 1, dotted line).

for a > 1 with a probability of changing language state below the marginal
case, where agents have a larger inertia to change its state.

In the thermodynamic limit, the model can be described by a differential
equation for the total population density of agents ¥4, (X5 =1 — X ):

dZA/dt = ZA(l — ZA)[S(ZA)a_l - (1 - 8)(1 — ZA)a_l] (22)

This population dynamics approach was the initial proposal by Abrams-
Strogatz% in [12].

When a # 1, the stability analysis shows that there are three fixed points:
(1) % = 0 and (ii) % = 1, which correspond to consensus in the state A or B;

and (iii) X% = [(1f5)ﬁ +1]71. For a > 1, the two first fix points are stable,
and the third one is not, leading to stable consensus. For a < 1 instead,
the stability changes via a transcritical bifurcation, and consensus becomes
unstable giving rise to stable coexistence of the two states.

For a = 1, and s # 1/2, the ODE becomes the logistic-Verhulst equation

133l:

dZA/dt == (28 - 1)2A(1 — ZA) (23)

2Abrams and Strogatz found an exponent a=1.31 when fitting to real data from the compe-
tition between Quechua-Spanish, Scottish Gaelic-English and Welsh-English. They consid-
ered only this case.



2.2 The Minett-Wang model 9

In this case, there exist just two fixed points: (i) ¥*% = 0 and (ii) % = 1. For
s < 1/2 (i) is stable and (ii) unstable; while for s > 1/2 it happens the opposite.
For the case s = 1/2, we obtain a null system with a degenerate line of fixed
points, and therefore, any initial condition is a fixed point of the dynamics.

2.2 The Minett-Wang model

We present here the extension of the AS-model proposed by Minett and Wang
(from now on, MW-model), which takes into account the presence of a third
possible state: the bilingual agentﬂ.

In this model, the agents can also be in a third possible state, AB, bilin-
gual agent using both languages, A and B; and there are three local densities
to compute for each node i: 0,; (I = A, B, AB). The agent changes its state
according to the following transition probabilities:

Pia—ag = (1 —3)(oi5)* Di—ap = S(0;.4)" (2.4)

piag—p = (1 —s)(1 —0;4)" Diap—a = S(1 —o;5)" (2.5)

Equations @.4) give the probabilities for changing from a monolingual
community, A or B, to the bilingual community AB, while equations give
the probabilities for an agent to move from the AB community towards the A
or B communities. Notice that the latter depend on the local density of agents
using the language to be adopted, including bilinguals (1 — 0;; = 0;; + 0, 4B,
l,j = A, B;l+# j). It is important to stress that a change from state A to state
B or viceversa, always implies an intermediate step through the AB-state.

In the mean field limit, the model can as well be described by differential
equations for the total population densities of agents ¥4, X5 X p=1— X4 —
YB).

d¥a/dt =s(1 —X4 —Xp)(1—Xp)* — (1 —5)Xa(XR)" (2.6)

dYp/dt=(1—-8)(1 —X4 —Xp)(1 —X4)* —s(X4)Tp (2.7

The stability analysis shows that there are three fixed points: (X4, X5, ¥ 45)
(1,0,0),(0,1,0), which correspond to consensus in the state A or B; and

(3%, 5%, 5% ), with 5 # 0 (1 = A, B, AB)H. For a > 0.63, the two first fixed
points are stable, and the third one is not, leading to stable consensus. For

3Notice that this extension was proposed in a working paper in 2005 (see also [36]). The
final version of the paper [67] differs slightly on the transition probabilities. However, we
analyse here their initial proposal.

“There is no closed expression for &} (I = A, B, AB). Numerical analysis is needed.
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a < 0.63 instead, the stability is reversed, consensus becomes unstable and a
stable state of coexistence of the three states becomes possible.

An implementation of these two models in a two-dimensional lattice has
been done by designing a Java Applet in which one can tune the parameters
described above, set different initial conditions, and see the simulations in
real timefl. An interactive exploration of the parameter space (a,s) can be
done there.

2.3 The voter model and the AB-model

The models presented above can account for the more general framework of
a consensus problem, where there exist a competition between two social
norms. In this way, the AB-state represents the case when two norms can
coexist at the individual level (an agent using two languages in the case of
language competition). In this work, we will concentrate in analysing these
models in detail for the case of two socially equivalent norms or options (lan-
guages), s = 0.5, and volatility a = 1 [46]].

On the one hand, the transition probabilities of the microscopic AS-model
for the agent i reduce to:

1 1
DiA-B = =0iB , Di,B—A = =0 A (2.8)

2 2

Except for a time scale coming from the prefactor 1/2, the AS-model be-
comes the voter Model, which have been extensively studied [[19], 47, 48, 49,
50, 51, 52, 68]. Equation gives probabilities for an agent to change be-
tween the two states, which are proportional to the local density of agents in
the opposite option. Notice that the voter model rules are equivalent to the
adoption by the agents of the opinion of a randomly chosen neighbour.

In the mean field approximation, the voter model reduces to the equation:

A%, /dt = 0, (2.9)

predicting that any given initial density of agents in state A would persist
forever. Simulations of the corresponding stochastic discrete voter model in
a lattice [19] indicate a very different behaviour with one of the two options
eventually becoming dominant.

On the other hand, the MW-model becomes:

5Applet can be found at: http : //ifisc.uib.es/eng/lines/complex/APPLET_LANGDY N.html
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1 1
PiA—AB = 50iB Pip—AB = 50iA (2.10)
1 1
Di,AB—B = 5(1 —0iA) Di,AB—A = 5(1 — 0i,B) (2.11)

Equation gives the probabilities for an agent i to move away from a
single-option community, A or B, to the AB community. They are proportional
to the density of agents in the opposed single-option state in the neighbour-
hood of i. On the other hand, equation Z.I1) gives the probabilities for an
agent to move from the AB community towards the A or B communities. They
are proportional to the local density of agents with the option to be adopted,
including those in the AB-state (1 — 0,; = 0;; + 0iaB, I, J=AB; | # j). It
is important to remind that a change from state A to state B or viceversa, al-
ways implies an intermediate step through the AB-state. The dynamical rules
and @.17) are fully symmetric under the exchange of A and B, so that
states A and B are equivalent with no preference for any of the two options.
Reaching consensus in either of these two states is a symmetry breaking pro-
cess. These dynamical rules, which define a modification of the two state voter
model to account for a third mixed AB-state, reflect the special character of
this state as one of coexisting options. We will refer to the model defined by
and @.17) as the AB-model.

From now on, we will focus our attention in the novel results we have
obtained for the AB-model, comparing them to the already extensively studied
voter model. In this way, we will address the effect of the extension of the
latter model through the addition of the AB-state.

In a fully connected network and in the limit of infinite population size,
the AB-model can be described by coupled differential equations for the total
population densities X4, X5 (Xsp=1— X4 — Xp):

dS,/dt =1/2[1 — X4 + () — 255] (2.12)
dSp/dt = 1/2[1 — X + ($4)* — 2%4] (2.13)

The analysis of these mean field equations shows the existence of three
fixed points: two of them stable and equivalent, corresponding to consensus
in the state A or B: (X4, Y5,%X45) = (1,0,0),(0,1,0) ; and another one unsta-
ble, with non-vanishing values for the global densities of agents in the three
states: (X%, X5, X% 5), with X7 # 0 (I = A, B, AB). Figure shows the phase
portrait of the system, i.e., the trajectories of the system in the space (X 4,X53).
We can observe the location of the fixed points of the system and the two
basins of attraction corresponding to the stable fixed points, which are sepa-
rated by the line X 4= 3, the stable manifold of the saddle.
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Figure 2.2: Phaseportrait: trajectories in the X 4-X g space for the bilingual model. Each
arrow shows the direction of change of the system at that state, allowing trajectories and
fixed points to be inferred. Stable fixed points are marked by filled circles; unstable ones are
marked by unfilled circles. The points such that ¥4 + X5 > 1 are not shown (black area), as
they are not physical; remember that ¥ 4 + X5 + Y 45=1.

In this work, we go beyond the simple mean field description of these mod-
els @.12)-@.13). We describe the microscopic dynamics in which discrete and
finite size effects, as well as the topology of the network of interaction are
taken into account.
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Results

We present in this chapter the results obtained in numerical simulations for
the voter model and the AB-model in different topologies: fully connected net-
works, lattices and small world networks. In our simulations we use random
asynchronous node update: at each iteration or time step a single node is
randomly chosen and updated according to the transition probabilities
and @ J0H2Z.TT). We normalise time so that in every unit of time each node
has been updated on average once. Therefore, a unit of time includes N it-
erations. In most of our simulations we start from random initial conditions:
in the AB-model, random distribution in the network of 1/3 of the population
in state A, 1/3 in state B and 1/3 in state AB (in the voter model, 1/2 of the
population in state A and 1/2 in state B).

For a quantitative description of the ordering dynamics towards consen-
sus in the A or B state we use as an order parameter the ensemble average
interface density (p). This is defined as the density of links joining nodes in
the network which are in different states [49] 68]. The ensemble average, in-
dicated as (..), denotes average over realisations of the stochastic dynamics
starting from different random initial conditions. For our random initial con-
ditions in the AB-model (p(t = 0)) = 2/3: a given node has probability 2/3 of
being connected to a node in a different state ({p(t =0)) = 1/2 in the voter
model). This is valid for any network in which there are no correlations in the
random initial distribution of states among the nodes of the network. Dur-
ing the time evolution, the decrease of p from its initial value describes the
ordering dynamics by a coarsening process with growth of spatial domains in
which agents are in the same state. The minimum value p = 0 corresponds to
an absorbing state where all the agents have reached consensus in the same
state.
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Figure 3.1: Time evolution of the average interface density (p) for the AB-model in a fully
connected network for different system sizes. Random initial conditions. From left to right:
N = 100 (O), 200 (+), 500 (A), 1000 (*), 2000 (o), 5000 (>), 10000 (o). Averages are calculated
over 10000 realisations. Inset: dependence of the average time to reach an absorbing state
with the system size: 7 ~ In(N).

3.1 Fully connected networks

As a first step, we consider the dynamics of the AB-model in a fully connected
network of N individuals, i.e., a network where all agents interact with one
another. In this way, we go beyond population dynamics described by ODEs,
and we account for the finite size effects of the resulting stochastic dynamics.

Figure B.1l shows the time evolution of the average interface density in
fully connected networks for different system sizes starting from random ini-
tial conditions. Consensus in the A or B option is always reached, with equal
probability. The system reaches a plateau and approaches exponentially the
absorbing state after a finite size fluctuation (p(t)) ~ e ** (the exponent k of
the exponential decay is a constant independent of system size). In the inset
of this figure, the average time to reach an absorbing state, 7, is shown to
scale logarithmically with the system size as 7 ~ In(N).

In the limit of infinite system size, the dynamics is exactly described by the
ODEs 2.12)-@.13). When starting from random initial conditions, the system
lies on top of the stable manifold of the saddle point corresponding to coex-
istence of the three phases (Figure E.2). Therefore, the system moves until
reaching the saddle fixed point and stays there; consensus is never reached.
When we consider finite size fully connected networks instead, the system
moves towards the saddle and fluctuates around this fixed point (stage corre-
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Figure 3.2: Time evolution of the total densities of agents in the three states, X; (i= A, B,
AB), and the interface density, p for the AB-model in a 2-dimensional regular lattice. One
realisation in a population of N = 400 agents is shown. From top to bottom: ¥ 4 (dashed line),
¥ 5 (dotted line), p (solid line), ¥ 4 5 (dot-dashed line).

sponding to the plateau in Figure B.J). At a certain point, a finite size fluctu-
ation is large enough to drive the system far enough towards one of the two
basins of attraction of the two stable fixed points, so that the system reaches
consensus in the A or B option exponentially (stage corresponding to the decay
of (p(t)) in Figure B.I).

In comparison, the results for the voter model in fully connected networks
when starting from random initial conditions are the following: for a single
realisation, p(¢) fluctuates grossly until a finite size fluctuation drives it to the
absorbing state. The time evolution of the average interface density, though,
is (p(t)) ~ e ?/N; giving an exponential decay depending on system size. This
is related to the fact that the probability that a simulation reaches consensus
at time t decays as ~ e /" [69]. In addition, the time to reach an absorbing
state, 7, scales with the system size as 7 ~ N [48]], giving rise to a much slower
path to consensus compared to the AB-model (7 ~ In(N)).

Moreover, the ensemble average magnetisation is conserved in the voter
model in networks with an homogeneous degree distribution [47]] fl. Therefore,
the fraction of runs which lead to consensus in the A option are proportional
to the fraction of initial agents in the state A. This is not the case in the AB-
model, where the average magnetisation, defined as (m(t)) = (X4(t) — (1)),
is not conserved:

Tn heterogeneous networks, only an ensemble average magnetisation weighted by the
degree of the node is conserved [68].
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Figure 3.3: Time evolution of the average interface density (p) for the AB-model in a 2-
dimensional regular lattice for different system sizes. Empty symbols: from left to right:
N =102 (0), 202 (>), 30% (O), 1002 (A), 3002 (o). The average global density of AB agents, (X a5),
for N = 3002 agents is also shown (e). Averages are calculated over 100-1000 realisations
depending on the system size. Dashed line for reference: (p) ~ ¢ =045,

d{m) 1
a9 (Zagp) (m) @.1)

(Sap) = 0,Vt so that sign(“™) = sign((m)): if there is a bias in the initial
conditions towards one of the two options, this option will be the one who will

take over the system.

3.2 Two-dimensional lattices

In order to take into account a spatial distribution of agents, we consider next
the dynamics of the AB-model on a 2-dimensional regular lattice with four
neighbours per node [46]. In Figure we show, for a typical realisation, the
time evolution of the total densities of agents in state A, ¥4, in state B, Xz,
and in state AB, ¥ ,5; and the density of interfaces, p. State A takes over
the system, while the opposite option B disappears. Consensus in either of
the two equivalent states A or B is always reached (with equal probability
to reach consensus in state A or B). We observe an early very fast decay of
the interface density and of the total density of agents in the state AB, X 43,
followed by a slower decay corresponding to the coarsening dynamical stage.
This stage lasts until a finite size fluctuation causes the dominance of one of
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Figure 3.4: Top: Random initial conditions: snapshots of a typical simulation of the dy-
namics in a regular lattice of 2500 individuals. t=0, 8, 80, 800 from left to right. Bottom:
Disintegration of an initial bilingual community in a regular network: 2500 individuals. t=0,
1, 5, 10 from left to right. Grey: monolinguals A, black: monolinguals B, white: bilinguals,
AB
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Figure 3.5: The time dependence of the interface density p in a regular lattice for the AB-
model is shown for 100 realisations. We observe two types of realisations: most of them decay
by a finite size fluctuation to an absorbing state after the stage of coarsening (solid lines);
however, around 1/3 of them get trapped in dynamical metastable states, identified by an
essentially constant value of p, until they eventually decay (dotted lines).

the states A or B, and the density of AB agents disappears together with the
density of agents in the state opposite to the one that becomes dominant.

In Figure we show the time evolution of the average interface den-
sity and of the average total density of AB agents, averaged over different
realisations. For the relaxation towards one of the absorbing states (domi-
nance of either A or B) both the average interface density and the average
density of AB agents decay following a power law with the same exponent,
(p) ~ (Xap) ~ t77, v ~ 0.45. This indicates that the evolution of the average
density of the AB agents is correlated with the interface dynamics. Several
systems sizes are shown in order to see the effect of finite size fluctuations.
During the coarsening stage described by the power law behaviour, spatial
domains of the A and B community are formed and grow in size. From the
dependence of (p) with time, it follows that the typical size of a domain, (¢),
grows as () ~ t7, v ~ 0.45. Eventually a finite size fluctuation occurs (as the
one shown in Figure so that the whole system is taken to an absorbing
state in which there is consensus in either the A or B option.

During the coarsening process spatial domains of AB agents are never
formed. Rather, during an early fast dynamics AB agents place themselves in
the boundaries between A and B domains. This explains the finding that the
density of AB agents follows the same power law than the average density of
interfaces. We can observe in Figure B.4-top snaphots a typical realisation of
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Figure 3.6: Snapshots of simulations which get trapped in stripe-like dynamical metastable
states. N = 502 agents. Legend: Black: state A, grey: state B, white: state AB. Left panel:
AB-model in a two dimensional regular lattice; 4 neighbours per site. Right panel: e-model
(e = 1.0). Two dimensional regular lattice; 8 neighbours per site.

the dynamics: the fast decay of the amount of AB agents, the formation of A
and B domains, and the presence of AB agents only at the interfaces between
them. We have also checked the intrinsic instability of an AB community: an
initial AB domain disintegrates very fast into smaller A and B domains, with
AB agents just placed at the interfaces, as shown in the set of snaphots in
Figure B.4-bottom.

Our result for the growth law of the characteristic length of A or B do-
mains is compatible with the well known exponent 0.5 associated with domain
growth driven by mean curvature and surface tension reduction observed in
SFKI models [18]. However, systematic deviations from the exponent 0.5 are
observed. These deviations are at least partially due to the fact that on closer
inspection there are two type of qualitatively different realisations, which we
show in Figure while many of them have a coarsening stage followed by
a finite size fluctuation which drives the system to an absorbing state, a fi-
nite fraction of the realisations (1/3 of them, for large enough systems) get
trapped in long-lived metastable states. These metastable states are remi-
niscent of the ones found [70] in the analysis of a two states majority rule
dynamics based on group interaction [53]. They correspond to stripe-like con-
figurations for an A or B domain. The boundaries of these stripe-shaped do-
mains are close to flat interfaces but with interfacial noise present (Figure
Left). Although long-lived, these configurations continue to evolve and in this
sense they are different from the stripe-like frozen states with completely flat
boundaries found in a zero temperature SFKI model [[71]. When a realisation
falls in such dynamical metastable states, coarsening stops (the average in-
terface density fluctuates around a fixed value), until eventually a finite size
fluctuation makes the two walls collide and takes the system to one of the
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Figure 3.7: Time evolution of the fraction of alive runs, P(t¢), for the AB-model in a 2-
dimensional regular lattice for different system sizes. From left to right: N = 202 (>), 302
(%), 402 (¢), 602 (A), 802 (o), 1002 (O). Averages are calculated over 5000-20000 realisations
depending on the system size. The exponential tail corresponds to the stripe-like metastable
states.

absorbing states (see Figure B.5).

If the realisations that fall into long-lived dynamical metastable states are
removed when computing the average interface density, the power law expo-
nent for the decay of (p) increases, approaching the value v = 0.5 characteris-
tic of curvature driven coarsening. Other deviations from the exponent v = 0.5
can be due to non trivial logarithmic corrections. In 1 and 3-dimensional lat-
tices, we also find an exponent close to 0.5, which substantiates the claim that
curvature reduction is the dominant mechanism at work for the coarsening
process in the AB-model.

The existence of two type of realisations gives rise to two different charac-
teristic times. Starting from random initial conditions we consider the distri-
bution of survival times, p(¢), i.e., the distribution of the times for a simulation
to reach an absorbing state. From numerical simulations, it has been proven
that this distribution displays an exponential tail corresponding to the re-
alisations that involve a metastable state. The characteristic time to reach
consensus can be calculated from,

7= [Xtp(t)dt = [ tpi(t) dt + [ tps(t) dt

where p;(t) corresponds to the first type of realisations, py(¢) to the sec-
ond type, and T is the time where there remain only stripe-like metastable
states (1/3 of the realisations, as mentioned above) and where p(¢) becomes
exponential.

For the first type of realisations, the ones that do not get trapped in long
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Figure 3.8: Time evolution of the fraction of alive runs, P(t), for the AB-model in a 2-
dimensional regular lattice for different system sizes. Averages are calculated over 5000-
20000 realisations depending on the system size. Left: the time has been rescaled by NV, in
order to observe the scaling for the first type of realisations that approach the absorbing state
after the coarsening stage. From bottom to top: 402 (¢), 602 (A), 802 (o), 1002 (OJ). Inset: depen-
dence on the system size of the characteristic time to reach an absorbing state 7 for these first
type of realisations: 7 ~ N. Right: the time has been rescaled by N '8, in order to observe the
scaling for the second type of realisations that get trapped in stripe-like metastable states.
From right to left: 40% (o), 602 (A), 802 (o), 100 (O). Inset: dependence on the system size
of the characteristic time to reach an absorbing state = for these second type of realisations:
T~ N8

lived metastable states, the characteristic time to reach an absorbing state
can be estimated to scale as 77 ~ N since the coarsening is described by
(p) ~ t77, with v ~ 0.5, and at the time of reaching consensus (p) ~ (1/N)/4
(d is the dimensionality of the lattice). This has been confirmed by numer-
ical simulations which consider only such kind of realisations. For the sec-
ond type, ps(t) ~ e~ where a(N) is a constant depending on system size
N. It is straightforward to show that for large enough systems, the second
term scales as » ~ 1/a(N). Therefore, to obtain the dependence of 7, with
system size, we are just interested in the exponent a(N). In order to re-
duce the fluctuations observed in the tail for the distribution p(¢), we anal-
yse instead the fraction of alive runs, P(t¢), i.e., the fraction of simulations
which have not reached consensus yet. They are related in the following way:
Pt) =1-— fot p(t')dt'. As py(t) is exponential, we can obtain «(N) from the
fraction of alive runs: the tails of P(t) also decay as P(t) ~ e~ N, We show
in Figure B.7 the fraction of alive runs for different system sizes. The first
fast decay corresponds to the first type of simulations, while the exponential
tail describes the approach to the absorbing state for simulations which get
trapped in metastable states. Analysing the exponential tails for different
system sizes, i.e., plotting 1/a(N), we obtain » ~ N¢, with « ~ 1.8. The
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Figure 3.9: Time evolution of the average interface density (p) for the voter model in a 2-
dimensional regular lattice for different system sizes. From left to right: N = 202 (0), 30% (),
502 (o), 702 (o), 1002 (>). Inset: dependence of the characteristic time to reach an absorbing
state 7 with the system size: 7 ~ N198; compatible with the theoretical 7 ~ Nin(N).

scalings regarding the two types of realisations are shown in Figure

When taking into account all realisations, the global characteristic time to
reach an absorbing state for large system sizes is dominated by the persis-
tence of the dynamical metastable states, so that 7 ~ N®, with o ~ 1.8.

The AB-model analysed here is a modification of the two state voter model.
For the voter model coarsening in a d = 2 square lattice occurs by a different
mechanism, interfacial noise, such that (p) ~ (Int)~! [48, 49]. In Figure B.9,
we can observe that for a finite system the characteristic time to reach an ab-
sorbing state scales as 7 ~ N1In N [33, [72]. Therefore, the introduction of the
AB-state is identified as a mechanism to modify the interface dynamics from
interfacial noise to curvature driven dynamics. In spite of the small number
of AB agents that survive in the dynamical process, they cause a nontrivial
modification of the dynamics. Indeed, in our simulations we observe the for-
mation of well defined interfaces between A and B domains, populated by AB
agents, that evolve by a curvature driven mechanism. The different nature of
the coarsening process is illustrated comparing Figure B.10-Top (AB-model)
and Figure B.I0-bottom (voter model), for initial conditions with a closed
single-option domain surrounded by a domain in the opposite opinion and
Figure B.11}lTop (AB-model) and Figure B.ITlbottom (voter model) for random
initial conditions.

On the qualitative side, the inclusion of the AB agents gives rise to a much
faster coarsening process, but due to the existence of dynamical metastable
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Figure 3.10: Comparison of the interface dynamics. Initial conditions with a single-option
domain surrounded by a domain in the opposite option. Regular lattice of 2500 individuals.
t=0, 40, 200, 1000 from left to right. Top: AB-model. Curvature driven interface dynamics:
closed domain shrinks due to surface tension. Bottom: voter model. Noisy interface dynamics:
closed domain diffuses throughout the lattice. Grey: monolinguals A, black: monolinguals B,
white: bilinguals, AB.
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Figure 3.11: Comparison of the interface dynamics. Random initial conditions: snapshots
of a typical simulation of the dynamics in a regular lattice of 2500 individuals. t=0, 8, 80,
800 from left to right. Top: AB-model: coarsening leading to the formation of single-option
domains that evolve by curvature reduction. Bottom: voter model: slower coarsening leading
to non-localised domains evolving by interfacial noise. Grey: monolinguals A, black: mono-
linguals B, white: bilinguals, AB.
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states, on the average it also favours a longer dynamical transient in which
domains of the two competing options coexist AR~ % (larger lifetime
before reaching the absorbing state for large fixed N).
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Figure 3.12: Time evolution of the average interface density (p) for the AB-model in small
world networks with different values of the rewiring parameter p. From left to right: p=1.0
(x), 0.1 (A), 0.05 (¢), 0.01 (O), 0.0 (o). For comparison the case p = 0 for a regular network
and the case p = 1 corresponding to a random network are also shown. The inset shows
the dependence of the characteristic time to reach an absorbing state = with the rewiring
parameter p. The dashed line corresponds to the power law fit 7 ~ p~%75, Population of
N = 100? agents. Averages taken over 500 realisations.

3.3 Small world networks

Up to now, we have considered finite size effects and a regular spatial dis-
tribution of the agents. However, social networks display complex features
like the small world effect: short average path length and high clustering
[73]. This is a consequence of the existence in the network of long range so-
cial interactions. To study the effect of such interactions in the network, we
next consider the dynamics of the AB-model on a small world network [46]
constructed following the algorithm of Watts & Strogatz [6]]: starting from
a two dimensional regular lattice with four neighbours per node, we rewire
with probability p each of the links at random, getting in this way a partially
disordered network with long range interactions throughout it.

In Figure we show the evolution of the average interface density for
different values of p. As we found in the regular lattice, we also observe here
a dynamical stage of coarsening with a power law decrease of (p) followed by
a fast decay to the A or B absorbing states caused by a finite size fluctuation.
During the dynamical stage of coarsening, the A and B communities have
similar size, while the total density of AB agents is much smaller. In the
range of intermediate values of p properly corresponding to a small world
network, increasing the rewiring parameter p has two main effects: i) the
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Figure 3.13: Time evolution of the average interface density (p) for the voter model in a
small world network with different values of p. From up to bottom, p=1.0 (¢), 0.1 (), 0.05 (x),
0.01 (0), 0.0 (A). Population of N = 1002 agents. Averages taken over 900 realisations.

coarsening process is notably slower; ii) the characteristic time to reach an
absorbing state 7, which can be computed here as the time when (p) sinks
below a given small value, drops following a power law (inset of Figure B.12):
7 ~ p~ %7 so that the absorbing state is reached much faster as the network
becomes disordered.

To understand the role of the AB-state in the ordering dynamics in a small
world network, the results of Figure should be compared with the ones
in Figure for the two state voter model in the same small world network
[l. In contrast with the AB-model, moderate values of p stop the coarsenin
process of a two-state voter model leading to dynamical metastable statesﬁ
characterised by a plateau regime for the average interface density [0, 51].
The plateau height is larger for increasing p, indicating that the domains be-
come smaller. However, the lifetime of these states is not very sensitive to the
value of p, with the characteristic time to reach an absorbing state being just
slightly smaller than the one obtained in a regular lattice (p = 0). This is a
different effect than the strong dependence on p found for the characteristic
time to reach an absorbing state when AB agents are included in the dynam-
ics. Comparing the results of Figures and for a fixed intermediate

!Note that the small world network considered in [50] is obtained by a rewiring process of
a d = 1 regular lattice.

2In the AB-model, a metastable state is reached, but only after the coarsening stage. As
we show at the end of this section, 7 ~ In N; and therefore, this can be seen only for very large
system sizes.
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Figure 3.14: Initial conditions with a single-option domain surrounded by a domain in
the opposite state: Small world network with p = 0.1 projected in two dimensions of 2500
individuals. t=0, 20, 60, 140 from left to right. Top: AB-model: a domain shrinks much faster
due to the long range interactions that connect it to the rest of the network, which fragment
the initial domain accelerating the approach to consensus. Bottom: voter model: long range
connections do not make a qualitative different behaviour than the one observed in a regular
lattice (Figure B.I0). Grey: monolinguals A, black: monolinguals B, white: bilinguals, AB.



3.3 Small world networks 29

Figure 3.15: Time evolution of the average interface density, (p), for different values of the
population size, N, in a small world network with p = 0.1. N = 102 (o), 202 (), 302 (o), 702 (x),
1002 (%), 2002 (O); from left to right. Averaged over 1000 realisations in 10 different networks.
Inset: dependence of the characteristic time to reach an absorbing state = with the system
size: 7 ~InN.

value of p, we observe that including AB agents in the dynamics on a small
world network of interactions allows the coarsening process to take place, and
it also produces an earlier decay to the absorbing state. To illustrate qualita-
tively the different effect of the long range interactions on the two models, we
show in Figure B.14] snapshots of the two dynamics in a small world network
with p = 0.1: a curvature driven dynamics (majority rule) is very sensitive to
long range links, while noisy interface dynamics (imitation) is barely affected
by them.

System size dependence for a fixed value of the rewiring parameter p is
analysed in Figure We observe that the initial stage of the coarsen-
ing process is grossly independent of system size, but the characteristic time
to reach an absorbing state scales with the system size N as 7 ~ In(N).
This results to be the same scaling law obtained in fully connected net-
works (see Figure B.1). For the two state voter model 7 ~ N [50]. There-
fore the faster decay to the absorbing state caused by the presence of AB
agents in a large system interacting through a small world network is mea-
sured by the ratio TTAtB.\gW ~ w We note that this faster decay is qual-
itatively the oppositvé Tesult than the one found in a regular lattice where
Tap ~ N > T, ~ NIn(N). In the case of a regular lattice, on the aver-
age the AB agents slow down the decay towards the absorbing state due to

the dominance of the dynamical metastable states described in the previous
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Figure 3.16: Transition probabilities (Equation B.2)) for the e-model for different values of
€. When € > 1/(27) the transition probability for such a given ¢ is defined as follows: p; 4.5
as given by Equation for values of o such that 0 < p; 4.5 < 1; p; a—p = 0[1] for values
of o such that Equation gives p; a—p < 0> 1]. The limit ¢ — oo, corresponds to the
step-function transition probability of the SFKI model at zero temperature. e= 0.01 (solid

line), 0.2 (dashed), 1.0 (dotted), 10.0 (dot-dashed).

section.

3.4 Modification of the voter model: the ¢ -
model

In the previous sections, we have shown how the extension of the voter model
dynamics by the introduction of a third AB-state of coexisting options at the
individual level (AB-model), leads to a radical change in the interface dy-
namics. A natural question that these results pose is if the crossover from
interfacial noise dynamics of the voter model to curvature driven dynamics is
generic for any structural modification of the voter model. In order to interpo-
late from the voter model dynamics towards the majority model represented
by the zero-temperature SFKI model where the dynamics is curvature driven,
we have considered the coarsening process in a 2-dimensional lattice in which
agents can choose between two excluding options (states A and B) and the
dynamic rules are as defined in Chapter [2 but with transition probabilities

(see Figure [46]:

PiA—p = 0;p — €Sin(2w0; ), Dip—a = 0;4 — €5i0(270; 4), 5
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Figure 3.17: Characteristic coarsening exponent v ({p) ~ ¢t~7) for the e-model as a function
of the perturbation parameter e. N = 4002 agents. Averages taken over 75 realisations. Inset:
time evolution of the average interface density. From left to right: N = 202 (A), 502 (o), 1002
(%), 2002 (o), 400% (O) agents. Averages taken over 100 realisations. Given a value of ¢ (e = 0.01
in this figure), a power law for the average interface density decay is found for large enough
system sizes. Dashed line for reference: (p) ~ ¢=°-5.

In the following, we will call this modification of the voter model the e-model.
The parameter ¢ measures the strength of the term that perturbs the inter-
action rules of the voter model (¢ = 0). This perturbation of the voter model
implies that the probability of changing option is no longer a linear function
of the density of neighboring agents in the option to be adopted. With the per-
turbation term chosen here there is a nonlinear reinforcing (of order ¢) of the
effect of the local majority: the probability to make the change A — B is larger
[smaller] than o when o > 1/2 [op < 1/2]. In particular, we note that for
e # 0, the conservation law of the ensemble average magnetisation [47, 68I],
a characteristic symmetry of the voter model, is no longer fulfilled. For later
comparison we recall that in the zero-temperature SFKI model the local ma-
jority determines, with probability one, the change of option: p,_.5 = 1 [0] if
op>1/2[op < 1/2].

Our results for the exponent v in a power law fitting (p) ~ ¢~ for the e-
model are shown in Figure B.17 for different values of e. In these simulations
we have considered a 2-dimensional lattice with eight neighbours per node
so that more values are allowed for the perturbation term in Equation B.2).
For very small values of ¢ we observe an exponent v ~ 0.1 compatible with
the logarithmic decay ((p) ~ (Int)~') of the voter model, as obtained in [33].
However, for small but significant values of ¢ there is a crossover to a value
~v ~ 0.5 associated with curvature driven coarsening. Dynamical metastable
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states analogous to the ones found in the AB-model are also found (Figure
Right) with probability ~ 1/3 (for large enough systems) for values of ¢ for
which v ~ 0.5. The 1/3 fraction of realisations corresponds to the probability
to reach a frozen configuration in the SFKI at zero temperature [71]]. The dis-
tribution of survival times of these dynamical metastable states also displays
an exponential tail analogous to the one found in Figure B.7for the AB-model.
These realisations have been removed to calculate the value of ~.

We conclude that a small perturbation on the linear transition probabili-
ties of the voter model dynamics, such that there is a nonlinear reinforcing of
the effect of the local majority, leads to a new interface dynamics equivalent
to the one found for the AB-model by including a third state where options
are non-excluding. This illustrates the fact that the voter model dynamics is
very sensitive to perturbations of its dynamical rules.



Chapter 4

Conclusions

4.1 Summary and conclusions

The Abrams-Strogatz model for the competition between two languages re-
duces to the voter model in the case of two socially equivalent norms or options
(languages), s = 0.5, and volatility a = 1. In the same way and for the same pa-
rameter values, the Minett-Wang model, an extension of the AS-model which
introduces a third state modelling bilingualism, becomes the AB-model. In
the global context of consensus dynamics and motivated by these studies of
language competition, we have studied the nonequilibrium transient dynam-
ics of approach to the absorbing state for the AB-model, which can be seen as
an extension of the voter model in which the interacting agents can be in ei-
ther of two equivalent states (A or B) or in a third mixed state of coexistence of
two options at the individual level (AB). We have analysed the ordinary differ-
ential equations which describe the model in the thermodynamic limit (case
of mixed population and infinite system size), and the role of finite size effects
by considering the dynamics in fully connected networks. We have studied in
detail the effects of the following topologies: (i) two-dimensional lattices, to
account for the effect of a spatial distribution of agents, and (ii) small world
networks, to model the effect of long range interactions throughout the net-
work. Along our work, we have compared the AB-model with the voter model
in order to analyse the role of the AB agents in the dynamics.

The mean field analysis shows that in the thermodynamic limit a global
consensus state (A or B) is reached with probability one, except for initial
conditions lying on the stable manifold (X, = Xp) of the saddle fixed point
corresponding to unstable coexistence of the three states. However, when
considering a fully connected network to account for the finite size effects,
fluctuations drive the system out from the unstable fixed point and consensus
is always reached, with an average time to consensus that scales with the
system size as 7 ~ [n(N).



34 Chapter IV

We have analysed exhaustively the AB-model dynamics in two-dimensional
lattices. A domain of agents in the AB-state is not stable and the density of AB
agents becomes very small after an initial fast transient, with AB agents plac-
ing themselves in the interfaces between single-option domains. In spite of
these facts, the AB agents produce an essential modification of the processes
of coarsening and domain growth, changing the interfacial noise dynamics of
the voter model into a curvature driven interface dynamics characteristic of
two-option models with updating rules based on local majorities like SFKI
dynamics [18]. In this way, the typical growth of the size of such single-option
domains, (¢), changes from (£) ~ In(t) to (§) ~ t*, with a ~ 0.5. This change
in the coarsening mechanism is also found for small perturbations of the ran-
dom imitation dynamics of the voter model that modify the linear dependence
of the transition probabilities on the local density (e-model). This result in-
dicates that the effect might be generic for small structural modifications of
the voter model dynamical rules. We have also shown that in a two dimen-
sional regular lattice, the system reaches stripe-like dynamical metastable
states with a probability ~ 1/3 in both, the AB-model and the e-model, as ob-
served in the majority rule dynamics based on group interaction. The average
time to consensus for the AB-model has proven to scale with the system size
as 7 ~ N'® This dependence with system size is dominated by the pres-
ence of the dynamical metastable states mentioned above. Compared to the
7 ~ Nin(N) for the voter model, the AB agents produce a a faster coarsening,
but also longer times for extinction due to the presence of these metastable
states.

The effect of complex features in the topology of interactions such as the
role of long range connections throughout the network, has been addressed
considering a small world network. While for the original two-state voter
model the small world topology results in long lived metastable states in
which coarsening has become to a halt [50, 51], the AB agents restore the
processes of coarsening and domain growth. Additionally, they speed-up the
decay to the absorbing state by a finite size fluctuation: while in the voter
model the times to consensus are essentially not affected by the parameter of
rewiring p, in the AB-model we obtain 7 ~ p~°7, indicating a strong depen-
dence of the times to consensus on the parameter of rewiring. Moreover, we
obtain a characteristic time to reach an absorbing state that scales with sys-
tem size as 7 ~ In N to be compared with the result = ~ N for the voter model:
the decay to the absorbing state is much faster in small world networks when
AB agents are present.

From the point of view of recent studies of linguistic dynamics, our exten-
sion of the voter model allowing for two non-excluding options, the AB-model,
is a generalisation of the microscopic version of the Abrams-Strogatz model
for two socially equivalent languages, to include the effects of bilingualism
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(AB agents) and social structure. Within the assumptions and limitations of
our model, our results imply that bilingualism is not an efficient mechanism
to stabilise language diversity when a social structure of interactions such
as the small world network is taken into account. On the contrary, bilingual
agents are generally found to ease the approach to absorbing monolingual
states by smoothing the communication across linguistic borders.

The studies of language competition from the point of view of statistical
physics and complex systems give a new perspective and formalism in soci-
olinguistic problems. These models, although still limited, might help to face
the challenging question of the mechanisms involved in the processes of lan-
guage contact.

4.2 Further research

Different lines of further research can be considered as next steps in giving
a more detailed analysis of the dynamics of the AB-model, in order to move
forward in modelling consensus problems, and in particular, language compe-
tition:

In the first place, the dynamics could be analysed in other complex net-
works such as scale-free networks [7]], and specially in topologies of increas-
ing complexity which account for other characteristics observed in real social
networks beyond the small world effect: community structure, assortativity,
hubs, broad degree distributions with a cutoff, etc. Several models have been
designed to capture some of the characteristics of social networks, based on
mechanisms such as geographical proximity [[74]], social similarity [75] [76],
and local search [[77, 78], [79]. This would lead to a wider perspective on the
dynamical properties of the model in comparison to the voter model depend-
ing on the topological characteristics of the network [80]. The existence of
other types of metastable states in complex topologies is an important ques-
tion for physicists which, from the point of view of sociolinguistic dynamics,
is of broad interest: which network structures would lead to a dynamical co-
existence of two competing languages during large periods of time? Moreover,
the analysis made for the AB-model could be extended to the whole param-
eter space (a,s), giving a more complete picture on the modelling of ordering
dynamics with two non-excluding options.

In the second place, one could consider the AS-model and the MW-model
within a viability theory framework [81]]. In a viability problem, a constraint
set is defined: a region in the variable space inside which your system is vi-
able. A control parameter can be tuned in order to favour the viability of the
system. This leads to the identification of the viability kernel, which includes
all the states of the system from which, given a bounded action on the control
parameter, an indefinitely viable evolution exists. In the case of modelling
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language competition, the constraint set can be defined by imposing a thresh-
old in the densities of speakers below which the system is not viable, and the
control parameter taken as the relative prestige of the languages [82]]. Essen-
tially the idea is to analyse under which conditions the system is viable, i.e.,
the two languages can coexist indefinitely above the given threshold, given
that the prestige of an endangered language can be enhanced by public poli-
cies.

In the last place and from the point of view of modelling language compe-
tition, there are several open research lines that can be addressed in the near
future: (i) an extension of the models accounting for learning and use dynam-
ics, which would distinguish clearly between competence and language use;
(i1) an extension of the concept of network of interactions which could model
different contexts of use, and therefore take into account the phenomenon of
diglossia; (iii) build up a model where the language is modelled as a property
of the interaction (link) rather than a property of the agent (node), which gives
rise naturally to different degrees of bilingualism, and specially, (iv) explor-
ing dynamics which would allow for the emergence of a new language during
processes of language contact such as code-switching or creolization [83].
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