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We study transition matrices for projected dynamics in the energy-magnetization, magnetization, and energy
spaces. Several single-spin-flip dynamics are considered, such as the Glauber and Metropolis canonical en-
semble dynamics, and the Metropolis dynamics for three multicanonical ensembles: the flat energy-
magnetization, the flat energy, and the flat magnetization histograms. From the numerical diagonalization of the
matrices for the projected dynamics we obtain the subdominant eigenvalues and the largest relaxation times for
systems of varying size. Although the projected dynamics is an approximation to the full state space dynamics,
comparison with some available results, obtained by other authors, shows that projection in the magnetization
space is a reasonably accurate method to study the scaling of relaxation times with system size. For each
system size, the transition matrices for arbitrary single-spin-flip dynamics are obtained from a single Monte
Carlo estimate of the infinite-temperature transition matrix. This makes the method an efficient tool for evalu-
ating the relative performance of any arbitrary local spin-flip dynamics. We also present results for appropri-
ately defined average tunneling times of magnetization and compare their finite-size scaling exponents with
results of energy tunneling exponents available for the flat energy histogram multicanonical ensemble.
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I. INTRODUCTION

The dynamical critical behavior of statistical physics
models is a problem that attracts considerable attention
�1–4�. From a fundamental point of view, one is interested in
the identification and characterization of the different dy-
namical universality classes, known to be more restricted
than the static ones. Different algorithms for canonical en-
semble simulations have been proposed belonging to differ-
ent universality classes �5,6�. Still, the increasing relaxation
times with system size are a major limitation to the statistical
precision of the numerical estimates obtained in the simula-
tions. New algorithms, aiming to estimate the number of
states of a given energy, have also been proposed �7–9�.
These algorithms simulate a multicanonical ensemble with
the advantage that a single simulation provides information
on the properties of the system in a wide temperature range.
However, such algorithms also suffer from slowing down
with increasing system size, and the study of their dynamical
properties with simple and efficient methods is essential to
ascertain their relative performance.

Many numerical methods have been used to study sto-
chastic dynamics of statistical physics models. These meth-
ods measure the largest relaxation time of the dynamics, a
time that increases with system size according to dynamic
finite-size scaling theory. The exact diagonalization of the
transition matrix in the full state space can be done only for
very small systems. To overcome this limitation, one can
instead estimate by Monte Carlo methods the autocorrelation
function of the slowest observable in the system, the one
whose long-time behavior gives the largest relaxation time.
Although this method is free of systematic errors, one needs
to consider very long simulation runs to get a reasonably
small statistical error in the autocorrelation function. Several

other methods have been used, including a variational tech-
nique �3,4� allowing the estimation of the subdominant ei-
genvalue of the full state space transition matrix.

Projected dynamics was proposed to study metastability
and nucleation in the Ising model �10–15�. The idea behind
this method is to derive the dynamics in a restricted space of
one or several variables. Choosing such variables appropri-
ately and neglecting non-Markovian memory terms, one
hopes that the resulting approximated Markovian dynamics
is a good approximation to the full state space dynamics. The
usefulness of the method has been proved in the context of
the study of metastability in the Ising model, where a direct
dynamic Monte Carlo simulation is unable to cope with the
large time scale of the problem �14�. The nonlumpability of
the full state space transition rate matrix with respect to en-
ergy and magnetization classification of the states leads to
the appearance of memory terms when projecting the dy-
namics in these restricted spaces �14,16�. To recover the
Markovian character of the dynamics, these memory terms
are neglected and the resulting projected dynamics becomes
only approximated.

In this paper we study the projected dynamics behavior
for the square lattice nearest-neighbor Ising model, in the
energy and magnetization spaces for two local spin-flip algo-
rithms, namely, the Glauber and the Metropolis et al. �17,18�
critical canonical ensemble dynamics, and three multicanoni-
cal algorithms, the flat energy-magnetization histogram, the
flat energy histogram, and the flat magnetization histogram
dynamics. Although the dynamics associated with the transi-
tion rate matrices in these restricted spaces are only approxi-
mate, we show, by comparison with full state space results,
that they can be used to get reasonably accurate estimates of
the dynamical properties. From the numerical diagonaliza-
tion of these matrices, and the determination of their sub-
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dominant eigenvalue, we compute the largest relaxation
times for systems of varying size. The method proposed can
be applied to other models and other dynamics, thus leading
to a simple and efficient estimation of the scaling with sys-
tem size of the largest relaxation time. Such studies are
needed to assess the relative performance of Monte Carlo
simulation algorithms.

Projected dynamics transition rate matrices were also con-
sidered in the context of the transition matrix Monte Carlo
method �19,20�. Using an acceptance probability written in
terms of the infinite-temperature energy space transition ma-
trix, it is possible to perform simulations that visit with equal
probability the spectra of energies of the model, thus doing
flat energy histogram simulations. For the case of the Ising
model that we consider in this work, this algorithm is easily
generalized to simulations with a flat energy and magnetiza-
tion histogram. We use this flat energy-magnetization histo-
gram ensemble to numerically estimate the infinite-
temperature transition rate matrix in the space of energy and
magnetization from which all the results presented in this
work are derived.

For multicanonical algorithms, average tunneling times
between the ground state and states with higher energy �for
example, zero energy� have been considered �21�. It has been
shown that these tunneling times may scale differently with
system size when we consider going up �from a low energy
to a high energy� or down in energy �22�. We present results,
using projected dynamics, for average tunneling times of
magnetization in several multicanonical ensembles that show
a similar behavior. We compare our results with those of
other authors for tunneling times in the energy space.

The method proposed in this paper to study approximately
the local dynamics is efficient because �1� the dynamic ex-
ponent estimates are reasonably accurate when compared
with corresponding quantities obtained by other methods; �2�
any arbitrary, single-spin-flip dynamics can be studied from a
single Monte Carlo estimation of an infinite-temperature
transition matrix in the energy-magnetization space �corre-
sponding to acceptance of all the proposed configurations�;
the consideration of a specific dynamics comes only from the
weighting of this matrix with the corresponding acceptance
probability; �3� the dimensional reduction achieved by the
projection allows the application of matrix diagonalization
techniques for bigger system sizes.

The outline of the paper is as follows. In Sec. II we dis-
cuss the projection procedure; in Sec. III we show how the
infinite-temperature transition matrix is computed from
Monte Carlo simulations for different system sizes and de-
fine the projected transition matrices for the different en-
sembles and dynamics considered. In Sec. IV we present
results for the largest relaxation times and the corresponding
dynamical exponents. In Sec. V we define and compute tun-
neling times in the magnetization space and their finite-size
scaling exponents, and, finally, in Sec. VI we summarize our
main conclusions.

II. PROJECTED DYNAMICS

The Markov chain master equation in the full state space
is

dP��� ,t�
dt

= �
���

�W��� ,�� ��P��� �,t� − P��� ,t�W��� �,�� �� , �1�

where �� denotes a state of the system, P��� , t� is the prob-
ability for the system to be in a given state at time t, and
W��� ,�� �� is the transition rate from state �� � to �� . In the case
of an Ising model �� ���1 , . . . ,�N� specifies the state of each
of N spins of the system, �i, which can take two values, �i
= ±1. The transition rate obeys detailed balance,

Pst��� �W��� �,�� � = Pst��� ��W��� ,�� �� , �2�

relative to a stationary distribution Pst��� �, which we consider
to be an arbitrary function Pst(E��� � ,M��� �), of the energy
E��� �=−��i,j��i� j �where the sum is over all neighbor pairs
�i , j��, and the magnetization M��� �=�i�i.

The detailed balance equation can be summed for all ��
states with a given energy E=E��� � and magnetization M
=M��� �, and all �� � states with energy E�=E��� �� and magne-
tization M�=M��� ��, to obtain

�
�� ,���

Pst��� �W��� �,�� ��E,E��� ��E�,E������M,M��� ��M�,M�����

= �
�� ,���

Pst��� ��W��� ,�� ���E,E��� ��E�,E������M,M��� ��M�,M�����,

�3�

�a,b being the Kronecker delta. Since the stationary distribu-
tion is assumed to be a function of the energy and magneti-
zation only, it can be taken out of the summation, giving

p�E,M�T�E�,M�;E,M� = p�E�,M��T�E,M ;E�,M�� , �4�

where p�E ,M� is the stationary probability for a macrostate
characterized by an energy E and a magnetization M, ob-
tained by multiplying the corresponding microstate probabil-
ity Pst�E ,M� by ��E ,M�, the number of states with energy E
and magnetization M. In this expression, we have defined

T�E�,M�;E,M�

=
1

��E,M� �
�� ,���

W��� �,�� ��E,E��� ��E�,E������M,M��� ��M�,M�����

�5�

as the transition matrix between energy and magnetization
states �E ,M� and �E� ,M��.

Summing the master equation in the same way we would
obtain the evolution equation for the time-dependent prob-
ability p�E ,M , t� for the system to have energy E and mag-
netization M at time t:

dp�E,M,t�
dt

= �
E�,M�

�T�E,M ;E�,M�;t�p�E�,M�,t�

− p�E,M,t�T�E�,M�;E,M ;t�� , �6�

with a time-dependent transition matrix
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T�E�,M�;E,M ;t�

=
1

p�E,M,t� �
�� ,���

P��� ,t�W��� �,�� ��E,E��� ��E�,E�����

��M,M��� ��M�,M�����. �7�

This time-dependent matrix approaches the transition rate
matrix in Eq. �5� for large times when P��� , t� / p�E ,M , t�
→1/��E ,M�. The so-called projected dynamics neglects
this time dependence and considers instead the Markov pro-
cess associated with T�E� ,M� ;E ,M�:

dp�E,M,t�
dt

= �
E�,M�

�T�E,M ;E�,M��p�E�,M�,t�

− p�E,M,t�T�E�,M�;E,M�� . �8�

Starting with the projection operator technique, in a discrete
time formulation, the approximation can be regarded as
equivalent to dropping out some memory terms �12�. Note
that the dynamics of the Markovian process associated with
these transition matrices would be equivalent to the full state
space dynamics if it were lumpable �16� with respect to a
classification of the states in terms of energy and magnetiza-
tion. However, this is known not to be the case for canonical
ensemble dynamics �14�, although the flat magnetization en-
semble that we study later is lumpable with respect to a
magnetization classification of the states.

Further projection on the energy space can be done by
summing for all M and M� the detailed balance condition in
the E ,M space �Eq. �4��:

p�E� �
M,M�

p�E,M�
p�E�

T�E�,M�;E,M�

= p�E�� �
M,M�

p�E�,M��
p�E��

T�E,M ;E�,M�� , �9�

which is a detailed balance relation p�E�T�E� ;E�
= p�E��T�E ;E�� in the energy space with a projected transi-
tion matrix

T�E�;E� = �
M,M�

p�E,M�
p�E�

T�E�,M�;E,M� . �10�

Note that for the ensembles where Pst��� � depends just on
the energy �and not on the magnetization� the previous ex-
pression can be simplified to

T�E�;E� =
1

��E� �
M,M�

��E,M�T�E�,M�;E,M�

=
1

��E� �
�� ,���

W��� �,�� ��E,E��� ��E�,E�����, �11�

where ��E�=�M��E ,M� is the number of states with en-
ergy E. If Pst��� � depends on energy and magnetization si-
multaneously, the above simplification cannot be made.

The transition matrix T�E ;E�� can be used to define a
Markov chain dynamics in the restricted energy space:

dp�E,t�
dt

= �
E�

�T�E;E��p�E�,t� − p�E,t�T�E�;E�� . �12�

In the same way we can obtain a detailed balance relation
in the magnetization space:

p�M� �
E,E�

p�E,M�
p�M�

T�E�,M�;E,M�

= p�M�� �
E,E�

p�E�,M��
p�M��

T�E,M ;E�,M�� , �13�

which is a detailed balance relation p�M�T�M� ;M�
= p�M��T�M ;M�� in the magnetization space with a pro-
jected transition matrix

T�M�;M� = �
E,E�

p�E,M�
p�M�

T�E�,M�;E,M� . �14�

The transition matrix T�M ;M�� can be used to define a Mar-
kov chain dynamics in the restricted magnetization space:

dp�M,t�
dt

= �
M�

�T�M ;M��p�M�,t� − p�M,t�T�M�;M�� .

�15�

Regardless of the approximation assumed in the projected
dynamics, the detailed balance relations satisfied by the tran-
sition matrices defined above assure that the long-time be-
haviors of the related stochastic processes defined by Eqs.
�8�, �12�, and �15� are still characterized by the correct sta-
tionary probability distributions p�E ,M�, p�E�, and p�M�,
respectively.

In the following sections, we study single-spin-flip dy-
namics in the canonical ensemble characterized by the
stationary distribution at inverse temperature �, Pst��� �
=exp�−�E��� �� /Z as well as three multicanonical ensembles
with flat energy-magnetization, flat energy, and flat magneti-
zation histograms with Pst��� �=1/��E ,M�, Pst��� �=1/��E�,
and Pst��� �=1/��M�, respectively. Note that ��M�
=�E��E ,M� is exactly known to be

��M� = 	 N

N + M

2



and that an efficient numerical scheme �not used by us in the
present work� developed by Beale �23� allows exact compu-
tation of ��E� for the two-dimensional Ising model for mod-
erate system sizes N. The number of states ��E ,M� for the
two-dimensional Ising model was also numerically calcu-
lated before by using an entropic sampling method and the
broad-histogram method �11,24�. We are not aware of previ-
ous studies concerning the flat magnetization ensemble stud-
ied in the present work.
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III. NUMERICAL CALCULATION OF TRANSITION
MATRICES

We now explain our method to compute numerically the
transition matrices T�E� ,M� ;E ,M�, T�E� ;E�, and T�M� ;M�
defined in Eqs. �5�, �10�, and �14�, respectively. We start by
recalling that for single-spin-flip dynamics the transition rate
W��� ,�� � can be separated into a proposal step and an accep-
tance step. In the proposal step we choose, with equal prob-
ability, one of the spins of the system and propose to flip it.
Thus a given system state may have a nonzero transition rate
to N other system states that differ in the state of a single
spin. In the acceptance step we accept the proposed configu-
ration with a probability a�E� ,M� ;E ,M� that we assume de-
pends only on the energy and magnetization of the initial and
final configurations.

Consider the detailed balance relation �4� when we
sample with equal probability all the states of the system.
This is the case, for example, of the canonical ensemble Me-
tropolis et al. algorithm at infinite temperature when we ac-
cept all the proposed configurations. The probability to mea-
sure an energy E and magnetization M is then equal to
��E ,M� /2N since all states have equal probability. Thus we
can write the relation

��E,M�T��E�,M�;E,M� = ��E�,M��T��E,M ;E�,M�� ,

�16�

known as the broad-histogram equation �25,26�. For a
general single-spin-flip algorithm characterized by
a�E� ,M� ;E ,M�, we can write

T�E�,M�;E,M� = T��E�,M�;E,M�a�E�,M�;E,M� ,

�17�

with T��E� ,M� ;E ,M�= �N��� ,�E ,�M��E,M /N the normal-
ized average, in the constant energy and magnetization en-
semble, of the number of configurations N��� ,�E ,�M� with
energy E�=E+�E and magnetization M�=M +�M that can
be obtained from configuration �� by flipping a single spin.
The idea of calculating the microcanonical average of the
number of possible updates from a state of energy E to a
state of energy E� was first introduced in �25,26�. It was later
shown �27� that, for an arbitrary reversible procedure for
updating a configuration �a proposal�, not necessarily one
that updates a single spin, an equation similar to Eq. �16� is
always satisfied by the microcanonical average �N��� ,�E��E,
interpreted, more generally, as the average of the number of
possible ways �independently of the proposal probabilities�
of changing the state of the system from one with energy E
to another with energy E�=E+�E.

The numerical determination of T��E� ,M� ;E ,M� can be
done from the estimator

T��E�,M�;E,M�

=
1

NHsim�E,M��k=1

Nm

N��� k,�E,�M��E,E��� k��M,M��� k�,

�18�

where the summation is done over the Nm configurations

generated by the Monte Carlo procedure. Hsim�E ,M� is the
energy and magnetization histogram of the simulation. It can
be seen that this is the correct estimator, whatever the simu-
lation ensemble �27� we are using, by considering that

�N��� ,�E,�M��E,M

=
1

��E,M����
N��� ,�E,�M��E,E��� ��M,M��� �

=�N��� ,�E,�M��E,E��� ��M,M��� �

Psim��� ���E,M�
�

sim

, �19�

where Psim��� � is the probability of visiting a particular state
in the simulation ensemble whose averages are denoted by
�¯�sim, and noting that Hsim�E ,M�=NmPsim��� ���E ,M� with
Psim��� � dependent only on E and M.

For the two-dimensional square lattice nearest-neighbor
Ising model, each spin can have between zero and four near-
est neighbors in the same state of the spin. When this spin
flips there are five possible energy changes �E, and two
magnetization changes �M. Thus, one needs to count the
number of spin flips that lead to an energy and magnetization
change in each of these possible ten classes.

In this work we have estimated T��E� ,M� ;E ,M� by do-
ing transition matrix Monte Carlo simulations in the above-
mentioned Ising model of size N=L2 with an acceptance

probability a�E� ,M� ;E ,M�=min�1,
T��E,M;E�,M��

T��E�,M�;E,M� �. From Eqs.

�4� and �17� we can see that this choice leads to a flat energy
and magnetization histogram. The algorithm starts with an
initial estimate of T��E� ,M� ;E ,M� that is improved as more
configurations are generated. We have used the n-fold way
simulation algorithm of Kalos and Lebowitz �20,28�, and the
number of simulated spin flips per number of spins was 108

for each of the systems studied, L=3, . . . ,21,30. Note that,
when one considers an n-fold way simulation, the histogram
of energy and magnetization, Hsim�E ,M�, is the average time
spent at a given value of energy and magnetization. This may
differ from the average number of hits to a particular energy
and magnetization value. In this case, the expression �18�
should be modified to weight each of the generated configu-
rations with the estimated average time spent in these con-
figurations �a small but systematic error arises in the results
if this weighting is not done�.

The projected transition matrices in the energy-
magnetization space, T�E� ,M� ;E ,M�, are obtained from the
simulation estimates of T��E� ,M� ;E ,M� by using Eq. �17�.
We consider the following dynamics: �1� the Metropolis
canonical ensemble dynamics with a�E� ,M� ;E ,M�
=min(1,exp�−��E�−E��); �2� the Glauber canonical en-
semble dynamics with a�E� ,M� ;E ,M�= 1

2
1−tanh��
2 �E�

−E���; �3� the flat energy and magnetization histogram
Metropolis dynamics with a�E� ,M� ;E ,M�

=min�1,
T��E,M;E�,M��

T��E�,M�;E,M� �; �4� the Metropolis flat energy dynam-

ics �also known as entropic sampling� with a�E� ,M� ;E ,M�
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=min�1,
��E�

��E�� �; and �5� the Metropolis flat magnetization dy-

namics with a�E� ,M� ;E ,M�=min�1,
��M�

��M�� �.
For the energy-magnetization space with dimension

�N+1�2� �N+1�2, we have obtained results from the diago-
nalization of T�E� ,M� ;E ,M� up to N=82. For all the system
sizes studied we have found the stationary probabilities
p�E ,M� after solving numerically the system of equations
Eq. �8� in the steady state regime:1

�
E�,M�

�T�E,M ;E�,M��p�E�,M�� − p�E,M�T�E�,M�;E,M��

= 0. �20�

For the flat energy histogram dynamics we need to know
��E� to construct the corresponding acceptance probability.
This quantity can be obtained from ��E ,M� after the solu-
tion of the homogeneous linear system of equations

�
E�,M�

�T��E,M ;E�,M����E�,M��

− ��E,M�T��E�,M�;E,M�� = 0. �21�

Note that it is possible to compute

T��E�;E� = �
M�,M

��E,M�
��E�

T��E�,M�;E,M� , �22�

and write a�E� ,M� ;E ,M�=min�1,
T��E;E��

T��E�;E� � for a flat energy

histogram ensemble which is completely equivalent to

a�E� ,M� ;E ,M�=min�1,
��E�

��E�� �.
IV. LARGEST RELAXATION TIMES

We have considered a discrete time transition matrix
defined as 	�E ,M ;E�M��=T�E ,M ;E�M�� for �E ,M�
� �E� ,M�� and 	�E ,M ;E ,M�=1−�E�,M�T�E� ,M� ;E ,M� for
�E ,M���E� ,M��. This corresponds to the Markov chain
equation p�E ,M , t+1�=�E�,M�	�E ,M ;E�M��p�E� ,M� , t�.
The stationary probability distribution corresponds to an ei-
genvector with the largest eigenvalue 1. The second largest
eigenvalue, 
, determines the largest relaxation time in the
system, �=−1/N ln 
. The division by N is needed in order
for � to be expressed in units of numbers of Monte Carlo
steps per total number of spins. The relaxation times increase
with system size as ��Lz, thus being characterized by a
dynamic exponent z.

We have studied the behavior of the projected dynamics at
the critical point of the square lattice Ising model, �cJ

= 1
2 ln�1+�2�, for canonical Glauber and Metropolis et al.

acceptance probabilities. For Glauber dynamics, the eigen-
value results 
T�M;M�� from the matrix T�M ;M��, and

T�E,M;E�M�� from T�E ,M ;E�M�� can be seen in Table I to-
gether with the eigenvalues 
W for the full state space dy-
namics obtained from �3,4� using a variational method. For
small systems L=3,4 ,5 we have also computed 
T�E,M;E�M��

from an exact enumeration of all the system states and the
results are in close agreement with the ones obtained from
the Monte Carlo estimation of T��E ,M ;E� ,M��. For a given
system side L, the eigenvalues are close to each other and are
observed to obey the inequality 
W�
T�E,M;E�M���
T�M;M��

which may be regarded, variationally, as a consequence of
not being possible to write the exact full state eigenvector as
a function only of energy and magnetization. An estimate of
the error in the 
T�M;M�� values in Table I, for L=15, was
obtained by making ten simulations of 107 Monte Carlo steps
MCS/spin giving �
=8�10−9 corresponding to a relative
error of 2.5�10−3 in the correlation time.

In Fig. 1�a� we plot on a log-log scale the dependence
with system size L of the magnetization relaxation times, �M

Gl

1The solution has been found by an iterative method in which, at
each iteration, the values of the energy-magnetization probability at
�E1 ,M1� and �E1 ,−M1� are kept constant with a value p�E1 ,M1�
= p�E1 ,−M1�=1/2. This procedure was found to improve the con-
vergence considerably. The values of �E1 ,M1� were chosen to be
near the �E ,M� region where p�E ,M� has an appreciable value. The
iteration was stopped when the measured relative change of
�E,Mp�E ,M� was smaller than 10−12.

TABLE I. Subdominant eigenvalues of transition matrices for
different system sides L and Glauber dynamics. The second column
lists values for the matrix W��� ,�� �� taken from Refs. �3,4�. The
third and fourth columns are our results for the matrices T�M ;M��
and T�E ,M ;E�M��, respectively.

L 
W, Refs. �3,4� 
T�M;M�� 
T�E,M;E�,M��

3 0.997409385126011a 0.9973901755 0.99740630184576a

0.9974063007

4 0.999245567376453a 0.9992429803 0.99924409354918a

0.9992441209

5 0.999708953624452a 0.9997066202 0.99970673172786a

0.9997067351

6 0.9998657194 0.9998635780 0.9998637800

7 0.9999299708 0.9999281870 0.9999284453

8 0.9999600854 0.9999586566 0.9999589090

9 0.9999756630 0.9999744986

10 0.9999843577 0.9999834244

11 0.9999895056 0.9999887396

12 0.9999927107 0.9999921039

13 0.9999947840 0.9999942741

14 0.9999961736 0.9999957520

15 0.9999971315 0.9999967823

16 0.9999978080 0.9999975119

17 0.9999982987 0.9999980505

18 0.9999986606 0.9999984474

19 0.9999989315 0.9999987550

20 0.9999991370 0.9999989750

21 0.9999992955 0.9999991723

30 0.9999998016

aExact: 
W from diagonalization of the full state matrix W and

T�E,M;E�,M�� obtained from diagonalization of the exact projection
matrix T�E ,M ;E� ,M�� obtained from the enumeration of all the
states.
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of the critical canonical Glauber dynamics and �M
Met of the

Metropolis et al. dynamics, obtained from the subdominant
eigenvalue of T�M ;M��, together with the full state space
values � of �3,4�. In this graph, the fitted straight lines were
obtained neglecting data for L
15 and have slopes zM

Gl

=2.02, zM
Met=2.00, and z=2.18. However, to obtain a more

reliable estimate of the exponents z, a careful analysis taking
into account corrections to scaling is needed. We have con-
sidered the first-order finite-size correction to the leading be-
havior �3,4�, ��Lz�1+bL−2�, by plotting in Fig. 1�b� the lo-
cal slope z=ln���L+1� /��L�� / ln��L+1� /L� as a function of
L−2. The extrapolation to infinite system size limit yields
zM

Gl=1.99�2�, zM
Met=2.01�1�, and z=2.165�3�. The estimated

error bars for the exponents, quoted in this work, correspond
to fitting probabilities �29� equal to 1. The results for zM

Gl and
zM

Met seem to be compatible with zM
Gl=zM

Met=2, while the result
for z is consistent with the best estimate of Ref. �4�, z
=2.1660�10�, thus excluding the Domany conjecture z=2
with a logarithmic correction ��L2�1+b ln L� �30�, although
further analysis �31� of the same data was not able to cat-
egorically exclude the validity of the Domany conjecture.

In Fig. 1�a� we also plot the energy relaxation time �E
Gl for

the critical canonical Glauber dynamics, obtained from the
subdominant eigenvalue of matrix T�E ;E��. Note that we use
now a linear scale in the vertical axis and hence the observed
behavior is �E

Gl� ln L. This logarithmic behavior is indicated

by a critical exponent zE
Gl=0�log�, in accordance with previ-

ously reported results �19�.
In Fig. 2�a� we plot the magnetization relaxation times

obtained from T�M ;M�� for the Metropolis et al. dynamics
in the flat energy-magnetization ensemble, �M

E-M, the flat en-
ergy ensemble, �M

E , and the flat magnetization ensemble, �M
M.

The fitted straight lines �excluding again data for L
15� in
the log-log plot have slopes zM

E =2.69, zM
M =1.99, and zM

E-M

=2.11. As before, better estimates of these exponents, includ-
ing correction to scaling terms, are obtained from extrapola-
tion to the infinite-size limit of the local slopes. The analysis,
performed in Fig. 3�a�, yields zM

E =2.68�3�, zM
M =1.9995�5�,

and zM
E-M =2.08�1�. The value for zM

E is compatible with the
available �32� result z=2.80�13� obtained by a Monte Carlo
estimate of the convergence time of the time-dependent en-
ergy histogram to the stationary flat distribution of the en-
ergy. The data for zM

E-M show an even-odd effect, and it is
important to do separate estimates for even and odd system
sides.

Note that the full state transition rate matrix W, in the flat
magnetization ensemble, is lumpable with respect to the clas-
sification of the states according to their magnetization and,
consequently, the result zM

M �2 does not suffer from the ap-
proximation inherent in the projection procedure. A sufficient
and necessary condition for lumpability �16� is that the total
probability to go from a state belonging to a given magneti-
zation class to another class with different magnetization is
the same for every state in the starting class. For each state in
the starting class with magnetization M there are n± states in
the final class M ±2 where n± is the number of up �down�
spins in the initial configuration. The probability to move to
each of these final states in the final class has a constant
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FIG. 1. �Color online� �a� Relaxation times �M for Glauber dy-
namics obtained from Ref. �4� ��� and from the subdominant ei-
genvalue of the matrix T�M ;M�� ���. In the latter case, we also
plot the corresponding values for the canonical Metropolis et al.
dynamics ���. The fitted straight lines to the log-log plot were
obtained neglecting data for L
15 and have slopes z=2.18, zM

Gl

=2.02, and zM
Met=2.00. The graph also displays the energy relaxation

time �E
Gl for Glauber dynamics obtained from the matrix T�E ;E��

���. In this case, the observed behavior is �E
Gl� ln L. �b� Estima-

tions of the dynamic critical exponent from the local slopes of the
graph in �a� as a function of L−2. The symbols are as in �a�. The
extrapolated exponents are zM

Gl=1.99�2�, zM
Met=2.01�1�, and z

=2.165�3�.
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FIG. 2. �Color online� Relaxation times obtained for the Me-
tropolis et al. dynamics in the flat energy-magnetization ensemble
���, flat magnetization ensemble ���, and flat energy ensemble ���.
In �a� we plot the magnetization relaxation times �M obtained from
T�M ;M��, and the fitted straight lines have slopes zM

E-M =2.11, zM
E

=2.69, and zM
M =1.99. In �b� we plot the energy relaxation times �E

obtained from T�E ;E��, and the fitted straight lines have slopes
zE

E-M =2.14, zE
E=2.13, and zE

M =1.99. In both �a� and �b� data for L

15 were neglected in the fits.
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value that depends only on the initial M and on the final
M ±2. All the states in the starting class have the same num-
ber of up spins and down spins, so the probability to move to
M ±2 is the same for every state in the starting class. The
matrix T�M ;M�� is a tridiagonal symmetric matrix with
matrix elements given by T�M +2;M�=T�M ;M +2�
= �1+n+� /N for M 
0, and T�M +2;M�=T�M ;M +2�
=n− /N for M �0.

Finally, in Fig. 2�b� we plot the energy relaxation times
obtained from T�E ;E�� for the Metropolis et al. dynamics in
the same ensembles as in the case of the magnetization. The
slopes of the fitted straight lines �again excluding L
15� are
zE

E-M =2.14, zE
E=2.13, and zE

M =1.99. The more detailed analy-
sis taking into account correction to scaling terms, shown in
Fig. 3�b�, yields zM

E =2.002�1�. In the case of zE
E-M, odd and

even side extrapolations are very close to each other and give
zE

E-M =2.07�1�. However, the extrapolations for zE
E for odd

and even system sides differ, giving zE
E=2.07�3� and zE

E

=1.99�2�, respectively. The difference between these two es-
timates may be a sign of the presence of corrections to scal-
ing not properly accounted for by our analysis.

V. MAGNETIZATION TUNNELING TIMES

As a measure of performance for multicanonical methods,
the average tunneling times were introduced �21�. These tun-
neling times measure the time required to sample the whole

phase space and scale with system size differently from the
relaxation time. It was shown that it is important to distin-
guish between tunneling from the ground state to maximum
energy, the up direction, and from high energy to the ground
state, the down direction �22�.

All the tunneling times reported by us are calculated for
the projected dynamics associated with T�M ;M��. We calcu-
late the average time �t for the system to go from magneti-
zation M =−N to M =N. We also consider two other average
times: the time �u for the system to go from M =−N to zero
magnetization, and the time �d for the system to go either to
M = +N or M =−N when it starts from M =0. The definitions
of �u and �d apply only to systems with even L �and N�, such
that M =0 is an accessible value of the magnetization.

The tunneling times defined above obey the relation �u
+�d=�t /2 which follows from the following simple argu-
ment. For the system to go from M =−N to M =N it has to
reach M =0 at some point. It will do so for the first time
using an average time �u. Then with probability 1 /2 it will
reach for the first time M =N and the tunneling time will be
�u+�d, or it will return to M =−N and it will reach M =N
later, taking a time �u+�d+�t. Consequently the tunneling
times obey the relation 1

2 ��u+�d�+ 1
2 ��u+�d+�t�=�t. This ar-

gument uses the fact that the matrix T�M ;M�� has the sym-
metry property T�M ±2;M�=T�−M �2;−M�, and so the
walk along positive values of the magnetization has the same
statistical properties as the walk along negative values of the
magnetization.

The time to go from M =−N to M =N can be easily com-
puted by taking advantage of the fact that T�M ;M�� is non-
zero only when M =M�±2 and M�=M. If we do not allow
transitions from M =N to M =N−2, M =N becomes an ab-
sorbing site for every walk along the magnetization axis,
meaning that it will end there upon a first visit. Defining
h�M� as the average time spent at magnetization value M
�14�, we can write

h�M − 2�T�M ;M − 2� − h�M�T�M − 2;M� = 1, �23�

which means that the difference between the average number
of jumps in the positive direction �M −2→M� and the aver-
age number of jumps in the negative direction �M→M −2�
should be equal to 1 since the system will eventually reach
M =N by moving one time in excess in the positive direction
through the bond connecting the sites M −2 and M. At M
=N there are no jumps in the negative direction and so
h�N−2�T�N ;N−2�=1. It is then simple to calculate h�M�
and the average tunneling time for the system to go from
M =−N to M =N is given by �t=�M=−N

M=N−2h�M�.
The time �u to reach for the first time M =0 starting from

M =−N is obtained using the recursion �23� together with the
equation h�−2�T�0;−2�=1 to get �u=�M=−N

M=−2 h�M�. Finally,
the average time required to start from M =0 and reach for
the first time either M =−N or M =N, �d, is obtained from the
recursion

h�M�T�M − 2;M� − h�M − 2�T�M ;M − 2� = 1 �24�

with a modified rate T�−2;0� equal to T�−2;0�+T�2;0� and
h�−N+2�T�−N ;−N+2�=1. The average time �d is then given
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FIG. 3. �Color online� �a� Dynamic exponent estimates
zM

E-M ���, zM
E ���, and zM

M ��� from local slopes of the plots shown
in Fig. 2�a� as a function of L−2. For the estimates for the energy-
magnetization flat multicanonical ensemble, we made separate esti-
mations for even and odd L system sides. The infinite system size
extrapolations give zM

E-M =2.08�1�, zM
E =2.68�3�, and zM

M =1.9995�5�.
�b� Dynamic exponent estimates zE

E-M ���, zE
E ���, and zE

M ��� from
local slopes of the plots shown in Fig. 2�b� as a function of L−2. For
the magnetization flat multicanonical ensemble, the result is zE

M

=2.002�1�. For the energy-magnetization flat multicanonical en-
semble, the separate even and odd L system sides estimates coin-
cide and give zE

E-M =2.07�1�. For the flat energy ensemble, extrapo-
lations from odd and even size yield zE

E=2.07�3� and 1.99�2�,
respectively.
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by �d=�M=−N+2
M=0 h�M�. The average tunneling times obtained

by this method could also have been obtained from the cal-
culation of the probability of the first visit to the absorbing
site that can be computed from the eigenstates and eigenvec-
tors of the associated absorbing Markov chain matrix �see
�22��.

The tunneling times are characterized by dynamic expo-
nents �21�, �t�Ld+zt, �u�Ld+zu, �d�Ld+zd. The relation be-
tween these tunneling times implies that zt is equal to the
biggest of the two exponents, zu and zd, zt=max�zd ,zu�. Note
that the tunneling times reported by us are measured in units
of lattice sweeps and not in units of site updates.

In Fig. 4�a� we show the size dependence of the tunneling
times �t, �u, and �d for the Metropolis et al. dynamics in a flat
magnetization-energy histogram ensemble obtained from the
matrix T�M ;M��. We see that �t��d��u. A direct fit to the
log-log plot gives scaling exponents zu=0.15, zt=zd=2.12.
Note that for a random walk on the magnetization axis a
value for these exponents equal to 0 is expected. The correc-
tions to scaling terms are analyzed in Fig. 4�b� where we
show the local slopes for the plots in Fig. 4�a� as a function
of L−2. The estimates for zt and zd seem to follow a straight
line predicting an infinite system value 2.11�1� and 2.08�1�,
respectively. The infinite-size extrapolation for zu is 0.14�2�,
which predicts a scaling �u�L2.14 close to the exponent of
the relaxation time zM

E-M =2.08 reported in the previous sec-
tion. This behavior is similar to the one found in �22� where
�u �in the energy space� was found to scale like the relaxation
time of the system.

In Fig. 5�a� we show the size dependence of the tunneling
times �t, �u, and �d for the Metropolis et al. dynamics in a flat
energy histogram ensemble obtained from the matrix

T�M ;M��. The slopes of the fitted straight lines give zt

=0.69, zu=0.64, and zd=0.63. The result for zt can be com-
pared with the value 0.78 reported in Ref. �33� and the value
0.743�7� reported in Ref. �21� by measuring average times
for energy excursions. An exponent zu=0.6, also obtained
from Monte Carlo estimates of energy tunneling times was
previously reported �34� in very good agreement with our
result. In Fig. 5�b� we make infinite-size extrapolations giv-
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FIG. 5. �Color online� �a� Tunneling times �t ���, �u �+�, and
�d ��� as a function of system size L for the Metropolis et al. dy-
namics in a flat energy histogram ensemble obtained from the ma-
trix T�M ;M��. The fitted straight lines were obtained neglecting
data for L
15 and have slopes zt=0.69, zu=0.64, and zd=0.63,
respectively. In �b� we plot the corresponding local slopes as a
function of L−2. For the zt estimates, even and odd system sides
were treated separately. The infinite-size extrapolations are zt

=0.70�2� and 0.65�1� for odd and even system sides, respectively,
zu=0.63�3�, and zd=0.66�1�.
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�d ��� as a function of system size L for the Metropolis et al. dy-
namics in a flat magnetization histogram ensemble obtained from
the matrix T�M ;M��. The lines are the analytical asymptotic results
given in the text.
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FIG. 4. �Color online� �a� Tunneling times �t ���, �u �+�, and
�d ��� as a function of system size L for the Metropolis et al. dy-
namics in a flat magnetization-energy histogram ensemble obtained
from the matrix T�M ;M��. The fitted straight lines were obtained
neglecting data for L
15 and have slopes zt=2.12, zu=0.15, and
zd=2.12, respectively. In �b� we plot the corresponding local slopes
as a function of L−2. Even and odd system sides were treated sepa-
rately. The infinite-system extrapolation gives zt=2.11�1�, zu

=0.14�2�, and zd=2.08�1�.
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ing zt=0.70�2� and 0.65�1� for odd and even system sides,
respectively, zu=0.63�3�, and zd=0.66�1�.

Finally, we consider the Metropolis et al. dynamics for the
flat magnetization histogram ensemble. For this case it is
possible to compute analytically the tunneling times from the
recursion relations given above, Eqs. �23� and �24�, and the
knowledge of the matrix T�M ;M��. The analytical results are
�u=N /2, �t= �N+1�H�N /2�, and �d= 1

2 ��N+1�H�N /2�−N�
where H�n�=�k=1

n 1/k is the harmonic number. Using the
known asymptotic result, for large n, H�n�� ln n+	 where
	=0.577 215 664 9. . . is the Euler constant, we have
asymptotic expressions for the tunneling times that predict
�t /N��d /N� ln N, and the tunneling exponents are zt=zd
=zu=0. In Fig. 6�a� we compare the numerical results for the
tunneling times �t, �u, and �d with the analytical results. Note
that, because of the logarithmic dependence of �t and �u, the
estimates for the exponents zt and zd that we could obtain for
the slopes of the data shown in Fig. 6�a� give effective values
around 0.35 that would slowly approach zero only if larger
systems were considered.

From the three multicanonical ensembles studied, we see
that the flat magnetization ensemble is the one with smaller
tunneling exponents and relaxation time exponent. Recently,
it was shown that it is possible to optimize the ensemble in
multicanonical simulations such that the tunneling exponent
zt is also reduced to zero �33,35�.

VI. CONCLUDING REMARKS

We have shown that projected dynamics in the magneti-
zation space is a reasonably good approximation to the full
state space single-spin-flip dynamics studied in this work:
canonical ensemble Glauber and Metropolis et al. dynamics
and three multicanonical ensemble dynamics with flat
energy-magnetization, flat energy, and flat magnetization his-
tograms. In Table II we have summarized our infinite-size
extrapolations of the exponents for the relaxation time and
for the magnetization tunneling times. The energy-projected
dynamics is generally the worse approximation, being unable
to preserve the power-law size increase of the relaxation time
for the critical canonical ensemble dynamics. From all the

studied dynamics, only the flat energy histogram dynamics
show a z exponent clearly larger than 2 and near 2.7. For the
case of the flat magnetization histogram, the projection in the
magnetization space is exact, and it is possible to obtain
analytical results for the tunneling times predicting a zero
value for the exponents zt, zd, and zu. The tunneling expo-
nents zt �and zd� for the energy and magnetization flat histo-
gram ensemble are much bigger, zt=zd�2, and larger than
the exponent zu=0.14. For the flat energy histogram dynam-
ics, these three exponents are not very different and the es-
timates fall between the values zu�0.63 and zt�0.70 for
odd system sides. These results were obtained from the tun-
neling properties of the projected dynamics in the magneti-
zation space which were found to be in rough agreement
with those obtained by independent methods for excursions
in the energy space for the flat energy multicanonical en-
semble.

Finally, the results show that the evaluation of the relative
performance of single-spin-flip dynamics in Ising-like mod-
els can be done very efficiently by studying the projected
dynamics in the magnetization space: the approximation
gives reasonably accurate dynamic exponents, any arbitrary
single-spin-flip dynamics can be studied from Monte Carlo
estimations of T��E ,M ;E� ,M�� for several system sizes in
the energy-magnetization space, and the large dimensional
reduction achieved by the projection in the magnetization
space allows the application of matrix diagonalization tech-
niques for bigger system sizes. Furthermore, the application
of projection methods to cluster dynamics in Ising models
and other models, including continuous spin models �36,37�,
projected along their slowest mode may be of considerable
interest.
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TABLE II. Summary of the values obtained for each dynamics of the relaxation time dynamical exponent
from magnetization projection, zM, and energy projection, zE, and magnetization tunneling exponents zu, zd,
and zt obtained from magnetization projection �see text for details�.

Relaxation time exponents Magnetization tunneling exponents

Dynamics zM zE zu zd zt

Critical Glauber 1.99�2� 0�log�
Critical Metropolis 2.01�1� 0�log�
Flat E—M 2.08�1� 2.07�1� 0.14�2� 2.08�1� 2.11�1�
Flat E 2.68�3� 1.99�2�–2.07�3� 0.63�3� 0.66�1� 0.65�1�–0.70�2�
Flat M 1.9995�5� 2.002�1� 0 0�log� 0�log�
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