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We put forward a method that allows the experimental determination of the entire spatial mode
spectrum of any arbitrary monochromatic wave field in a plane normal to its propagation direction. For
coherent optical fields, our spatial spectrum analyzer can be implemented with a small number of
benchmark refractive elements embedded in a single Mach-Zehnder interferometer. We detail an efficient
setup for measuring in the Hermite-Gaussian mode basis. Our scheme should also be feasible in the
context of atom optics for analyzing the spatial profiles of macroscopic matter waves.

DOI: 10.1103/PhysRevLett.100.173902 PACS numbers: 42.25.�p, 37.25.+k, 42.15.Eq, 42.30.�d

The temporal [1], vectorial [2], and spatial [3] degrees of
freedom of electromagnetic fields with increasing com-
plexity are exploited in applications ranging from commu-
nications to medicine. The detailed knowledge of the
spatial mode spectrum of these beams, generally emitted
by laser devices, is fundamental in optimizing applications
as well as in research, in both classical and quantum optics.
Many imaging and tailoring techniques, for instance, are
based on the possibility to devise transformations induced
by optical elements by determining the effects on the
spatial components of generic signals [4]. Recently, an
intense research activity on multimode light has burgeoned
in quantum information, communication, and imaging [5],
with successful demonstrations spanning from nanodis-
placement measurements [6], to parallel information [7],
high-dimensional entanglement [8], coherent transfer of
suitable prepared superpositions of vortices onto Bose-
Einstein condensates [9], and hot rubidium vapors [10].
A key ingredient in all these scenarios is spatial encoding,
which conveys several independent channels of informa-
tion by exploiting the access to a large number of optical
transverse modes. The use of multimode beams thus de-
mands the development of techniques allowing one to
characterize their spatial spectrum and to retrieve the in-
formation encoded in different components. Fourier modes
are of immediate access through a basic lens setup [4],
while rotating elements lead to ‘‘helical’’ spectra decom-
position [11]. To the best of our knowledge, however, no
direct method is known to measure the Hermite-Gaussian
(HG) modes spectrum. Building on the symplectic formal-
ism to describe first-order optical transformations, we
present in this Letter a general strategy to find an arrange-
ment of refractive elements that enables the quantitative
measurement of the transverse spatial spectrum of light
beams by using a single Mach-Zehnder interferometer.
Because of the generality of our approach, different ex-
perimental setups can be implemented to extract the full
spatial spectrum of multimode transverse beams in many
bases, including Laguerre-Gaussian (LG) modes. Here we

focus on the spectrum analyzer for HG modes, as these are
the most common in laser physics and appear naturally in
devices where astigmatism, strain, or slight misalignment
drive the system toward rectangular symmetry [12].
Furthermore, the presented framework is rather suggestive
of analog measurements for matter waves’ spatial spectra.

Spatial modes are ubiquitous. Sets of modes u satisfying
the wave equation �i@� � @2

x � @2
y�u � 0 describe broad

classes of physical systems. When the evolution variable is
� � 2kz, the sets comprise the optical paraxial modes [12]
with wave number k propagating along the z direction. For
� � 2mt=@, the sets model instead the quantum dynamics
of free particles of mass m in the xy plane. Since there are
two transverse spatial variables, each entire set of mode
solutions um;n is labeled by two integers m, n. Relevant
examples are the HG and LG mode bases. Any scalar field
 obeying the above wave equation can thus be decom-
posed in terms of these modes as  �

P
m;nCm;num;n. A

fundamental question then arises: How can one measure
the mode spectrum (weights) Pm;n � jCm;nj2 of any given
scalar field?

To answer the above question, we apply a symplectic
invariant approach [13–15]. Symplectic methods have
been used in theories of elementary particles, condensed
matter, accelerator and plasma physics, oceanographic and
atmospheric sciences, and optics [16]. Central to our work
is the recognition that any linear passive symplectic trans-
formation S acting on the canonical Hermitian operators x̂,
ŷ, p̂x, and p̂y (whose only nonvanishing commutators are
�x̂; p̂x� � �ŷ; p̂y� � i�), is associated with a unitary opera-
tor Û�S� generated by the group
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Here, � � 1=k and w0 is the characteristic width of the
spatial modes um;n in which the analyzed wave field is to be
decomposed. The set (1) satisfies the usual SU(2) algebra
�L̂a; L̂b� � i"abcL̂c (a; b; c � x; y; z), with N̂ being the
only commuting generator in the group and L̂z describing
real spatial rotations on the transverse xy plane (it is
proportional to the orbital angular momentum operator
along the wave propagation direction [14]). We can there-
fore represent the most general passive unitary operator
Û�S� associated with S by a single exponential of linear
combinations of any of the above generators [15] Û�S� �
exp��i���N̂ ��� � L̂��, with real scalar�� and vector
�� parameters. We show below how Û�S� can be imple-
mented using simple optical elements.

The method proposed here relies on exploiting N̂ ,
together with specific combinations of the generators L̂x

and L̂y, to construct two commuting unitary operators
from which the associated symplectic matrices and their
experimental implementation can be found relatively
easily. To this end, let jm; ni denote the (pure) mode states
of order m� n 	 0 (in position representation
hx; yjm; ni � um;n). We first impose jm; ni to be eigenstates
of both N̂ and the operator L̂�;’ 
 ur � L̂, where ur �
�cos’ sin�; sin’ sin�; cos��may be conceived as a radially
oriented unit vector in the orbital Poincaré sphere [17,18].
The eigenstates jm; ni depend on the choice of � and ’ and
fulfill N̂ jm; ni � ��m� n�=2�jm; ni and L̂�;’jm; ni �
��m� n�=2�jm; ni. For instance, the eigenvectors of opera-
tors L̂x and L̂z are the HG and LG modes, respectively
[14,18]. Measurements of j i �

P
m;nCm;njm; ni will in-

volve the action of the unitaries ÛN � e�i��N̂ and
Û�;’ � e�i��L̂�;’ , upon variation of parameters �� and
��, which can be externally controlled. Notice that ÛN is
connected with the Gouy phase [19], whereas Û�;’ de-
scribes ��-angle rotations about ur, thereby changing the
mode superpositions.

In order to extract the complete spectrum Pm;n of a
coherent electromagnetic scalar field, an optical scheme
is further developed. We remark that for quantum mechani-
cal matter waves (e.g., Bose-Einstein condensates), a con-
ceptually similar approach to analyze their spatial structure
should currently be feasible by exploiting atom optics:
interferometers [20], beam splitters in atom chips [21],
focusing and storage in resonators [22], and conical lenses
[23]. We use here a Mach-Zehnder interferometer with
built-in refractive components performing ÛN and Û�;’:
sets of spherical and cylindrical thin lenses. For ease of
operation, it is desirable to vary �� in a way that mini-
mizes the displacements of the optical elements. We ex-
plicitly show that all the required transformations in the
interferometer can be achieved solely by rotation and
variation of the focal lengths of the lenses. Translations

of the lenses are not necessary, although it may turn out to
be more convenient in certain instances to carry finite
displacements in some of them. In any case, the arms of
the interferometer always remain fixed.

Detection of the light intensity difference �I 
 IB � IA
at the two output ports (A and B) of the interferometer
provides the data for reconstructing the weights Pm;n. One
has �I / h j�ÛyN Ûy�;’ÛC � Û

y
CÛN Û�;’�j i, where ÛC

represents the unitary operator for the compensating lens
system in the complementary arm of the interferometer.
For clarity, let us assume that ÛC comprises a similar lens
set as the one for ÛN Û�;’ (we will show later that this
assumption can be removed), with equivalent parameters
�0� and �0�. The mode spectrum and the output intensity
difference are directly connected by a double Fourier-like
transform
 

Pm;n /
Z 4�

0

Z 4�

0
d��d���I��� ��0�; �� ��

0
��

� ei�m�n������
0
��=2ei�m�n������

0
��=2; (2)

where the proportionality constant equals �16�2��1 if
m � n � 0, and �8�2��1 otherwise. Note that �I possess
the symmetry properties �I��� � 2�;�� � 2�� �
�I��� � 2�;��  2�� � �I���; ���. Our scheme
nontrivially generalizes that of Ref. [11], aimed to reveal
the quasi-intrinsic nature of the orbital angular momentum
degree of freedom for scalar waves. There, by means of the
measurement Û � e�i�L̂z , implemented with Dove
prisms, the azimuthal index spectrum of spiral harmonic
modes could readily be accessed. Here, we explore the
entire transverse mode space expanded by the indices m
and n. Hence, the combined effect of the two nonequiva-
lent measurements ÛN and Û�;’ is crucial, and would
allow us to measure, for instance, the full spectrum of
either HG or LG modes.

To show an explicit application of the above approach,
we proceed with the characterization and design of an
optical system that enables the reconstruction of the HG
mode spectrum P nx;ny of a light beam (nx; ny 	 0). In this

scenario, one needs to consider the unitary operators ÛN

and Û���=2;��0 � e�i��L̂x . The path from these unitaries
to the pursued setups resorts to the Stone–von Neumann
theorem [13–15]; it yields the symplectic matrices S� and
S�, which contain all systems information

 S� �

c� 0 z0s� 0
0 c� 0 �z0s�

�s�=z0 0 c� 0
0 s�=z0 0 c�

0
BBB@

1
CCCA; (3)

where c� � cos���=2�, s� � sin���=2�, and z0 �
w2

0=�2�� is the Rayleigh range. From matrices S� one
can then obtain the corresponding integral transforms
that govern the propagation (along the z direction) of any

PRL 100, 173902 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
2 MAY 2008

173902-2



input paraxial wave  �x; y� traversing each system. These
transforms lead, in our case, to the integral kernels

 K��x; y; x0; y0� �
1

�ijs�jw
2
0

exp
�
�2i�xx0 � yy0�

w2
0s�

�

� exp
�
i�x2 � y2 � x02 � y02�c�

w2
0s�

�
: (4)

The output wave profiles after each S� result from
 ��x; y� �

R
dx0dy0K��x; y; x0; y0� �x0; y0�. Kernels (4)

exhibit the structure of those for the fractional Fourier
transform [24]. Integral transforms associated with unitary
operators generated by L̂y (rather than L̂x) have been
formulated [25]. They make possible the full meridian
rotation on the orbital Poincaré sphere and, in particular,
the reciprocal conversion between HG and LG modes.

The two proposed optical systems for S� are symmetric
and illustrated in Fig. 1(a). For S�, three fixed spherical
lenses with varying radii of curvature Rj [linked to the
focal lengths fj by Rj � �~nj � 1�fj, ~nj being the refractive
indices], and placed at equal distances z0, are sufficient.
They fulfill R1 � R3 � z0=�1� cot���=4�� and R2 �
z0=�2� s��. Tunable-focus liquid crystal spherical lenses
controlled by externally applied voltages have been dem-
onstrated, displaying a wide range of focal lengths [26].
Figure 1(c) shows the operation curve describing the de-
pendence between R1, R3, and R2 needed to cover the
interval � � �� < 3�. These values can be attained
with the lenses of Ref. [26]. For S�, three pairs of cylin-
drical lenses are required [see Fig. 1(a)]. Each pair of

assembled cylindrical lenses is rotated in a scissor fashion
with� � �� [Fig. 1(b)]. The corresponding angles satisfy
�1 � �3 � �����=4 and �2 � �3�����=4. The op-
eration curve in Fig. 1(d) represents the variation of the
rotation angles in accordance with the constraint imposed
by cot���=4� � �2 sin��=2�. This equation is satisfied
when � � �� � 3� and ���=3� � � � ��=3�, which
lead to 0 � �2 � ��=2� and ��=6� � �1 � ��=3�. The
radii of curvature of the cylindrical lenses are R1 � R2 �
R5 � R6 � z0=2 and R3 � R4 � z0=4. The distance be-
tween consecutive pairs is z0=2. With this scheme, the
covered values for �� 2 ��; 3��. The fact that both ��
and �� are restricted to the interval ��; 3��, rather than to
�0; 4��, does not constitute a fundamental limitation. It can
be circumvented by employing the compensating system
[see Fig. 1(a)] and the symmetry properties of �I. If two
sequences of measurements are made, each having a differ-
ent compensating system performing transformations with
�0� � �0� � 0 (identity matrix) and �0� � 0, �0� � 2�
(minus identity matrix), respectively, then Eq. (2) can be
cast (m! nx and n! ny) as

 

P nx;ny /
Z 3�

�

Z 3�

�
d��d�����1�nx�ny�I���; �� � 2��

��I���; ����

� cos
�
�nx � ny��� � �nx � ny���

2

�
: (5)

The proportionality constant is �8�2��1 if nx � ny � 0,
and �4�2��1 otherwise. The integration intervals in (5) now
display the accessible ranges for ��. The first and second
sequences of measurements can be carried out with a
compensating system made of four and two (all identical)
spherical lenses, respectively. By properly choosing their
focal lengths, it is not necessary to displace the S� systems
nor the interferometer arms. Moreover, measuring the LG
spectra would only require embedding the system S�
between two fixed, mutually orthogonal, cylindrical lenses,
with S� remaining invariant.

To demonstrate that our data analysis scheme is feasible
and does not demand a large number of measurements for
each ��, we have numerically simulated the transforma-
tion and processing of several input coherent waves.
Figure 2 depicts the light profiles entering into the inter-
ferometer: strongly astigmatic Gaussian [Fig. 2(a)], hexa-
pole necklace [Fig. 2(d)], and anisotropic multiring
[Fig. 2(g)] beams. Their exact HG distributions together
with those retrieved from Eq. (5) are also displayed. To
simulate the evolution of the various beams, the kernels (4)
were used to calculate �I in Eq. (5) for 10 different values
(in equal increments) per each �� 2 ��; 3��. The recon-
structed and exact weights agree well (compare right and
central columns in Fig. 2). In analogy with the Whittaker-
Shannon sampling theorem in Fourier analysis [4], input
beams that are mode-band limited can be exactly recon-

FIG. 1 (color online). (a) Optical scheme for measuring the
HG mode spectrum. Transformations S� and S� consist of
symmetric sets with three fixed tunable-focus spherical lenses
and three pairs of rotary cylindrical lenses, respectively. The
compensating system involves two settings with four and two
spherical lenses, respectively. (b) Detail of one of the assembled
pairs of cylindrical lenses required for S�. (c),(d) Operation
curves for S� and S�, respectively (see text).
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structed via our scheme [compare Figs. 2(e) and 2(f)]. That
is, if the sampling increments for �� are smaller than the
inverse of the highest contributing mode numbers, recon-
struction will be exact. Misalignment of the optical ele-
ments is expected to be the main source of errors. The
effect on the weights P nx;ny , due to lens displacements
(tolerances) � with respect to the beam axis, introduces a
correction term ���=w0�

2, which is smaller than 1% for
typical values � & 10 	m and w0 	 100 	m.

In conclusion, we have proposed a spatial spectrum
analyzer for waves with arbitrary profiles based on a
simple setup of lenses in a Mach-Zehnder interferometer.
Measuring the mode spectrum of optical beams is funda-
mental not only to achieve control of laser beam profiles
but also to access information encoded in this degree of
freedom of the electromagnetic field, in the context of
spatial multiplexing. The generality of the presented theo-
retical analysis encompasses different mode bases and
suggests the measurement strategy also for matter waves.
The specific setup for HG spectra is presented with details
in view of a more immediate experimental realization.
Moreover, our scheme is compatible with mode analysis
at the single-photon level, and could be of great use for
quantum information applications. Retrieval of the com-
plete spatial mode spectrum of any monochromatic optical
field would become an attractive tool for signal analysis
and processing when combined with novel holographic
recording materials designed for modal tailoring and multi-
plexors. In this respect, amorphous photopolymerizable
glasses, exhibiting high refractive index modulation in
experimental demonstrations of the optical Pendellösung
effect [27], are well suited for this purpose.

We acknowledge financial support from the Spanish
Ministry of Science and Technology through Projects
FIS2005-01369 and FIS2006-04190, from Govern Balear
(PROGECIB-5A), Junta de Comunidades de Castilla–La
Mancha (PCI-08-0093), Juan de la Cierva and Ramon y
Cajal Grant Programs, and Consolider Ingenio 2010 QIOT
CSD2006-00019.

[1] Femtosecond Optical Frequency Comb Technology:
Principle, Operation, and Application, edited by J. Ye
and S. T. Cundiff (Springer, New York, 2005).

[2] J. N. Damask, Polarization Optics in Telecommunications
(Springer, New York, 2004).

[3] H. H. Barrett and K. J. Myers, Foundations of Image
Science (John Wiley & Sons, New York, 2004).

[4] J. W. Goodman, Introduction to Fourier Optics (Roberts
and Company, Greenwood Village, CO, 2004).

[5] Quantum Imaging, edited by M. I. Kolobov (Springer,
New York, 2007).

[6] N. Treps et al., Science 301, 940 (2003).
[7] M. Lassen et al., Phys. Rev. Lett. 98, 083602 (2007).
[8] A. Mair et al., Nature (London) 412, 313 (2001); N. K.

Langford et al., Phys. Rev. Lett. 93, 053601 (2004).
[9] M. F. Andersen et al., Phys. Rev. Lett. 97, 170406 (2006).

[10] R. Pugatch et al., Phys. Rev. Lett. 98, 203601 (2007).
[11] R. Zambrini and S. M. Barnett, Phys. Rev. Lett. 96,

113901 (2006).
[12] A. E. Siegman, Lasers (University Science Books,

Sausalito, CA, 1986).
[13] R. Simon and K. B. Wolf, J. Opt. Soc. Am. A 17, 342

(2000).
[14] G. F. Calvo, A. Picón, and E. Bagan, Phys. Rev. A 73,

013805 (2006).
[15] G. F. Calvo and A. Picón, Phys. Rev. A 77, 012302 (2008).
[16] V. Guillemin and S. Sternberg, Symplectic Techniques in

Physics (Cambridge University Press, Cambridge,
England, 1990).

[17] M. J. Padgett and J. Courtial, Opt. Lett. 24, 430 (1999).
[18] G. F. Calvo, Opt. Lett. 30, 1207 (2005).
[19] A. B. Ruffin et al., Phys. Rev. Lett. 83, 3410 (1999); J. H.

Chow, G. de Vine, M. B. Gray, and D. E. McClelland, Opt.
Lett. 29, 2339 (2004).

[20] Atom Interferometry, edited by P. R. Berman (Academic
Press, New York, 1997).

[21] D. Cassettari et al., Phys. Rev. Lett. 85, 5483 (2000).
[22] I. Bloch et al., Phys. Rev. Lett. 87, 030401 (2001).
[23] S. R. Muniz et al., Opt. Express 14, 8947 (2006).
[24] H. M. Ozaktas, Z. Z. Zalevsky, and M. A. Kutay, The

Fractional Fourier Transform: With Applications in
Optics and Signal Processing (John Wiley & Sons, New
York, 2001).

[25] J. A. Rodrigo, T. Alieva, and M. L. Calvo, J. Opt. Soc. Am.
A 23, 2494 (2006); J. A. Rodrigo, T. Alieva, and M. L.
Calvo, Opt. Express 15, 2190 (2007).

[26] H. Ren and S. T. Wu, Opt. Express 14, 11292 (2006); H.
Ren et al., Opt. Express 15, 11328 (2007).

[27] M. L. Calvo et al., Phys. Rev. Lett. 97, 084801 (2006).

3 0 3
x w0

3

0

3

y
w

0

g

0
2

4
6

nx

0 2 4 6

ny

0
0.05
0.1
0.15

h

0
2

4
6

nx
0
0

0
2

4
6

nx

0 2 4 6

ny

0

0.05

0.1

i

0
2

4
6

nx
0

3 0 3
3

0

3

y
w

0

d

0
2

4
6

nx

0 2 4 6

ny

0
0.2
0.4
0.6

e

0
2

4
6

nx
0
0

0
2

4
6

nx

0 2 4 6

ny

0
0.2
0.4
0.6

f

0
2

4
6

nx
0
0

3 0 3
3

0

3
y

w
0

a

0
2

4
6

nx

0 2 4 6

ny

0

0.2

0.4

b

0
2

4
6

nx
0 0

2
4

6
nx

0 2 4 6

ny

0

0.2

0.4

c

0
2

4
6

nx
0

FIG. 2. Mode spectrum analysis. Exact and reconstructed [via
Eq. (5)] HG mode weights P nx;ny (central and right columns,
respectively) from the input beam profiles (left column).
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