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Abstract. We study the influence of repulsive interactions on an ensemble of coupled excitable rotators.
We find that a moderate fraction of repulsive interactions can trigger global firing of the ensemble. The
regime of global firing, however, is suppressed in sufficiently large systems if the network of repulsive
interactions is fully random, due to self-averaging in its degree distribution. We thus introduce a model
of partially random networks with a broad degree distribution, where self-averaging due to size growth is
absent. In this case, the regime of global firing persists for large sizes. Our results extend previous work
on the constructive effects of diversity in the collective dynamics of complex systems.

PACS. 05.45.Xt Synchronization; coupled oscillators – 05.45.-a Nonlinear dynamics and chaos – 89.75.Fb
Structures and organization in complex systems

1 Introduction

Noise and disorder can have a variety of effects on the
collective dynamics of complex systems such as biologi-
cal populations, chemical reactions, oscillator ensembles,
among others. Somehow paradoxically, such effects often
play a constructive role in inducing coherent behaviour
in the system [1–3]. An already classical example is the
phenomenon of stochastic resonance, where noise of ap-
propriate intensity enhances the response of a system to
an oscillatory external forcing [4]. A similar effect in an
extended system can be caused by the presence of some
degree of heterogeneity amongst the constituents, a phe-
nomenon named diversity-induced resonance [5]. Also, a
certain degree of structural disorder in a network can
make the propagation of information considerably more
efficient [6].

It was recently shown that, in an ensemble of coupled
excitable rotators, noise and disorder are able to trigger
global firing [7]. During these events, a substantial frac-
tion of the ensemble is excited almost synchronously, so
that the joint firing of all those elements gives rise to a
collective process which can be detected at macroscopic
level. This phenomenon has been observed under the ac-
tion of additive noise, when stochastic terms are added to
the evolution equations, or under ensemble heterogeneity,
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when the parameters that define the individual dynamics
of the rotators differ all over the ensemble. Since these pre-
vious studies considered all-to-all (global) homogeneous
coupling between elements, the effect of disorder in their
interaction network was not analysed.

Global coupling has frequently been invoked as an an-
alytically tractable interaction pattern for which several
systems are completely solvable [8]. In real situations,
however, the interaction pattern is usually heterogeneous,
with different weights for each pair of interacting elements.
Some systems, such as neural networks, even require the
consideration of interactions of different signs, to account
for excitatory and inhibitory coupling [9–11]. Interaction
patterns with attractive and repulsive weights in ensem-
bles of coupled dynamical elements was first addressed by
Daido [12–14]. Their effect on the stability of synchroni-
sation in an ensemble of phase oscillators, in terms of the
relative number and strength of positive and negative cou-
plings, has been studied recently [16]. It was found that
a certain fraction of sufficiently strong repulsive interac-
tions, distributed at random over the interaction pattern,
is able to induce a transition from the highly coherent
state of full synchronisation, where all elements oscillate in
phase, to an unsynchronised state. Recently, in a different
context, a condition for synchronisability of heterogeneous
networks with attractive interactions was found [15].

The presence of randomly scattered negative couplings
in the interaction pattern of an ensemble of dynamical
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elements is a source of structural disorder, complemen-
tary to noise and to the heterogeneity of the ensemble. It
is therefore natural to study its effects on the collective
dynamics of coupled excitable elements and, in particu-
lar, on the phenomenon of global firing. This is our aim
in this paper, which is organised as follows: in Section 2,
we introduce the model of coupled excitable rotators, and
the order parameters used in the characterisation of the
collective macroscopic behaviour of the ensemble. Next, in
Section 3, we consider the case when repulsive interactions
form a fully random (Erdös-Rényi) network. In this case,
global firing is observed for finite-size systems but, due to
self-averaging in the degree distribution of fully random
networks, the phenomenon is suppressed in the limit of in-
finitely large ensembles. Thus, in Section 4, we introduce
a model of partially random networks where the relative
dispersion of the degree distribution does not depend on
the size. When repulsive interactions are distributed over
such a network, global firing is found to persist for large
systems. Our conclusions are discussed in the final Sec-
tion 5.

2 Model and order parameters

We consider an ensemble of coupled active rotators [17]
with individual phases φj(t) ∈ [0, 2π), j = 1, . . . , N , whose
dynamics is given by

φ̇j = ω − sin φj +
C

N

N∑

k=1

Wkj sin(φk − φj). (1)

The coupling strength is measured by the parameter C ≥
0, and each factor Wkj weights the interaction of a specific
rotator pair. These weights are symmetric, Wkj = Wjk.
Attractive and repulsive interactions are characterised, re-
spectively, by Wkj > 0 and Wkj < 0.

The natural frequency ω > 0 is the same for all rota-
tors. For ω > 1 and in the absence of coupling, the in-
dividual dynamics is oscillatory, with an actual frequency
ω′ =

√
ω2 − 1. The case ω < 1 corresponds to excitable

individual dynamics: for C = 0, the phase φj of each ro-
tator has two fixed points, one of them stable (φs < π/2)
and the other unstable (φu > π/2), at the two solutions of
sin φj = ω. A perturbation of the stationary stable solu-
tion which overcomes the unstable fixed point φu gives
rise to the firing of the rotator, in the form of a long
phase excursion which finally returns to the rest state φs.
Throughout this paper we focus the attention on the ex-
citable regime ω < 1.

In our model noise is absent and, for C = 0, individ-
ual rotators are identical. Diversity is thus restricted to
disorder in the interaction network, through the weights
Wkj . Our main aim is, in fact, to analyse the effects of
this source of diversity in the collective dynamics of the
system.

If all the phases φj coincide with one of the two fixed
points of the individual dynamics, either φs or φu, the en-
semble is in a stationary state – which we refer to as full

synchronisation – for any value of C. If the weights Wkj

are positive for all k and j, the fully synchronised state
where all the rotators are in the rest state, φj = φs for
all j, is stable. The stability of this collective rest state
can break down, however, in the presence of repulsive in-
teractions, when some of the weights Wkj are negative
and their absolute value is large enough. In this situa-
tion, generally, the ensemble does not reach an asymptotic
stationary state. Individual phases can now rotate irregu-
larly around their whole domain and, as we show below,
a regime of global firing – where a fraction of the ensem-
ble is collectively entrained into long excursions from the
unstable fixed point to the rest state – becomes possible.

The collective behaviour of the rotator ensemble, in-
cluding possible transitions between different dynamical
regimes, is well characterised by a set of order parameters
defined in terms of the individual phases φj(t). First, we
take the average of the imaginary phase exponentials

ρ(t) exp[iΨ(t)] =
1
N

N∑

j=1

exp[iφj(t)], (2)

and compute the Kuramoto order parameter as ρ ≡ 〈ρ(t)〉,
where 〈·〉 stands for the time average over a long inter-
val [8]. This parameter is a direct measure of the degree
of synchronisation attained by the ensemble. For a fully
synchronised state we have ρ = 1, whereas ρ ∼ 1/

√
N for a

state where phases are uniformly distributed over [0, 2π).
The Kuramoto order parameter cannot discern be-

tween the case where phases are synchronised at a fixed
point, as at the rest state φs, and the case where they ro-
tate coherently, as expected to occur in a regime of global
firing. To discriminate between static and dynamic en-
trainment, we apply the order parameter introduced by
Shinomoto and Kuramoto [17]:

ζ = 〈|ρ(t) exp[iΨ(t)] − 〈ρ(t) exp[iΨ(t)]〉|〉 . (3)

This parameter differs from zero for synchronous firing
only.

A third order parameter, frequently used in the anal-
ysis of stochastic transport [18], is the current

J =
1
N

N∑

j=1

〈
φ̇j(t)

〉
. (4)

It measures the level of (not necessarily synchronised) fir-
ing over the whole ensemble.

3 Erdös-Rényi networks of repulsive links

First, we consider an ensemble of rotators governed by
equation (1), whose interaction weights are distributed at
random according to the following prescription:

Wkj =
{

1 with probability 1 − pd,
−κ with probability pd.

(5)
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The coefficient κ > 0 measures the relative strength of re-
pulsive and attractive interactions, and the probability pd

fixes the expected fraction of negative weights. Repulsive
interactions define a network which, with the prescription
of equation (5), has the same structure as an Erdös-Rényi
random network [19–21]. On the average, the network of
repulsive interactions has pdN(N −1)/2 links. We call Nj

the set of neighbours of rotator j in that network. The
mean number of rotators in Nj is pd(N − 1), and the
expected dispersion around this average is of order

√
N ,

so that the relative dispersion decreases with the size as
1/

√
N .

It is useful to rewrite equation (1) in terms of the quan-
tities ρ(t) and Ψ(t) introduced in equation (2), as

φ̇j = ω − sin φj + Cρ sin(Ψ − φj)

− C(1 + κ)
N

∑

k∈Nj

sin (φk − φj) . (6)

This equation describes the evolution of φj(t) as governed
by the interaction with a single (mean-field) oscillator with
phase Ψ(t) with an effective coupling strength Cρ(t) plus
a negative contribution with coupling C(1 + κ) from the
neighbourhood of rotator j in the network of repulsive
links.

3.1 Stability of the fully synchronised state

As advanced above, in the presence of repulsive interac-
tions, the state of full synchronisation may be unstable.
The stability condition can be obtained from linearisation
of equation (6). Writing φj(t) = φs + δj(t), we get for the
deviations from the fixed point the equations

δ̇j = −
√

1 − ω2 δj − Cδj −
C(κ + 1)

N

∑

k∈Nj

(δk − δj). (7)

Full synchronisation is stable if all the eigenvalues of the
matrix

J = −
(√

1 − ω2 + C
)

I − C(κ + 1)
N

(M − N) (8)

are negative or have negative real parts. Here, I is the
identity matrix, M = {Mkj} is the adjacency matrix of
the network of repulsive links (defined as Mkj = 1 if there
is a repulsive link between rotators k and j, and Mkj = 0
otherwise), and N = {Nkj} is a diagonal matrix, where
Njj ≡ kj =

∑
i Mij is the number of rotators in Nj –

namely, the degree of site j.
Whether the stability condition for full synchronisa-

tion is fulfilled or not depends on the specific realisation
of the network of repulsive links. Even for the same prob-
ability pd, and for fixed values of C, ω and κ, the stability
of full synchronisation depends on the particular distribu-
tion of negative weights. The uppermost panel of Figure 1
shows numerical results for the fraction fd of realisations
of the network of repulsive links for which full synchro-
nisation is unstable, as a function of pd. As expected, fd
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Fig. 1. Uppermost panel: fraction fd of realisations of the
network of repulsive links for which the fully synchronised state
is unstable, as a function of the probability pd, over series of
103 realisations. From left to right: N = 50 ("), 100 (!) and 200
("). The other parameters are C = 4, κ = 10, and ω = 0.98.
The vertical dotted line stands for the theoretical transition
point, p∗

d ≈ 9.54 × 10−2, for an infinitely large ensemble. The
three lower panels show the Kuramoto order parameter ρ, the
Shinomoto-Kuramoto order parameter ζ, and the current J ,
for the same realisations.

grows as the number of repulsive links increases. Different
curves correspond to different system sizes N .

Numerical results suggest that, for large N , there is a
sudden transition from fd = 0 to 1 at a given value p∗d
of the probability pd. An analytical estimate of p∗d can be
obtained from the assumption that the number of neigh-
bours in the network of repulsive links is the same for
all rotators, i.e. that the number of rotators in Nj is the
same for all j. This approximation improves as N grows,
because – as stated above – the relative dispersion in the
number of rotators in Nj decreases as 1/

√
N . It implies
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that the matrix J can be written as

J = −
(√

1 − ω2 + C − C(κ + 1)pd

)
I− C(κ + 1)

N
M. (9)

For N → ∞, the coefficient in front of the matrix M tends
to zero, suggesting that its contribution to J can be ne-
glected in that limit. This intuitive argument implies that
the point at which the maximum eigenvalue becomes pos-
itive for N → ∞ is

p∗d =
C +

√
1 − ω2

C(1 + κ)
. (10)

A more rigorous argument, confirming this critical value
for p∗d, can be obtained from exact bounds for the eigen-
values of the matrix J in equation (8) coming from the
so-called semicircle law [22], applied to matrices M and
N [16]. The vertical dotted lines in the uppermost panel
of Figure 1 stands for this critical value p∗d.

Close inspection of the destabilisation of full synchro-
nisation reveals that this transition is triggered by the
behaviour of the rotator j∗ with the largest number of
repulsive links – as also observed to occur in ensembles
of coupled phase oscillators [16]. For a given value of κ,
as the fraction pd of repulsive links grows, the fixed point
φs first ceases to be a stable state for φj∗ . An arbitrar-
ily small deviation in φj∗ leads to a different equilibrium
point, and full synchronisation breaks down, even when
other rotators may remain mutually synchronised. Thus,
while varying κ, the transition to full synchronisation oc-
curs via clustering of those nodes with the lowest number
of repulsive links. For small sizes N , the value of pd at
which the rotator j∗ attains the number of negative inter-
action weights which makes full synchronisation unstable
depends sensibly on the detailed structure of the network
of repulsive links. This explains the smooth transition in
fd as pd grows. For large N , on the other hand, all sites in
the network of repulsive links are statistically equivalent
with respect to the distribution of negative links. Con-
sequently, the transition takes always place at the same
value of pd, irrespectively of the specific realisation of the
network. Accordingly, fd exhibits a sharp growth from 0
to 1, which should become discontinuous in the thermo-
dynamic limit. This semi-qualitative analysis sheds light
on the role of the homogeneity of the distribution of neg-
ative links in defining the nature of the destabilisation
transition of full synchronisation. This effect of the net-
work structure on the collective dynamics of the system is
further studied in the following.

3.2 Numerical study of the unsynchronised regime

In the fully synchronised state, the phases of all rotators
are at the stable fixed point φs. The Kuramoto order pa-
rameter reaches its maximum value ρ = 1, whereas the
absence of any kind of collective motion implies that both
the Shinomoto-Kuramoto parameter ζ and the current J
vanish. As full synchronisation breaks down, the param-
eter ρ is expected to decrease, and ζ and J can adopt
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Fig. 2. Left column: time evolution of the collective phase
Ψ(t) (thick lines) and of the phases of ten representative rota-
tors (thin lines) in an ensemble of size N = 50, for three values
of the fraction of repulsive links: (a) pd = 0.015, (b) 0.03, and
(c) 0.1. The other parameters are C = 4, κ = 10, and ω = 0.98.
Right column: time evolution of ρ(t), for the same realisations.
The horizontal dashed line stands for the threshold of oscilla-
tory behaviour, ρ = ω [7]. The middle panels correspond to
the regime of global firing.

non-zero values, as was shown in [7]. In this section, we
present numerical results illustrating the behaviour of the
order parameters as a function of the fraction of repul-
sive links pd, for ensembles of different sizes, with C = 4,
κ = 10, and ω = 0.98.

Figure 2 illustrates the dynamics of the rotator en-
semble for three values of the fraction of pd. Results cor-
respond to numerical integration of equation (6) for a sys-
tem of N = 50 rotators. In the left column, we show the
time evolution of the collective phase Ψ(t) together with
that of ten representative rotators. In panel (b), which
corresponds to an intermediate value of pd, the rotators
pulse in synchrony and, consequently, the collective phase
performs periodic rotations. We identify this behaviour
with the regime of global firing. In the right column, we
show the evolution of the parameter ρ(t), defined in equa-
tion (2), for the same realisations. The degree of synchro-
nisation, measured by the time average of ρ(t), decreases
as the fraction of repulsive interactions grows.

In the three lower panels of Figure 1 we plot the or-
der parameters ρ, ζ, and J as functions of the fraction of
repulsive links. As expected, the decay in ρ is initially ac-
companied by growth in both ζ and J . As pd increases, the
current keeps growing indicating that, on average, the fir-
ing frequency of individual rotators is also increasing. The
Shinomoto-Kuramoto parameter ζ attains a maximum at
an intermediate value of pd and then decreases. This is an
indication that global synchronous firing occurs when full
synchronisation is unstable and for moderate values of pd.
Larger fractions of negative links, however, make the dy-
namical coherence of the population decrease, and global
firing becomes less distinct.
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These results – in particular, the existence of and in-
termediate range of the probability pd where global fir-
ing is most conspicuous – are in qualitative agreement
with the collective behaviour of rotator ensembles where
the disorder associated with repulsive interactions is re-
placed by noise and/or ensemble heterogeneity [7]. How-
ever, a noticeable quantitative difference resides in that,
in the present case, the range of global firing becomes nar-
rower as the system grows in size. The results of Figure 1
suggest that global firing may disappear for sufficiently
large ensembles. An explanation for this collapse can be
put forward recalling that the instability transition of full
synchronisation becomes sharper as N grows (cf. the up-
permost panel of Fig. 1). As discussed at the end of Sec-
tion 3.1, for large systems, the number of repulsive links is
statistically the same for all rotators. At the transition, all
rotators abandon simultaneously the stable fixed point φs

and, consequently, the ensemble adopts a highly disorgan-
ised phase configuration. In small systems, on the other
hand, the transition is gradual. The stable fixed point is
first abandoned by those rotators with a large number of
repulsive links, which can be thus entrained into global
synchronous firing.

This explanation indicates that, if it were possible to
design a random network where the heterogeneity in the
distribution of repulsive links is maintained as the system
grows in size, the regime of global firing would persist for
arbitrary large systems. In Section 4 we introduce a proce-
dure to construct such a heterogeneous network, and nu-
merically verify that the range where global firing occurs
does not collapse as N grows. We also propose an interpo-
lation between that kind of heterogeneous networks and
Erdös-Rényi networks, and analyse global firing on these
intermediate structures.

4 Heterogeneous networks

In this section, we introduce a method to construct a class
of networks where the distribution of links per site pre-
serves its heterogeneity as the size N increases. Specif-
ically, the dispersion in the number of links per site is,
in these networks, proportional to N so that the rela-
tive width of the distribution does not change with the
size. According to the discussion at the end of Section 3,
the effects of heterogeneity observed in small random net-
works of repulsive links, which disappear because of self-
averaging in the random distribution of links, should per-
sist in these new structures. In particular, we expect to
find global firing even in large ensembles.

4.1 Construction of a heterogeneous network

To build up our heterogeneous network of repulsive links,
we start by taking a random network of size N0 and
wiring probability pd. The average number of links per
site is k̄0 ∼ pdN0, while its mean square dispersion is
σ0 ∼

√
pdN0. Let Nj be the set of the kj neighbours of

Fig. 3. A heterogeneous network constructed starting by a
network of N0 = 4 sites, and consisting of two replicas of the
starting network. Bold lines stand for links inside each replica,
and thin lines correspond to links connecting different replicas.

site j. We now consider M identical replicas of the start-
ing network, which we use to build up a network of size
N = MN0. In each one of these replicas, say in replica
m, we identify the site jm which is homologous to the
site j of the starting network. The M replicas are linked
by connecting each site jm with all the neighbours of all
its homologous sites in all the replicas. In other words,
the site jm becomes linked to the kjM members of the
sets Nj1 , Nj2 , ..., NjM . Figure 3 illustrates the resulting
network in a simple case. By construction, the number
of neighbours of each site in the final structure equals M
times the number neighbours of the homologous site in the
starting network. Therefore, the average number of links
per site and the mean square dispersion are, respectively,

k̄ = MpdN0 = Mk̄0 = pdN, (11)

and
σ = Mσ0 = Nσ0/N0. (12)

As advanced above, for fixed N0, both the mean value and
the dispersion in the distribution of links of the resulting
network grow linearly with the number of sites N . The
relative dispersion is thus independent of the network size.

Let M0 and M be the adjacency matrices of the start-
ing network and the resulting network, respectively. It is
possible to show that, if λ0 is an eigenvalue M0, then
λ = Mλ0 = Nλ0/N0 is an eigenvalue of M, with mul-
tiplicity N0. The remaining eigenvalues are equal to zero.
A similar relation holds for the matrix N of equation (8).
This result differs from the prediction of the semicircle
law, which stands for purely random matrices and states
that λ ∼

√
N [22]. Since, in equation (8), both M and N

are divided by the network size N , the maximum eigen-
value of J – which is in turn determined by the maximum
(positive) eigenvalue of M – does not depend on N . Thus,
for fixed N0, the critical point at which full synchronisa-
tion becomes unstable is independent of the size.

Clearly, the network resulting from our construction
is not fully random. In fact, because of the interconnec-
tion of all the homologous sites, it can be shown to have
a large clustering coefficient [21]. To interpolate between
this structure and a fully random network, we introduce
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Fig. 4. The order parameters as functions of the fraction of
repulsive links pd, in the absence of rewiring, pf = 0. Different
curves, which are however practically coincident, correspond to
sizes N = 100, 200, 400, and 1000. In all cases, the network of
negative links is constructed from a starting network of N0 =
20 sites. The other parameters are C = 4, κ = 2, and ω = 0.98.

a mechanism of link rewiring, in the spirit of small-world
networks [23]. Starting from the heterogeneous network
constructed above, we visit each site and, with probabil-
ity pf , rewire each of its links to a randomly chosen site
all over the system. For pf = 1, a fully random network
is obtained. In the following, we study the collective be-
haviour of an ensemble of globally coupled rotators whose
network of repulsive interactions is build as described here,
in terms of the parameters pd and pf .

4.2 Numerical results

In our numerical analysis, the networks of repulsive links
introduced in Section 4.1 are built starting from random
networks of N0 = 20 sites, and their final sizes are N =
100, 200, 400, and 1000. Also, we fix C = 4, κ = 2, and
ω = 0.98.

Figure 4 shows results for the order parameters ρ, ζ,
and J as functions of the fraction of repulsive links pd,
in the absence of rewiring, pf = 0. Different curves cor-
respond to different sizes N . We see that, as expected,
the order parameters are essentially independent of the
system size. In particular, the regime of global firing –
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Fig. 5. The order parameters as functions of the rewiring prob-
ability pf , for a fixed fraction of repulsive links, pd = 0.2. Dif-
ferent curves correspond to sizes N = 100 ("), 200 (!), 400
(◦), and 1000 ("). In all cases, the network of negative links
is constructed from a starting network of N0 = 20 sites. The
other parameters are C = 4, κ = 2, and ω = 0.98.

signalled, for intermediate values of pd, by the maximum
in the Shinomoto-Kuramoto parameter – clearly persists
for large ensembles.

Figure 5 shows the order parameters as functions of
the rewiring probability pf , for a fixed fraction of nega-
tive links, pd = 0.2 which corresponds, approximately, to
the maximum common firing activity in the case pf = 0,
see Figure 4. The Shinomoto-Kuramoto parameter ζ is
practically independent of N for small and large pf , but
exhibits a substantial dependence on the size for inter-
mediate wiring probabilities. As may be expected from
our results on Erdös-Rényi networks, in this intermediate
zone, ζ is larger for smaller ensembles.

Finally, Figure 6 summarises the dependence of the
order parameters on the probabilities pd and pf for an
ensemble of N = 400 rotators. The graphs represent nu-
merical results averaged over series of 100 realisation for
each parameter set.

5 Conclusion

In this paper, we have shown that – like noise and ensem-
ble heterogeneity [7] – structural disorder in a network
of interacting excitable rotators can induce global firing
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Fig. 6. The order parameters for an ensemble of N = 400
rotators (N0 = 20) as functions of the fraction of negative
links pd and the rewiring probability pf . The other parameters
are C = 4, κ = 2, and ω = 0.98.

of the ensemble. This form of collective dynamics is here
a consequence of the presence of a fraction of repulsive
couplings, randomly scattered all over the interaction net-
work. These repulsive interactions destabilise the state of
full synchronisation when their number and intensity are
large enough. Just beyond this desynchronisation transi-
tion, for intermediate values of the fraction of repulsive
couplings, the ensemble is entrained in a regime where
many rotators are coherently excited, and global firing is

triggered. While the results of this paper support the gen-
eral mechanism for global firing put forward in [7], it is im-
portant to stress that the particular mechanism at work in
the system studied here is quite different. In [7] the rota-
tors showed heterogeneity in the form of dispersion in the
natural frequencies ωi. As the dispersion increased a frac-
tion of the rotators had natural frequencies in the oscilla-
tory range ωi > 1. Those rotators would spontaneously fire
if they were isolated. When coupled, they pull the other
rotators into an state of collective firing. In the system
studied in this paper, on the other hand, the mechanism of
destabilisation is produced by the effect that negative cou-
plings have on individual rotators, but these would never
fire if isolated. In both cases, however, it is the diversity,
either in the natural frequencies or in the number of neg-
ative links, that produces the global effect. In fact, when
the pattern of repulsive couplings forms an Erdös-Rényi
random network the regime of global firing is progressively
suppressed as the size of the ensemble grows. This effect
can be ascribed to that, as the network becomes larger,
there is self-averaging in its degree distribution, so that the
number of neighbours per site becomes increasingly homo-
geneous. This homogeneity sharpens the desynchronisa-
tion transition and, at the same time, causes the collapse
of the zone where global firing is possible for smaller sys-
tems. To avoid this effect of self-averaging – which clearly
illustrates how increasing homogeneity can inhibit certain
forms of coherent behaviour – we have introduced an algo-
rithm to construct partially random networks whose de-
gree distribution maintains its relative dispersion as the
network grows. In this case, in fact, the order parameters
which characterise the macroscopic behaviour of the rota-
tor ensemble become essentially independent of the size.
In particular, the regime of global firing persists for large
systems.

The present results extend previous work on the effects
of diversity of various origins over the collective dynamics
of complex systems. These forms of diversity include now
heterogeneous interaction patterns, with positive (attrac-
tive) and negative (repulsive) couplings. The extension is
thus relevant to such systems as neural networks, where
interactions of different signs are present in the form of
activator and inhibitory synapses [10].
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1. J. Garćıa-Ojalvo, J.M. Sancho, Noise in spatially extended
systems (Springer-Verlag, New York, 1999)

2. F. Sagués, J.M. Sancho, J. Garćıa-Ojalvo, Rev. Mod. Phys.
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