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ABSTRACT

We analyze a rate equation model in the Langevin formulation for the two modes of the electric field and the
carrier density, modelling the spontaneous emission noise in a semiconductor ring laser biased in the bidirectional
regime. We analytically investigate the influence of complex backscattering coefficient when the two modes
are reinterpreted in terms of mode-intensity sum (I-Spectrum) and difference (D-spectrum). The D-spectrum
represents the energy exchange between the two counterpropagating modes and it is shaped by the noisy precursor
of a Hopf bifurcation influenced mainly by the conservative backscattering. The I-Spectrum reflects the energy
exchange between the total field and the medium and behaves similarly to the standard relative intensity noise
for single-mode semiconductor lasers. Good agreement between analytical approximation and numerical results
is found.
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1. INTRODUCTION

Semiconductor ring lasers (SRLs)1 gained interest due to their peculiar properties from both fundamental and
applicative point of view. SRLs exhibit different operating regimes ranging from bidirectional-continuous wave
regime, to a bidirectional with alternate oscillations regime, to a bistable regime, to mode locking and chaos.3–7

These variety of operating regimes makes them promising candidates for wavelength filtering, unidirectional
travelling wave operation, and multiplexing/demultiplexing applications. In particular the bistable regime is
interesting for applications in optical logics, optical gating and reshaping,8 whereas the bidirectional regime is
also interesting for rotation sensing applications.9

From a fundamental point of view, the interaction of fluctuations and two-mode nonlinear system unveiled
interesting physics and new phenomena, e.g. the phenomenon of stochastic resonance was demonstrated in a ring
dye laser.10 Also, fluctuations are important in applications for ring lasers, as they determine the performance
of the ring laser gyroscope,11 or induce spontaneous switching in a bistable SRL.12 The main noise source
of a semiconductor laser is represented by spontaneous emission, which yields to fluctuations of the emitted
intensity an frequency.13 Different examples of how to model the spontaneous emission noise are shown in.14–16

While SRL share some general characteristics with other kinds of ring lasers, they also have some distinctive
features such as phase/amplitude coupling, which is known to enhance phase noise,13 and strong intermodal gain
crossaturation, which induces anticorrelated dynamics in the mode-power distribution.3 Also, for technological
reasons, SRLs experience conservative backscattering stronger than dissipative one as in gas or dye ring lasers.17

We address here how these features influence the noise spectra of SRL.
We consider the effects of the spontaneous emission noise in a two mode rate equation model, for a SRL

operating in the bidirectional regime. We analytically calculate noise-spectra and correlations properties when
the two modes are reinterpreted in terms of mode-intensity sum and difference taking into account the fluctuations
on the phase of the fields. On one side the total intensity and carrier density show a noise spectrum (I-spectrum)
characterized by a resonance induced by the typical field-medium exchange processes (relaxation oscillations)
and the global phase invariance induced by the Goldstone mode, so as far as those variables are concerned, it
behaves as a standard single-mode Fabry-Perot semiconductor laser. Besides, the degree of freedom associated
to the simultaneous presence of two counterpropagating modes allows for a further process of energy exchange
between the two modes. Our analysis unveiled that such process presents a resonance interpreted as a ’noisy
precursor’ of a Hopf bifurcation18 influenced mainly by the backscattering parameters.
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2. THE MODEL

Considering a single longitudinal mode operation, the electric field inside the cavity reads

E(x, t) = E+e−i(Ωt−kx) + E−e−i(Ωt+kx), (1)

where E+ and E− are the mean-field slowly varying complex amplitudes of the electric field associated with the
two propagation directions, E+ clockwise and E− counterclockwise, respectively, being x the spatial coordinate
along the ring, assumed positive in the clockwise direction, and Ω is the optical frequency of the selected
longitudinal mode. The model we consider is composed by the following set of dimensionless rate equations for
the time evolution of the electric fields E± and the carrier density N

Ė± = G±(N, |E±|
2) E± − η E∓ + ξ±(t),

Ṅ = γ F(N, |E±|
2),

(2)

where

G±(N, |E±|
2) =

1

2
(1 + iα){N σ± − 1},

F(N, |E±|
2) = µ − N − N σ+ |E+|

2 − N σ− |E−|
2,

σ± = 1 − s |E±|
2 − c |E∓|

2,

where η = kd + ikc is the complex backscattering coefficient, with its dissipative (kd) and conservative (kc)
components. The α factor describes the phase-amplitude coupling mechanism present in semiconductor lasers.
The saturations effects in the gain, written in the quadratic approximation, are represented by s and c, which
are normalized self- and cross-gain saturation coefficients. The parameter µ is the pump parameter normalized
to the threshold current (i.e. µ = 1 at threshold) and γ is the ratio between the photon lifetime and the carrier
lifetime. The model was proven to give excellent quantitative agreement with experiments.3, 4 The fluctuations
terms ξ±(t) are the Langevin forces,20 i.e. white gaussian complex noise sources with the following non vanishing
correlation properties

〈ξ±(t)ξ∗±(t′)〉 = 2
√

βτpNstδ(t − t′), (3)

where τp is the photon lifetime, Nst is the carrier steady state solution (7) and β represents the fraction of
spontaneously emitted photons coupled to the cavity. Noise terms reflects the effect of spontaneous emission in
each direction of propagation. For simplicity, we do not take into account a noise source for the carrier density
equation, considering the spontaneous emission noise as the main noise source in semiconductor lasers.13, 14

According to the experimental fitting3 through this paper we take the following parameters set (except where
otherwise is noticed) α = 3.5, s = 0.005, c = 0.01, kd = 3.27 10−4 , kc = 4.4 10−3, τp = 10 ps, γ = 2 10−3 and
µ = 1.2.

3. THEORETICAL ANALYSIS

3.1. Monochromatic symmetric solutions

Neglecting the noise and by substituting in (2) the following monochromatic solution for the two fields with
symmetric amplitude

E±(t) = Qeiωt±iφ, (4)

we find the stationary solutions. There are two possible cases, the in phase case

φ = 0 → ωin = αkd − kc, (5)

and the out of phase case

φ =
π

2
→ ωout = −αkd + kc. (6)

Depending of the sign of the backscattering parameters one of the solutions is stable and the other unstable,
if kd > 0 (kd < 0) the out of phase case is stable (unstable). From now on we focus on the out of phase case,
because we have chosen the parameters set in which such solution is stable, this can be shown without loosing



generality. The corresponding stationary solution for the carrier density N as a function of the amplitude of the
fields and the pump parameter is

Nst =
µ

1 + 2Q2(1 − sQ2 − cQ2)
. (7)

For the amplitude Q we find

Q2 =
Nst − 1 + kd

(c + s)Nst

. (8)

In the following subsection the linear stability of the stationary solution (6)-(8) is reported.

3.2. Linear fluctuations dynamics

Hereby we analyze the effect of a perturbation on the stationary solutions. We consider a real perturbation n in
the carrier density and complex perturbations a± for the fields

E± = (Q + a±)eiωt±iφ,

N = Nst + n.
(9)

By making use of (9) in (2) we derive the following linear system

ṅ = −γ{n + [1 − 2Q2(s + c)]NstQ(a+ + a∗
+ + a− + a∗

−) + 2Q2[1 − sQ2 − cQ2]n}
ȧ± = 1

2 (1 + iα){Nst(1 − sQ2 − cQ2)a± − NstQ
2[s(a± + a∗

±) + c(a∓ + a∗
∓)] + Q(1 − sQ2 − cQ2)n − a±}

−iωa± − η(cos 2φ ∓ i sin 2φ)a∓ + ξ±.

(10)
At this point we introduce a new set of variables to simplify the set (10) in two independent problems by

block diagonalization. The new variables are

S(t) = a+ + a−,

R(t) = a+ − a−.
(11)

We can relate those new variables to experimentally accessible intensity variables |E+|
2 and |E−|

2 defining

I = |E+|
2 + |E−|

2, (12)

D = |E+|
2 − |E−|

2, (13)

and writing those new variables as I = I0 + I and D = D0 + D, where I0 and D0 are constants and the
perturbations I and D can be expressed in terms of S and R at first order,

I = Q(S + S∗), (14)

D = Q(R + R∗). (15)

The block involving I describes a perturbations to the total laser intensity and it is coupled to the carrier density
perturbation equation. The variable I describes the perturbation of the total intensity of the lasers, regardless
its distribution between the two modes. On the other side, D describes the power exchange between the two
counterpropagating fields.

3.3. Relative Intensity

The equation for the dynamic evolution of R corresponding to the out of phase solution is

Ṙ = (1 + iα)K(R + R∗) − 2ηR + ξR(t), (16)

where the fluctuation term is derived from (11) and (3), ξR(t) = ξ+(t) − ξ−(t) with the correlation properties

〈ξR(t)ξ∗R(t′)〉 = 4
√

βτpNstδ(t − t′), (17)
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Figure 1. D-spectrum, the grey line corresponds to the numerical simulation for 20 realizations the analytical solution
is the black line. β = 10−3 ns−1, α = 3.5, s = 0.005, c = 0.01, kd = 3.27 10−4 , kc = 4.4 10−3, γ = 2 10−3 and µ = 1.2.

and K is a real constant defined by

K =
1

2
NstQ

2(c − s). (18)

The corresponding eigenvalues for the differential equations system involving R and R∗ are

λ1,2 = K − 2kd ± [K2 + 4Kαkc − 4k2
c ]

1

2 . (19)

The analytical solution of the above system is

R̃(ω) =
1

A(ω)
[(iω − (1 − iα)K + 2η∗)ξ̃R(ω) + (1 + iα)Kξ̃∗R(−ω)] (20)

where
A(ω) = −ω2 + iω(4kd − 2K) − 4(kd + αkc)K + 4(k2

d + k2
c ).

Then we yield to the following analytical expression for the ensemble average

〈R̃(ω)R̃∗(ω′)〉 = 1
A(ω)A(−ω) [4k2

d − 4K(kd + kcα) + 2K2(1 + α2) + 2Kαω + (ω − 2kc)
2]8π

√
βτpNstδ(ω − ω′).

(21)
Fig. 1 shows the D-spectrum, it is straightforward to demonstrate with (13) and (15) that

< D̃(ω)D̃∗(ω′) >= Q2(< R̃(ω)R̃∗(ω′) > + < R̃(−ω)R̃∗(−ω′) >) (22)

spectrum at first order, using (21) and numerical simulations of the nonlinear system (2) using a second order
Heun algorithm.14 Physically, the backscattering represents the energy exchange rate between the two modes.
Such process shows a resonance (the peaks in Fig. 1).SRLs are well modeled by strong cross-saturation and
conservative backscattering. For such parameters choice, our study unveils the presence of a resonance peak in
the radiofrequency spectrum. This feature was reported in recent experimental works.21

3.4. Total intensity and carrier density

The equations for the dynamic evolution of S and n corresponding to the out of phase solution are

Ṡ = (1 + iα){Cn + K̃(S + S∗)} + ξS(t)
ṅ = −γ{n + [1 − 2Q2(s + c)]NstQ(S + S∗) + 2Q2[1 − sQ2 − cQ2]n},

(23)
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Figure 2. I-spectrum. < eI(ω)eI∗(ω) > versus dimensionless frequency, ω. The grey line corresponds to the numerical
simulation and the black line is the analytical solution (31), β = 10−3 ns−1.

where the fluctuation term is derived from (11) and (3), ξS(t) = ξ+(t)+ξ−(t) with the same correlation properties

shown in the previous section (17) and K̃ and C are real constants

K̃ = − 1
2NstQ

2(c + s),
C = Q(1 − Q2(c + s)).

(24)

The corresponding eigenvalues for the system (23) are

λ0 = 0,

λ1,2 = K̃ − γ
2 − γQC ± 1

2 [γ2 + 4(K̃2 + K̃γ + γ2QC(1 + QC)) − 8γ(K̃QC + NstC
2)]

1

2 .
(25)

The presence of a zero eigenvalue indicates that the system (23) is singular. This fact is due to the presence
of a Goldstone mode, which induces a global phase invariance. Indeed the Goldstone mode is associated to the
imaginary part of S. Using (14) we get rid of the Goldstone mode by reducing the dynamics to a subspace
orthogonal to the Goldstone mode. In terms of the variable I the equations system (23) reads

İ = 2K̃I + 2QCn + ξI(t)
ṅ = −γ(1 − 2Q2(s + c))NstI − γ(1 + 2QC)n,

(26)

where the fluctuation term is derived from (11) and (3), ξI(t) = QRe(ξS(t)+ξ∗S(t)) with the correlation properties

〈ξI(t)ξI(t
′)〉 = 〈ξI(t)ξ

∗
I (t′)〉 = 8Q2

√
βτpNstδ(t − t′). (27)

By Fourier transform, we derive

Ĩ(ω) =
1

B(ω)
[iω + γ(1 + 2QC)]ξ̃I(ω) (28)

and

ñ(ω) =
−1

B(ω)
γNst[1 − 2Q2(s + c)]ξ̃I(ω), (29)

where
B(ω) = −ω2 + iω[γ(1 + 2QC) − 2K̃] + 2γ[QCNst + K̃(2Q − 1)]. (30)
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Figure 3. Decay time τ∗ versus conservative backscattering coefficient kc, the black line corresponds to kd = 7 10−4.
The grey to kd = 8 10−4 and black dashed curve to kd = 9 10−4.

we are able to find the following ensemble average

< Ĩ(ω)Ĩ∗(ω′) >= Q2

eB(ω) eB∗(ω)
[ω2 + γ2(1 + 2QC)2] × 16π

√
βτpNstδ(ω − ω′). (31)

Figure 2 shows the I-spectrum from (31) and from numerical simulations. The agreement between numerical
and analytical solutions is very good.

4. TIME CORRELATIONS

We can relate the spectrum results of the previous sections to the auto-correlations of the variables I(t) and
D(t), by the Wiener-Khinchin theorem.19

CDD(τ) =
1

2π

∫ ∞

−∞

< D(ω)D∗(ω′) > eiωτdω (32)

CII(τ) =
1

2π

∫ ∞

−∞

< I(ω)I∗(ω′) > eiωτdω (33)

The cross-correlation between I(t) and D(t) is zero due to the noise properties. Using (32) with (22) we calculate
the correlation time for D(t), the results are plotted in Fig. 3. Physically the conservative backscattering
component makes the two modes uncorrelated.

5. CONCLUSIONS

We have studied the influence of spontaneous emission noise in a two-mode model for semiconductor ring lasers,
biased in the bidirectional regime. The analysis has been carried out by linearizing the model close to a stable
stationary solution, and considering effect of noise as stochastic perturbations expressed by Langevin forces.
At a linear level, pertubations concerning the total intensity and carrier inversion dynamics decouple from the
energy distribution processes between the two modes. This fact has permitted a full analytic analysis, well con-
firmed by numerical simulations of the complete non linear system. The analysis showed that semiconductor ring
lasers have peculiar noise properties. On one side the total intensity and carrier density show a noise spectrum
(I-spectrum) characterized by a resonance induced by the typical field-medium exchange processes (relaxation



oscillations) and the global phase invariance induced by the Goldstone mode, so as far as those variables are
concerned, it behaves as a standard single-mode Fabry-Perot semiconductor laser. Besides, the degree of freedom
associated to the simultaneous presence of two counterpropagating modes allows for a further process of energy
exchange between the two modes. Our analysis unveiled that such process presents a resonance influenced mainly
by the backscattering parameters, and interpreted as a ’noisy precursor’ of a Hopf bifurcation.
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