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Abstract

Recently, it has been shown that properties of excitable media stirred by two-
dimensional chaotic flows can be properly studied in a one-dimensional framework
describing the transverse profile of the filament-like structures observed in the sys-
tem. Here, we perform a bifurcation analysis of this one-dimensional approximation.
Different branches of stable solutions and a Hopf bifurcation leading to an oscillating
filament are described.
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1 Introduction

Chemically reacting substances in fluid flows are complex systems important
both from a fundamental point of view and for its relevance in industrial and
environmental contexts [1,2]. Typical incompressible chaotic flows stretch fluid
parcels along particular directions, with the consequent contraction along the
others. Thus, passive markers draw filamental or lamellar structures that have
been investigated both from theory as from experiment[3,4]. Chemical reac-
tants are also stretched in this way, producing a great increase in the surface
of contact between different species with deep effects on the global chemical
kinetics[5]. In addition to the strictly chemical interactions, biological interac-
tions in ecosystems (predation, grazing, consumption, competition, ...) can also
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be described in the same framework, so that stability and dynamics of aquatic
ecosystems are also strongly influenced by this filamentation process[6].

In this Paper we analyze a simplified model describing the transverse chemical
structure of these filaments, for the case in which the chemical or biological
activity is of the excitable type. Such kind of dynamics in two-dimensional
chaotic flows was analyzed in [7,8]. There it was found that some of the dy-
namic regimes and transitions between them can be understood in terms of
a simple one-dimensional model, of the kind already considered in [9] that
focusses in the transverse structure of the filaments. It was mentioned in [8]
that, in addition to the bifurcations considered there in detail, there was a
range of parameters for which a complex coexistence of solutions and bifurca-
tions occurred, that may be of relevance to understand qualitative behaviors of
the two-dimensional chaotic flows. The present paper focusses in that regime.
We use the FitzHug-Nagumo model as a prototypical excitable dynamics, but
we expect that the same qualitative results will be also obtained for other
chemical or biological excitable schemes.

2 The one-dimensional filament model

A general partial differential equation model describing the spatiotemporal
evolution of a number of chemical or biological concentrations {Ci(x, t)}i=1,...,N

under the simultaneous effects of chemical evolution rates {Fi}, advection in
an incompressible velocity field v(x, t), and diffusion with diffusion coefficients
{Di}, is the one given by the following advection-reaction-diffusion equations:

∂Ci(x, t)

∂t
+ v(x, t) · ∇Ci(x, t) = kFi(C1, ..., CN ) + Di∇2Ci(x, t) . (1)

(k is a global reaction rate). In the following we restrict for simplicity to the
case of equal diffusion coefficients Di = D, ∀i. In the immediate vicinity of
filaments or lamelae, one can approximate the flow by its linearization around
a point co-moving with a fluid element. In areas where the advection dynamics
is hyperbolic this linearization identifies principal directions {xj} along which
the corresponding velocity components read vj = λjxj. Positive and negative
values of the strain rate λj identify expanding and contracting directions, re-
spectively. Along the expanding directions, diffusion and advection cooperate
and the chemical concentrations are fastly homogenized, whereas strong gra-
dients build-up in the contracting directions. This is the origin of filamental
(one expanding direction) or lamellar (two expanding directions) structures.
Gradients in Eq. (1) can be safely neglected except along the contracting di-
rections. We consider here the case of filaments in two-dimensional flows, or
lamellae in three dimensions, so that there is only one contracting direction,
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Fig. 1. One-hump solutions for the two chemical components: C1 and C2 (multiplied
by a factor 5); a) Da = 25; b) Da = 55.

of strain rate λi ≡ −λ, with λ > 0. In this case, (1) reduces to an effective
one-dimensional model for the transverse profile of the chemical distributions.

By measuring time in units of λ−1, and space in units of
√

D/λ, we arrive at:

∂Ci(x, t)

∂t
− x

∂

∂x
Ci(x, t) = DaFi(C1, ..., CN ) +

∂2

∂x2
Ci(x, t) . (2)

We have introduced a Damköhler number Da = k/λ as the ratio between the
chemical and the strain rate. We expect (2) to be accurate for small values of
the diffusion coefficient.

The FitzHugh-Nagumo (FN) model consists in a dynamics of the type (1)
for two interacting species, of concentrations C1 and C2, and reaction terms:
F1 = (a − C1)(C1 − 1) − C2, F2 = ε(C1 − γC2). It behaves excitably when
ε � 1 so that there is a separation between the fast evolution of the active
component or activator, C1, and the slow evolution of C2, the passive one or
inhibitor. We concentrate in the parameter values ε = 10−3, γ = 3.0, and
a = 0.25, for which robust excitable behavior is obtained. We use zero-flux
boundary conditions at the ends of the integration interval, although other
boundary conditions (periodic or C1 = C2 = 0) give similar results if the
interval is large enough.

3 Filament solutions

The unexcited solution, C1 = C2 = 0, is a linearly stable exact solution
of system (2). In addition, the most notable solution is a pulse like steady
solution, centered on x = 0, in which the activator is fully excited in a central
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Fig. 2. Two types of pulses for Da = 100: a) The two-hump symmetric solution;
b) the asymmetric one. They were obtained by integrating forward in time Eq. (2)
from a centered (a) or off-center (b) bell-shaped initial condition for C1.

region, whereas the inhibitor remains at reduced concentrations. This chemical
distribution can be thought as the transverse cut of one of the excited filaments
seen in two-dimensional excitable fluid flows. Pulse solutions of this type are
shown in Fig. 1. They were obtained by solving (2) forward in time starting
with a centered bell-shaped initial condition for C1.

As in bistable chemical models, this stable pulse solution coexists in a range
of parameters with a unstable pulse, of width given at small ε approximately
by [8] wu ≈ 2/

√
aDa. When the value of Da decreases (meaning that the

chemistry becomes slower, or the stretching faster) the two solutions approach,
collide and disappear from phase space in a saddle-node bifurcation [8]. This

happens at a value of Dac ≈ 2
√

2/a(1−2a)−1. Thus, the excited pulse solution

does not exists at small Da, and the existence of a critical Dac explains [8]
the dynamical transition occurring in closed two-dimensional chaotic flows
between a situation in which local perturbations of the unexcited state have
limited impact on the system, and a state in which they give rise to a global
excitation of the whole fluid. A related transition occurs in open flows [8].

At larger values of Da, the influence of the inhibitor becomes more notice-
able and, as a result, steady filament solutions have a ‘two-humped’ shape
(Fig.2a). It was noted in [8] that this kind of ‘double-filament’, also seen in
two-dimensional flow simulations, can be regarded as a bound state of two
asymmetric counter-propagating excitable pulses, which are also steady solu-
tions of model (2) coexisting with the symmetric ones at large Da (Fig. 2b).
Of course, for each value of Da there are two asymmetric solutions of this
kind, each one being the specular image of the other.
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Fig. 3. Left: Height of stable solutions of (2) as a function of Da. Solid line: de-
creasing Da from an initial state of the asymmetric type (Fig. 2b) at large Da.
Dashed line: beginning from a symmetric two-hump pulse (Fig.2a). Dashed-dotted
line: increasing the value of Da from a symmetric one-hump pulse (Fig.1a)). Right:
Spatio-temporal plot of C1 in an oscillating filament at Da = 79.

4 Bifurcation behavior at intermediate Da

It was noted in [8] that a complex bifurcation scenario occurred between the
small and the large values of Da for which the solutions in Figs. (1) and (2)
were respectively obtained. It happens that these three solution branches are
not directly connected, at least for the values of ε and γ considered here. We
have followed the three branches of steady stable pulse solutions by starting
with well developed solutions at large and small Da, and then performing slow
changes in Da. In this way we can only follow stable solutions. A more complete
characterization would require also the continuation of unstable branches, that
will be performed elsewhere. We monitor the height of the activator at x = 0,
and plot it in Fig. 3.

When increasing the value of Da on the symmetric one-humped solution
branch, the inhibitor value increases in the center, so that for Da & 45,
the central concentration of the activator becomes a shallow minimum (Fig.
1b). So, above this parameter value, this branch can be called ‘slightly two-
humped’, and it remains so until Da ≈ 77.1. It is however clearly different
from the ‘strongly two-humped’ solution branch to which Fig. 2a pertains.
At Da ≈ 77.1, a Hopf bifurcation occurs: the filament (both the C1 and the
C2 concentrations) pulsates in height, width and shape. We show in Fig. (3b)
this behavior. For Da above this Hopf bifurcation, we plot in Fig. 3a the max-
imum and minimum central height values attained during the oscillation. At
Da ≈ 81.0 the width becomes too narrow at some moment of the oscillation
and the filament collapses to the unexcited (C1 = C2 = 0) solution, so that
the limit cycle solution disappears. This collapse probably reveals the colli-
sion of the filament limit cycle with an unstable pulse solution that we have
not characterized. The basin of attraction of the oscillating solution is rather
narrow: at these values of Da it is easier to be attracted by the two-hump
symmetric steady solution branch or the unexcited state.
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On the other hand, if we start with a well developed two-hump filament
such as the one in Fig. 2a at high Da, the two humps approach each other
when decreasing Da. Before they fuse together, there is a discontinuous jump
(at Da ≈ 75.4) to the steady ‘slightly two-humped filament’ followed before.
This probably reveals a saddle-node bifurcation in which the stable two-hump
branch collides with an unstable one, that we have not followed.

Finally, starting from the asymmetric filament of Fig. 2b, it approaches the
x = 0 axis when decreasing Da, becoming more and more symmetric. For
the values of ε and γ used here, however, it does not join smoothly with the
symmetric branch in a forward pitchfork bifurcation in which it would also
join the other asymmetric filament of opposite symmetry. Rather, it performs
a (small) discontinuous jump to the symmetric filament branch at Da ≈ 70.48.
This is probably the signature of a backward pitchfork bifurcation, or of some
other complex coexistence with unstable solutions, that would also explain the
observed range of bistability between the symmetric and asymmetric filament
solutions.
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[6] G. Károlyi, Á. Péntek, I. Scheuring, T. Tél, Z. Toroczkai, Proc. Natl. Acad. Sci.
USA, 97 (2000) 13661.

[7] Z. Neufeld, Phys. Rev. Lett. 87 (2001) 108301.
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