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Abstract

We build networks of genetic similarity in which the nodes are organisms sampled
from biological populations. The procedure is illustrated by constructing networks
from genetic data of a marine clonal plant. An important feature in the networks
is the presence of clone subgraphs, i.e. sets of organisms with identical genotype
forming clones. As a first step to understand the dynamics that has shaped these
networks, we point up a relationship between a particular degree distribution and
the clone size distribution in the populations. We construct a dynamical model for
the population dynamics, focussing on the dynamics of the clones, and solve it for
the required distributions. Scale free and exponentially decaying forms are obtained
depending on parameter values, the first type being obtained when clonal growth
is the dominant process. Average distributions are dominated by the power law
behavior presented by the fastest replicating populations.
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1 Introduction

Biological systems have always been quoted as archetypes of complexity. Mod-
ern network approaches [1-5] have provided useful insight when applied to
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many of them, ranging from protein interaction networks [6] to food webs
[7.8]. One of the most fundamental processes through which organisms inter-
act is that of genetic interactions, which conforms the basis for evolutionary
processes. The need to represent such processes in network structures more
complex than simple trees is beginning to be appreciated [9], but modern net-
work paradigms are not yet widely used to understand genetic relationships
among individuals, communities or species.

In this paper we overview the construction of networks of genetic similarity.
They are useful tools to represent and analyze the genetic structure of the
different genotypes in a biological population. We use the method to organize
genetic data from a Mediterranean marine plant, Posidonia oceanica. Then,
we move from a static depiction of these networks to the exploration of the
dynamics that has shaped them. A network characteristic that turns out to be
accessible to mathematical analysis is the degree distribution of a particular
case of similarity network. Such particular degree distribution is directly re-
lated to the clone size distribution in the population. We construct a dynamical
model for the population dynamics and solve it for the required distributions.
Scale free and exponentially decaying forms are obtained depending on pa-
rameter values. Averages over several populations, however, are dominated by
the power-law behavior displayed by the fastest clonally growing populations.

2 Networks of genetic similarity

We illustrate our approach with genetic data obtained by genotyping speci-
mens of Posidonia oceanica, a marine plant living in the coastal waters of the
Mediterranean sea [10]. An important characteristic of this organism is that it
is a clonal plant, meaning that in addition to the standard sexual reproduction
involving the flowers in different shoots, the plant also reproduces by growing
new shoots or ramets that are genetically identical to the existing ones. The
process is called clonal reproduction, and the set of ramets generated in this
way starting from an initial one form a single clone. Seeds generated by sex-
ual reproduction start new clones. At short distances, the members of a clone
are physically connected by a common rhizome. Physical connection between
distant ramets can be interrupted by a number of reasons (for example the
death of a part of the intermediate rhizome). From our genetic data we will
still identify them as members of the same clone because they share the same
genotype. Mutations, however, can occur during the process of clonation. It
is customary to consider these mutants with slightly different genotypes, and
the lineages arising clonally from them, as part of the same original clone. In
this paper, however, we find convenient to take the operational definition of a
clone as the set of ramets with identical genotype. Within this point of view,
mutants are considered to be founders of new clones.



Our data set comes from about 40 ramets sampled from each of 38 popula-
tions across the Mediterranean. For each ramet, the genetic data consist in
the number of microsatellite repetitions at seven loci. Microsatellites [11] are
highly variable portions of the genome commonly used for intraspecific studies.
They contain a motif consisting of a short sequence of bases which is repeated
for a variable number of times in genetically different individuals. Additional
details on the genetic dataset can be found in Refs. [12,13]. In Ref. [14] we
introduced a suitable measure of genetic dissimilarity among the ramets in
the data set. This genetic distance between a pair of ramets is defined as the
difference (in absolute value) in the number of motif repetitions present at a
particular genome locus of the two ramets, summed over the seven analyzed
loci. In this way genetically identical individuals (belonging to the same clone)
are at zero distance, and biological processes can be associated with different
distances; for example there is a characteristic mean genetic distance between
parents and offspring generated by sexual reproduction [14].

Once a matrix of genetic distances has been constructed, one can in principle
apply the tools of classical phylogenetics [15] to analyze genetic and evolu-
tionary relationships among the genotypes. Nevertheless, the fact that we are
dealing with intraspecific data and the coexistence of sexual and clonal modes
of reproduction in Posidonia challenges the applicability of these methods.
Aiming at addressing these issues, networks of genetic similarity have been
introduced in [14]. In the same spirit as in correlation networks [16-18], a
similarity threshold is introduced in which the individual ramets are repre-
sented by nodes and there is a link between them if their distance is smaller
than the threshold, i.e. if they are more similar than the threshold value. This
gives a sequence of networks, one for each threshold value. Figure 1 displays
examples of similarity networks at different threshold values for the ramets
sampled from a population in Es Calé de s’Oli (Formentera island, Spain).
Connectivity increases fast around a threshold value of 30, which is identified
in this particular population with the mean distance arising between parents
and sexual offspring (outcrossing distance).

A standard characterization of the topology of a network is the connectivity
degree distribution P(z). It is the proportion of nodes in a network with a
given number z of links. Because of the limited amount of data, the networks
are rather small and the degree distributions from each of them are noisy and
highly variable. Patterns are clearer when averaging the degree distributions of
the 38 sampled populations. Figure 2 shows this averaged distribution at two
different values of the threshold. When the threshold takes a value of the order
of the mean outcrossing distance (Fig. 2a), the degree distribution is essentially
flat, although large statistical fluctuations still remain. To our knowledge,
this kind of flat degree distribution has only been reported previously in the



Flg 1. Similarity networks of ramets from es Calé de s’Oli (island of Formentera, Spain), at different
similarity threshold values: a) 20, b) 27, ¢) 34, and d) >92 (which leads to a fully connected network). Note
the groups of nodes, plotted close together, which are fully connected subgraphs and remain fully connected

for all values of the threshold. They are the clones.

context of food webs [8] (displayed there as accumulated distributions which
vary linearly).

At threshold zero only identical ramets, i.e. pertaining to the same clone,
remain linked. Fig. 2b shows the averaged degree distribution in this case.
The amount and range of the data are small, but the power-law fit (suggested
by the theoretical arguments discussed in the following) indicates that they are
compatible with a degree distribution of the scale-free type. It turns out that,
for this zero-threshold case, the shape of the distribution can be understood
in terms of a model for the population dynamics. The crucial point is to
recognize that there is a relationship between the degree distribution at zero
threshold Py(z), and the distribution of clone sizes, i.e., the number Hg of
clones having a number of ramets K. This arises from the fact that clones
are fully connected subgraphs, so that in a clone of K ramets, each ramet has
K —1 links. Introducing M (z) = N FPy(z) as the number of nodes with z links
in a network of N ramets, the relationship is

1
Hye = =M (K ~ 1) (1)
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Flg 2. Degree distributions, averaged over all the sampled populations. a) For networks at threshold 30,
which is the most abundant non zero distance in the data set and of the order of the mean outcrossing
distance. Distribution is roughly uniform. b) Zero threshold, so that only clones remain connected. Data
have been binned by the data threshold method as presented in Ref. [19]. The distribution is fitted by a

power law with the exponent indicated.

Thus the topological problem of calculating this degree distribution becomes a
question in population dynamics: the calculation of clone sizes. This last ques-
tion falls within the general category of ‘growth-death-innovation’ processes
related to the models of Yule [20], Simon [21] and others, as summarized in
Ref. [22]. We devote the rest of the paper to build and solve a stochastic model
of that type from which the clone size distribution and other useful quanti-
ties can be analytically extracted. We stress that the topological structure of
the network at similarity threshold zero is very simple: it consists of disjoints
sets (the clones) of nodes which remain internally fully connected. Thus, stan-
dard network descriptors have rather trivial values in this case (for example
the clustering coefficient is always one, independently of degree). This is why
we focus on the degree distribution, and in the number of connected compo-
nents (given by the richness defined below), as the only nontrivial quantities
characterizing the network at vanishing threshold.

3 Modelling population and clone dynamics

A plant population (a meadow) consists of a variable number N = N(t)
of ramets. We label the different genotypes in the population —the different



clones— with numbers 7, 7 = 1,2, ..., G, so that G is the richness of the popu-
lation, i.e. the number of different clones. K; is the number of ramets forming
clone j. We have N = Z]-Gzl K. The histogram Hy = Z]-Gzl r i; counts how
many clones of size K are in the population. We have

K=1
and
N =Y KHg (3)
K=1

As a major simplification in our approach, we neglect any difference among
the ramets arising from their age, genetic content, or integration into big
or small clones. Thus all ramets are described by the same parameters of
mortality, reproduction, etc. Additionally we consider a well mixed population
so that spatial effects are not taken into account. The local density is the same
everywhere and simply proportional to the population size N. Finally, we do
not take into account any possible seasonal modulation of the different rates.
The limitations introduced in our modelling approach by these simplifications
will be briefly discussed in Section 4.

We now introduce the elementary processes occurring in our stochastic model
(mortality, clonal and sexual reproduction, mutation, and migrations). They
are considered to be independent events occurring at Poisson times:

1.- Death at rate d. Each ramet has a probability d per unit of time of dying.
In Posidonia oceanica mortality is not strongly dependent on population
density, so that we could take its value to be a constant. But in order to
keep the model general enough we include some competition for resources
in terms of a mortality that increases with population size: d = d(N) =
do -+ vN.

2.- Clonal reproduction at rate c. The quantity ¢ is the probability of ramet
clonal reproduction per unit of time, which may be density dependent:
¢ =c¢(N) =max]0,co (1 — N/N;)|. Ny is the number of ramets in the pop-
ulation beyond which clonal reproduction becomes impossible. This satura-
tion effect is relevant in Posidonia populations, and fixes a maximum density
for the meadow. The max function is needed to avoid negative probabili-
ties. If the dynamics keeps N sufficiently below N, we can approximate
c~co(l— N/Ny).

3.- Mutations with probability p,,. In the process of clonal reproduction a mu-
tation can occur with probability p,,. We assume that each mutant genotype
is different from the ones already present in the population, and thus founds



anew clone. We neglect the possibility of mutation backwards to the original
genotype.

4.- Sexual reproduction at rate s. At first sight, the number of births arising
from sexual reproduction should be proportional to the product of the num-
ber of male and female flowers in the population, and thus roughly to N2.
But in Posidonia populations, as well as in other plant species, pollen is
produced in great abundance so that reproduction is rather proportional
to the number of females. Since Posidonia flowers are hermaphrodite, this
equals the total number of flowers, that we assume to be proportional to
the number of ramets N. Nevertheless, we keep the modelling at a gen-
eral level and include both a linear and a quadratic dependence on N for
the number of sexual births, which implies a sexual reproduction rate per
ramet of s = s(IN) = sp + eN. Sexual reproduction produces unique indi-
viduals as a consequence of the random recombination of the progenitor’s
genomes. Thus, each newborn founds a new clone. Sexual reproduction in
plants is strongly seasonal, but we consider here the process as occurring
continuously in time.

5.- Migration, I. Migration process (transport of seeds or broken ramets by ma-
rine currents, animals or ships) will only renormalize the death parameters
dy and v when they imply a loss from the population. These changes will
not be explicitly written down. When there is input of ramets from outside
the population we assume that immigrants are genetically distinct from any
of the local clones, so that they also found new clones on arrival. We will
call I the number of immigrants entering the population per unit of time.

Summarizing the modelling parameters, we have the basic death, clonation,
and sexual reproduction rates of ramets at low densities (do, ¢o, and sg, re-
spectively), the modifications to these rates from interactions (v, N, and e,
respectively), the probability of mutation while cloning (p,,), and the immigra-
tion rate (I). There are strong differences among different populations, leading
to rather different network structures [14]. This reflects the fact that they are
in very different states, some of them healthy, many of them receding, and
are subjected to a large variety of environmental parameters and pressures.
Accordingly, we will postpone the discussion on the election of numerical val-
ues for the different parameters until Section 4, in which we will argue that
average quantities such as the distributions plotted in Fig. 2 are dominated
by populations having particular parameter values. Until then we keep the
discussion general, using arbitrary parameter values, which is also convenient
for developing a formalism that can be later applied to species different from
the one considered here.



3.1 Population size rate equation

It is simple to write down the rate equation for the time evolution of the
expected population size N. Neglecting all fluctuations and correlations, and
taking into account that mutations do not alter the number of individuals, the
net growth rate per ramet is 7 = ¢(N) + s(N) — d(N), so that:

N:(c(N)+s(N)—d(N))N+I:ﬁN(1—%>+[, (4)

where = (¢ + so — dp) is the maximum population growth rate, and we
have introduced the carrying capacity N, from the relation

54 Co

EEE—I—I/—E (5)
or
_ BN
g+ N,(v—e) (6)

In the absence of migration, I = 0, Eq. (4) is just the logistic equation. If 5 > 0
any initial condition approaches the saturation value N.. Solutions from small
initial values of N have an initial exponentially growing phase (N a~ Nye).
If 5 < 0 the solution decays towards zero (extinction), exponentially if N is
sufficiently smaller than N.. We notice however that stochastic fluctuations,
neglected in Eq. (4), will be important when the population is small.

3.2 Fxpected clone size

Let us focus on clone j of size K; = Kj(t) (again we will neglect its statistical
fluctuations). Sexual reproduction, mutations and immigrants do not change
it. Thus

Kj(t> = VCKJ' (t)v (7>

with 7.(NV) = ¢.(N) — d(N). We call g.(N) = (1 — py,)e(N) the clonal growth
rate, and 7, is a net clonal growth rate.

On average, sexual reproduction, mutations and immigration increase the rich-
ness G by starting an amount (p,,c¢(N)+ s(N)) N + I of new clones of size 1
per unit of time. As a consistency check, one can see that the sum of Eq. (7)



over all clones (Z]G:l K;(t) = N(t)), with the addition of the new ones, leads
to the population equation (4).

Once N(t) is obtained from (4), Eq. (7) can be integrated exactly. The simplest
situation corresponds to v = € = ¢o/Ngs = 0, so that ramets do not interact
(in this case Eq. (7) is exact for the average clone size even in the presence of
fluctuations). Then, 7. is a constant in time (7, = (1—py,)co—dp), and K;(t) =
K;(0)e**. We note that v, < 7, so that clones will only grow on average when
the total population is growing fast enough. It is interesting to note that
the total population can be growing while on average each existing clone is
decreasing in size. A similar situation occurs for interacting ramets when N ()
is constant in time (this happens when N has attained its saturation value,
which in the absence of immigration is N = N..). In this case K;(t) = K;(0)e?,
with 7. = 7.(N.) < 0. On average, existing clones will decrease in size until
dying. In the mean time, mutations, sex and immigration will introduce clones
of size one (single ramets), and this together with stochastic fluctuations will
maintain a steady state distribution of clone sizes peaked at small values.

3.3 Clone size distribution

The next step is to estimate the whole clone size distribution Hy in the
population. By balancing the different rates, we find that the expected value
of that distribution is ruled by:

() = e (K = Dk +(0) = KHx(o)
VA((K + ) Hgm(t) — KH(t) , K> 1
)
LU0 =14 AN() — g (1) + d (I (1) ~ H(1) (9)

This mean field description becomes exact when ramets do not interact. The
increase in H;(t), the number of clones consisting of a single ramet, arises
from immigration I and from mutants and sexual offspring: h = h(N) =
PmC(N) + s(N) = 47 — .. This quantity h can be thought as the amount of
innovation, since it gives the rate at which new genotypes are produced by
the system. Note that N(t) in Eq. (9) is not an independent variable, but it is
related to all the H’s by Eq. (3). Thus the single-ramet population H; plays
a special role since it interacts with all the clone-size groups. Equation (4),
which is closed for N(t), is recovered from Egs. (3) and (8)-(9). If one uses first

this equation to find N(t), one of the equations in (8)-(9) becomes redundant.



From Egs. (8)-(9) one can obtain an equation for the richness (2):

L6(1) = 1+ hN (1) — dH(r) (10)

We analyze now Egs. (8)-(9) in some particular cases. For simplicity we neglect
immigration: I = 0, and we only address the situations of noninteracting ram-
ets (v = ¢o/Ns; = € = 0), and of interacting ramets in a constant population
N(t) = N.. In these cases, (8) are effectively linear equations with coefficients
constant in time, and the explicit time dependence of N(t) in (9) can be writ-
ten as N(t) = Nye'*'. In the noninteracting case yr = 3, h = pnco + So,
and we can have either a growing population if § = ¢y + so — dy > 0 or a
decaying one if 3 < 0. Note that this description also applies to the interact-
ing ramet case when the population is small enough, because the interaction
terms become negligible when N = 0. In the interacting constant population
case vy =0=h+ g.—d and Ny = N,

In all cases we search for solutions of the type

HK(t) = FK€N . (11)

We see from substitution in Eq. (3) that

N(t)=¢e"> KFx=¢"R (12)

K=1

so that necessarily r = 7. The sum in Eq. (12), which we call R, should
converge to Ny or N,.

Substituting Eq. (11) into (8)-(9) we get

VTFK:gc(K — 1)FK_1 + d(K + 1)FK+1 — (gc + d)KFK y K > 1 (13)
Y1 =hR — (9. + d)F1 + 2dF3 (14)

Equation (13) is a second order linear recurrence, having in principle two inde-
pendent solutions. The point is that only one of them will satisfy the constraint
(12) with a convergent sum R. Fixing Ny or N, (= R) then normalizes and
completely determines the distribution.

We find the asymptotic behavior for large K of the two possible solutions of
Eq. (13) by substituting the ansatz

QK
K=~

Fre ~ (15)

10
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Fig. 3. a) Exponent z as a function of net clonal growth v.. d =1 and h = 0.25. The place where v = 0,
giving z = 1, is indicated. b) Clone distributions. d = 1, h = 0.25, and . increasing from top to bottom:
ge = 0.6,0.75,0.95,1.05, 1.15. The upper curve is the limit case g >> h, leading to z = 2. The line labelled
yr = 0 (gc = 0.75) is the exact solution given by Eq. (18), and the other curves have the proper asymptotic
behavior but have been arbitrarily shifted vertically for clarity. For 7. > 0 (three upper lines) solution A
(Eq. (16)) gives a power law behavior with exponent z. For 7. < 0 (three lower curves) the exponent in
solution B (Eq. 17)) gives only a pre-asymptotic power law behavior, being the final decay of exponential

type.

The first two terms in an expansion in powers of K ! determine two indepen-
dent solutions:

h
A h=1, 2=1+L =24~ (16)
Ve Ve
. h
B: =%, ,=1-T__7 (17)
d Ve Ve

The values of the exponent z depend on the ratio between the net growth ~vp
(or of the innovation h) and the clonal net growth v, = g. — d. We analyze
separately the following three cases: v = 0, 7, < 0 (which includes cases with
vr > 0 and yr < 0), and 7. > 0 (which only happens when vz > 0). When
7. = 0 the ansatz (15) is not appropriate.

1.- Constant population size (yr = 0). Since h 4+ g. — d = 0 we have g. < d,
and the size of a given clone is decreasing on average. Solution A (Eq. (16))
makes the sum in (12) to diverge and B is the correct solution. It turns out
that it gives not only the asymptotic behavior, but an exact solution for all

11



K, the so-called logarithmic distribution:

K -K
Hye(t) = M (%> 1N (i - 1) <i> 1 (18)
ge \d/) K 9e 9e K
As expected, this is concentrated at small clone sizes, with a quasi-exponential
decay at large K. When the mutation and sex rates are small (so that g.
approaches d) the range of existing clone sizes becomes larger. In [23] this
exact solution is also found for a related set of equations in the context of the
‘simple BDIM model’ of protein evolution, and its stability is proven. Thus,
arbitrary initial distribution of clones will converge at long times towards

Eq. (18) when the population has reached a constant value.
The richness can be calculated from (10). The relative richness v becomes:

vE%z(l—%)log(l—%). (19)

This relative richness is a decreasing function of g./d, from a maximum
value in the case of maximum mutations and sex (g./d ~ 0, v &~ 1) to
a vanishing value in the case of minimum mutations and sex (g./d ~ 1,
v~ 0).

Decreasing average clone size (7. = g.—d < 0). This case includes situations
in which population is decreasing (yr = 5 < 0), but also cases in which there
is net growth (yr = > 0) but not enough of the purely clonal type. The
sum in (12) diverges for solution A (Eq. (16)) and again B (Eq. (17)) gives
the correct asymptotic behavior. Thus there are solutions to (8)-(9) that
behave at large K as

e’ g:\"
Hy(t) ~ — (2 20
lt) ~ o (%) (20)
with
pe1- L Gzdhts (21)
Ve co — do — pmCo

The asymptotic behavior is again quasi-exponential, with faster decay for
smaller g./d. As if trying to compensate for this increased steepness, the
exponent of K, —z, becomes less negative when decreasing g./d (see Fig.
3a), starting from a divergent value when ¢, =~ d, crossing to —z = —1
when = 0 (formally coinciding with the solution for constant population),
and approaching z = 0 when ¢./d — 0. Note that, despite this asymptotic
behavior, there is a pre-asymptotic power law behavior with exponent z,
which can be noticeable (see Fig. 3b, third curve from bottom) when ~, is
close to zero.

Growing average clone size (7. = g. — d > 0). This situation requires a net
population growth (v = 3 > 7. > 0). In this case solution B (Eq. (17))

12



is not normalizable and the power law solution A (Eq. (16)) is the only
acceptable asymptotic behavior at large K:

ebt
Higlt) ~ % (22)
with
—d
so14 Do Gz dts (23)
Ve co — do — pmCo

This result coincides with the one in Refs. [24,25] for family name distri-
butions obtained from a discrete-time model of growing families. It reduces
to the classical result of Simon [21], explaining the Zipf’s observations on
the growth of cities, if d = 0 so that z = 2. The clone distribution of a
growing population reaches a power law with the exponent related to the
quotient between the net growth and the net clonal growth. Starting from
the less negative exponent, the one with z = 2, the power law has a more
and more negative exponent when g. approaches d from above, so that the
clone distribution becomes more concentrated, until reaching g. = d. Nu-
merical simulations in Refs. [24,25] show (within their discrete model) that
the state given by Eq. (22) is actually approached at long times, although
long transients can occur.

4 Discussion and perspectives

We have found that, within the hypothesis of our model, clone distributions
decay at large K either as a power law or exponentially (with power law
corrections). The first situation occurs when clones are growing on average,
which requires a global population growth, and the second when clones shrink
on average.

Figure 4a displays the observed clone distribution averaged over all sampled
plant populations, obtained from the degree distribution in Fig. 2 by using Eq.
(1) (or equivalently by directly counting the clones in the populations and av-
eraging the resulting histograms). The asymptotic behavior is consistent with
a power law of exponent z = 2.1 (for completeness, however, and given the
small range of the data, we show also in the inset a semilogarithmic plot of the
same points which gives only a slightly worse representation). The appropri-
ateness of the power law fitting seems to imply that data are better explained
by a model in which clones are growing, which needs population grow, and
that there is a small proportion of sexual reproduction and mutations with
respect to clonal growth.

13
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Fig. 4. a) Clone distribution averaged over the 38 sampled populations. Data are binned as in Fig. 2b,
and presented in doubly logarithmic scale with a power-law fit leading to z ~ 2.1. The inset shows the same
data in semilogarithmic scale. b): Thin continuous lines are 38 distributions Hy of the type A or B, with
d =1, h = 0.05, and random values of g. as explained in the text. Thick continuous line is their average
< Hp >, arbitrarily displaced vertically for clarity. Its asymptotic behavior at large K, K~?, is indicated by
a dashed line and is the power law corresponding to the largest value of g. in the averaged sample. In the

particular set averaged here, it is g. = 1.54, leading to z =~ 2.09.

Although certainly it is realistic to have a rate of accurate clonal reproduction
much larger than sexual or mutational rates, most of the studied populations
were in recession rather than growing, and some of them in serious danger of
disappearance. Given the limitation in number and range of the data presented
in Fig. 4a, we can not exclude that the sampled clone sizes are not in the
asymptotic range addressed by the theory, or the possibility of functional
forms other than power laws, but the proximity of the fitted slope to the
particular value z = 2 suggest us the following argument: We believe that
data in Fig. 4 do not reflect a generally growing population state, but rather
a mixed state in which some populations are stable or receding, but with
the average clone distribution dominated by a few populations in a clonally
growing state. To check this we plot in Fig. 4b a set of distributions of types
(20) and (22). They have been generated by choosing units of time such that
d = 1, fixing h = 0.05, and randomly generating values of g. from a uniform
distribution in [0.0, 1.6]. All the distributions are normalized to the same value
Y°KHig = N = 40 as reflecting that the same number of ramets has been
sampled from each population independently of its true total size. The mean
value of g. is 0.8, so that the mean values of both the net growth and the
clonal net growth are negative. Nevertheless, the asymptotic behavior of the
average distribution is a power law dominated by the particular population
which turns out to be growing and having the value of z closest to z = 2.

The dominance of the populations with the highest clonal net growth (the
fastest replicators) would not be restricted to interpopulation averages: As

14



soon as there is some diversity inside a population (different clones differ in
size, genotype, location, age, ...) the same arguments imply that the subpop-
ulation with the highest clonal net growth would dominate the large size part
of the clone distribution in a meadow. We expect thus a bias in the observed
clone distributions towards power laws characterized by exponents z larger
than but close to z = 2 (and associated degree distributions Py(z) behav-
ing asymptotically as 79, with ¢ larger than but close to ¢ = 1). Testing
these expectations for Posidonia meadows should wait until the availability of
more abundant sets of intrapopulation genetic data, to achieve the necessary
statistical power.

Along this paper we have defined clones as sets of genetically identical ram-
ets. Our results can be directly applied to clones defined as sets of ramets
arising from clonal reproduction, i.e. considering that both identical ramets
and their mutants pertain to the same clone. Size distributions and the rest
of properties in Egs. (18)-(23) are obtained for these clones containing several
genotypes simply by putting p,, = 0 in the corresponding formulae, since in
this way mutants are counted together with the perfect clones instead of with
the sexual newborns. The innovation parameter h is reduced and then the new
size distributions are slightly more heavy tailed.

We note that, at the modelling level, sexual reproduction enters just as one
more contribution to the innovation parameter h. The same role is played
by mutations or any other process generating new genotypes from old ones.
Thus we expect our approach and results to be applicable to other types of
organisms with or without sexual reproduction capabilities, but having an
appropriate source of innovation such as mutation.

Several simplifying assumptions limit the generality of our model. Conse-
quences of relaxing the assumption of complete equivalence of the ramets
inside the same population have been mentioned before. Spatial effects have
also been neglected. Although the assumption of perfect mixing may be jus-
tified for the sexual mode of reproduction in populations of sufficiently small
extent, clonal growth is an inherently local process. It may happen that, al-
though the mean field density could be small and then not limiting the growth,
ramets could be spatially concentrated and competition will make growth
smaller than expected. In addition, growth occurs mainly on the periphery of
the clones [26]. Associated with these spatial effects are the consequences of
statistical fluctuations, enhanced by the discrete nature of individual ramets
and mostly neglected in the present work. Fluctuations should be important
at least close to the boundary to extinction regimes [27]. We believe that
a first consequence of all these effects would be a shift of effective growth
rates towards lower values, but taking them properly into account would re-
quire extensive computer simulation. An additional complication is that, very
likely, any long lived meadow has suffered periods of growth, periods of en-
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hanced mortality, etc. The distributions observed presently in the different
populations are probably complicated transient states resulting from all the
past history. The impact of time-dependent parameters should be addressed
to have a complete description of the processes shaping clone distributions
and in general the genetic structure of the populations. This temporal vari-
ability, together with the consideration of explicit space dependence will be
the subject of future work.

Finally, the focus of this paper has been on the clone subgraphs, structures
with a rather peculiar structure. Dynamical modelling of the ecological pro-
cesses shaping the whole network of genetic similarity of a population remains
an open challenge.
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